Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 | /* * kexec.c - kexec system call * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com> * * This source code is licensed under the GNU General Public License, * Version 2. See the file COPYING for more details. */ #define pr_fmt(fmt) "kexec: " fmt #include <linux/capability.h> #include <linux/mm.h> #include <linux/file.h> #include <linux/slab.h> #include <linux/fs.h> #include <linux/kexec.h> #include <linux/mutex.h> #include <linux/list.h> #include <linux/highmem.h> #include <linux/syscalls.h> #include <linux/reboot.h> #include <linux/ioport.h> #include <linux/hardirq.h> #include <linux/elf.h> #include <linux/elfcore.h> #include <linux/utsname.h> #include <linux/numa.h> #include <linux/suspend.h> #include <linux/device.h> #include <linux/freezer.h> #include <linux/pm.h> #include <linux/cpu.h> #include <linux/console.h> #include <linux/vmalloc.h> #include <linux/swap.h> #include <linux/syscore_ops.h> #include <linux/compiler.h> #include <linux/hugetlb.h> #include <asm/page.h> #include <asm/uaccess.h> #include <asm/io.h> #include <asm/sections.h> #include <crypto/hash.h> #include <crypto/sha.h> /* Per cpu memory for storing cpu states in case of system crash. */ note_buf_t __percpu *crash_notes; /* vmcoreinfo stuff */ static unsigned char vmcoreinfo_data[VMCOREINFO_BYTES]; u32 vmcoreinfo_note[VMCOREINFO_NOTE_SIZE/4]; size_t vmcoreinfo_size; size_t vmcoreinfo_max_size = sizeof(vmcoreinfo_data); /* Flag to indicate we are going to kexec a new kernel */ bool kexec_in_progress = false; /* * Declare these symbols weak so that if architecture provides a purgatory, * these will be overridden. */ char __weak kexec_purgatory[0]; size_t __weak kexec_purgatory_size = 0; #ifdef CONFIG_KEXEC_FILE static int kexec_calculate_store_digests(struct kimage *image); #endif /* Location of the reserved area for the crash kernel */ struct resource crashk_res = { .name = "Crash kernel", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; struct resource crashk_low_res = { .name = "Crash kernel", .start = 0, .end = 0, .flags = IORESOURCE_BUSY | IORESOURCE_MEM }; int kexec_should_crash(struct task_struct *p) { if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops) return 1; return 0; } /* * When kexec transitions to the new kernel there is a one-to-one * mapping between physical and virtual addresses. On processors * where you can disable the MMU this is trivial, and easy. For * others it is still a simple predictable page table to setup. * * In that environment kexec copies the new kernel to its final * resting place. This means I can only support memory whose * physical address can fit in an unsigned long. In particular * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled. * If the assembly stub has more restrictive requirements * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be * defined more restrictively in <asm/kexec.h>. * * The code for the transition from the current kernel to the * the new kernel is placed in the control_code_buffer, whose size * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single * page of memory is necessary, but some architectures require more. * Because this memory must be identity mapped in the transition from * virtual to physical addresses it must live in the range * 0 - TASK_SIZE, as only the user space mappings are arbitrarily * modifiable. * * The assembly stub in the control code buffer is passed a linked list * of descriptor pages detailing the source pages of the new kernel, * and the destination addresses of those source pages. As this data * structure is not used in the context of the current OS, it must * be self-contained. * * The code has been made to work with highmem pages and will use a * destination page in its final resting place (if it happens * to allocate it). The end product of this is that most of the * physical address space, and most of RAM can be used. * * Future directions include: * - allocating a page table with the control code buffer identity * mapped, to simplify machine_kexec and make kexec_on_panic more * reliable. */ /* * KIMAGE_NO_DEST is an impossible destination address..., for * allocating pages whose destination address we do not care about. */ #define KIMAGE_NO_DEST (-1UL) static int kimage_is_destination_range(struct kimage *image, unsigned long start, unsigned long end); static struct page *kimage_alloc_page(struct kimage *image, gfp_t gfp_mask, unsigned long dest); static int copy_user_segment_list(struct kimage *image, unsigned long nr_segments, struct kexec_segment __user *segments) { int ret; size_t segment_bytes; /* Read in the segments */ image->nr_segments = nr_segments; segment_bytes = nr_segments * sizeof(*segments); ret = copy_from_user(image->segment, segments, segment_bytes); if (ret) ret = -EFAULT; return ret; } static int sanity_check_segment_list(struct kimage *image) { int result, i; unsigned long nr_segments = image->nr_segments; /* * Verify we have good destination addresses. The caller is * responsible for making certain we don't attempt to load * the new image into invalid or reserved areas of RAM. This * just verifies it is an address we can use. * * Since the kernel does everything in page size chunks ensure * the destination addresses are page aligned. Too many * special cases crop of when we don't do this. The most * insidious is getting overlapping destination addresses * simply because addresses are changed to page size * granularity. */ result = -EADDRNOTAVAIL; for (i = 0; i < nr_segments; i++) { unsigned long mstart, mend; mstart = image->segment[i].mem; mend = mstart + image->segment[i].memsz; if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK)) return result; if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT) return result; } /* Verify our destination addresses do not overlap. * If we alloed overlapping destination addresses * through very weird things can