Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 | // SPDX-License-Identifier: GPL-2.0-only /* * kexec.c - kexec_load system call * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/capability.h> #include <linux/mm.h> #include <linux/file.h> #include <linux/security.h> #include <linux/kexec.h> #include <linux/mutex.h> #include <linux/list.h> #include <linux/syscalls.h> #include <linux/vmalloc.h> #include <linux/slab.h> #include "kexec_internal.h" static int kimage_alloc_init(struct kimage **rimage, unsigned long entry, unsigned long nr_segments, struct kexec_segment *segments, unsigned long flags) { int ret; struct kimage *image; bool kexec_on_panic = flags & KEXEC_ON_CRASH; if (kexec_on_panic) { /* Verify we have a valid entry point */ if ((entry < phys_to_boot_phys(crashk_res.start)) || (entry > phys_to_boot_phys(crashk_res.end))) return -EADDRNOTAVAIL; } /* Allocate and initialize a controlling structure */ image = do_kimage_alloc_init(); if (!image) return -ENOMEM; image->start = entry; image->nr_segments = nr_segments; memcpy(image->segment, segments, nr_segments * sizeof(*segments)); if (kexec_on_panic) { /* Enable special crash kernel control page alloc policy. */ image->control_page = crashk_res.start; image->type = KEXEC_TYPE_CRASH; } ret = sanity_check_segment_list(image); if (ret) goto out_free_image; /* * Find a location for the control code buffer, and add it * the vector of segments so that it's pages will also be * counted as destination pages. */ ret = -ENOMEM; image->control_code_page = kimage_alloc_control_pages(image, get_order(KEXEC_CONTROL_PAGE_SIZE)); if (!image->control_code_page) { pr_err("Could not allocate control_code_buffer\n"); goto out_free_image; } if (!kexec_on_panic) { image->swap_page = kimage_alloc_control_pages(image, 0); if (!image->swap_page) { pr_err("Could not allocate swap buffer\n"); goto out_free_control_pages; } } *rimage = image; return 0; out_free_control_pages: kimage_free_page_list(&image->control_pages); out_free_image: kfree(image); return ret; } static int do_kexec_load(unsigned long entry, unsigned long nr_segments, struct kexec_segment *segments, unsigned long flags) { struct kimage **dest_image, *image; unsigned long i; int ret; /* * Because we write directly to the reserved memory region when loading * crash kernels we need a mutex here to prevent multiple crash kernels * from attempting to load simultaneously, and to prevent a crash kernel * from loading over the top of a in use crash kernel. * * KISS: always take the mutex. */ if (!mutex_trylock(&kexec_mutex)) return -EBUSY; if (flags & KEXEC_ON_CRASH) { dest_image = &kexec_crash_image; if (kexec_crash_image) arch_kexec_unprotect_crashkres(); } else { dest_image = &kexec_image; } if (nr_segments == 0) { /* Uninstall image */ kimage_free(xchg(dest_image, NULL)); ret = 0; goto out_unlock; } if (flags & KEXEC_ON_CRASH) { /* * Loading another kernel to switch to if this one * crashes. Free any current crash dump kernel before * we corrupt it. */ kimage_free(xchg(&kexec_crash_image, NULL)); } ret = kimage_alloc_init(&image, entry, nr_segments, segments, flags); if (ret) goto out_unlock; if (flags & KEXEC_PRESERVE_CONTEXT) image->preserve_context = 1; ret = machine_kexec_prepare(image); if (ret) goto out; /* * Some architecture(like S390) may touch the crash memory before * machine_kexec_prepare(), we must copy vmcoreinfo data after it. */ ret = kimage_crash_copy_vmcoreinfo(image); if (ret) goto out; for (i = 0; i < nr_segments; i++) { ret = kimage_load_segment(image, &image->segment[i]); if (ret) goto out; } kimage_terminate(image); ret = machine_kexec_post_load(image); if (ret) goto out; /* Install the new kernel and uninstall the old */ image = xchg(dest_image, image); out: if ((flags & KEXEC_ON_CRASH) && kexec_crash_image) arch_kexec_protect_crashkres(); kimage_free(image); out_unlock: mutex_unlock(&kexec_mutex); return ret; } /* * Exec Kernel system call: for obvious reasons only root may call it. * * This call breaks up into three pieces. * - A generic part which loads the new kernel from the current * address space, and very carefully places the data in the * allocated pages. * * - A generic part that interacts with the kernel and tells all of * the devices to shut down. Preventing on-going dmas, and placing * the devices in a consistent state so a later kernel can * reinitialize them. * * - A machine specific part that includes the syscall number * and then copies the image to it's final destination. And * jumps into the image at entry. * * kexec does not sync, or unmount filesystems so if you need * that to happen you need to do that yourself. */ static inline int kexec_load_check(unsigned long nr_segments, unsigned long flags) { int result; /* We only trust the superuser with rebooting the system. */ if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) return -EPERM; /* Permit LSMs and IMA to fail the kexec */ result = security_kernel_load_data(LOADING_KEXEC_IMAGE, false); if (result < 0) return result; /* * kexec can be used to circumvent module loading restrictions, so * prevent loading in that case */ result = security_locked_down(LOCKDOWN_KEXEC); if (result) return result; /* * Verify we have a legal set of flags * This leaves us room for future extensions. */ if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) return -EINVAL; /* Put an artificial cap on the number * of segments passed to kexec_load. */ if (nr_segments > KEXEC_SEGMENT_MAX) return -EINVAL; return 0; } SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, struct kexec_segment __user *, segments, unsigned long, flags) { struct kexec_segment *ksegments; unsigned long result; result = kexec_load_check(nr_segments, flags); if (result) return result; /* Verify we are on the appropriate architecture */ if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) return -EINVAL; ksegments = memdup_user(segments, nr_segments * sizeof(ksegments[0])); if (IS_ERR(ksegments)) return PTR_ERR(ksegments); result = do_kexec_load(entry, nr_segments, ksegments, flags); kfree(ksegments); return result; } #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry, compat_ulong_t, nr_segments, struct compat_kexec_segment __user *, segments, compat_ulong_t, flags) { struct compat_kexec_segment in; struct kexec_segment *ksegments; unsigned long i, result; result = kexec_load_check(nr_segments, flags); if (result) return result; /* Don't allow clients that don't understand the native * architecture to do anything. */ if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) return -EINVAL; ksegments = kmalloc_array(nr_segments, sizeof(ksegments[0]), GFP_KERNEL); if (!ksegments) return -ENOMEM; for (i = 0; i < nr_segments; i++) { result = copy_from_user(&in, &segments[i], sizeof(in)); if (result) goto fail; ksegments[i].buf = compat_ptr(in.buf); ksegments[i].bufsz = in.bufsz; ksegments[i].mem = in.mem; ksegments[i].memsz = in.memsz; } result = do_kexec_load(entry, nr_segments, ksegments, flags); fail: kfree(ksegments); return result; } #endif |