happen with no * easy explanation as one segment stops on another. */ result = -EINVAL; for (i = 0; i < nr_segments; i++) { unsigned long mstart, mend; unsigned long j; mstart = image->segment[i].mem; mend = mstart + image->segment[i].memsz; for (j = 0; j < i; j++) { unsigned long pstart, pend; pstart = image->segment[j].mem; pend = pstart + image->segment[j].memsz; /* Do the segments overlap ? */ if ((mend > pstart) && (mstart < pend)) return result; } } /* Ensure our buffer sizes are strictly less than * our memory sizes. This should always be the case, * and it is easier to check up front than to be surprised * later on. */ result = -EINVAL; for (i = 0; i < nr_segments; i++) { if (image->segment[i].bufsz > image->segment[i].memsz) return result; } /* * Verify we have good destination addresses. Normally * the caller is responsible for making certain we don't * attempt to load the new image into invalid or reserved * areas of RAM. But crash kernels are preloaded into a * reserved area of ram. We must ensure the addresses * are in the reserved area otherwise preloading the * kernel could corrupt things. */ if (image->type == KEXEC_TYPE_CRASH) { result = -EADDRNOTAVAIL; for (i = 0; i < nr_segments; i++) { unsigned long mstart, mend; mstart = image->segment[i].mem; mend = mstart + image->segment[i].memsz - 1; /* Ensure we are within the crash kernel limits */ if ((mstart < crashk_res.start) || (mend > crashk_res.end)) return result; } } return 0; } static struct kimage *do_kimage_alloc_init(void) { struct kimage *image; /* Allocate a controlling structure */ image = kzalloc(sizeof(*image), GFP_KERNEL); if (!image) return NULL; image->head = 0; image->entry = &image->head; image->last_entry = &image->head; image->control_page = ~0; /* By default this does not apply */ image->type = KEXEC_TYPE_DEFAULT; /* Initialize the list of control pages */ INIT_LIST_HEAD(&image->control_pages); /* Initialize the list of destination pages */ INIT_LIST_HEAD(&image->dest_pages); /* Initialize the list of unusable pages */ INIT_LIST_HEAD(&image->unusable_pages); return image; } static void kimage_free_page_list(struct list_head *list); static int kimage_alloc_init(struct kimage **rimage, unsigned long entry, unsigned long nr_segments, struct kexec_segment __user *segments, unsigned long flags) { int ret; struct kimage *image; bool kexec_on_panic = flags & KEXEC_ON_CRASH; if (kexec_on_panic) { /* Verify we have a valid entry point */ if ((entry < crashk_res.start) || (entry > crashk_res.end)) return -EADDRNOTAVAIL; } /* Allocate and initialize a controlling structure */ image = do_kimage_alloc_init(); if (!image) return -ENOMEM; image->start = entry; ret = copy_user_segment_list(image, nr_segments, segments); if (ret) goto out_free_image; ret = sanity_check_segment_list(image); if (ret) goto out_free_image; /* Enable the special crash kernel control page allocation policy. */ if (kexec_on_panic) { image->control_page = crashk_res.start; image->type = KEXEC_TYPE_CRASH; } /* * Find a location for the control code buffer, and add it * the vector of segments so that it's pages will also be * counted as destination pages. */ ret = -ENOMEM; image->control_code_page = kimage_alloc_control_pages(image, get_order(KEXEC_CONTROL_PAGE_SIZE)); if (!image->control_code_page) { pr_err("Could not allocate control_code_buffer\n"); goto out_free_image; } if (!kexec_on_panic) { image->swap_page = kimage_alloc_control_pages(image, 0); if (!image->swap_page) { pr_err("Could not allocate swap buffer\n"); goto out_free_control_pages; } } *rimage = image; return 0; out_free_control_pages: kimage_free_page_list(&image->control_pages); out_free_image: kfree(image); return ret; } #ifdef CONFIG_KEXEC_FILE static int copy_file_from_fd(int fd, void **buf, unsigned long *buf_len) { struct fd f = fdget(fd); int ret; struct kstat stat; loff_t pos; ssize_t bytes = 0; if (!f.file) return -EBADF; ret = vfs_getattr(&f.file->f_path, &stat); if (ret) goto out; if (stat.size > INT_MAX) { ret = -EFBIG; goto out; } /* Don't hand 0 to vmalloc, it whines. */ if (stat.size == 0) { ret = -EINVAL; goto out; } *buf = vmalloc(stat.size); if (!*buf) { ret = -ENOMEM; goto out; } pos = 0; while (pos < stat.size) { bytes = kernel_read(f.file, pos, (char *)(*buf) + pos, stat.size - pos); if (bytes < 0) { vfree(*buf); ret = bytes; goto out; } if (bytes == 0) break; pos += bytes; } if (pos != stat.size) { ret = -EBADF; vfree(*buf); goto out; } *buf_len = pos; out: fdput(f); return ret; } /* Architectures can provide this probe function */ int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf, unsigned long buf_len) { return -ENOEXEC; } void * __weak arch_kexec_kernel_image_load(struct kimage *image) { return ERR_PTR(-ENOEXEC); } void __weak arch_kimage_file_post_load_cleanup(struct kimage *image) { } int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf, unsigned long buf_len) { return -EKEYREJECTED; } /* Apply relocations of type RELA */ int __weak arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, unsigned int relsec) { pr_err("RELA relocation unsupported.\n"); return -ENOEXEC; } /* Apply relocations of type REL */ int __weak arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs, unsigned int relsec) { pr_err("REL relocation unsupported.\n"); return -ENOEXEC; } /* * Free up memory used by kernel, initrd, and comand line. This is temporary * memory allocation which is not needed any more after these buffers have * been loaded into separate segments and have been copied elsewhere. */ static void kimage_file_post_load_cleanup(struct kimage *image) { struct purgatory_info *pi = &image->purgatory_info; vfree(image->kernel_buf); image->kernel_buf = NULL; vfree(image->initrd_buf); image->initrd_buf = NULL; kfree(image->cmdline_buf); image->cmdline_buf = NULL; vfree(pi->purgatory_buf); pi->purgatory_buf = NULL; vfree(pi->sechdrs); pi->sechdrs = NULL; /* See if architecture has anything to cleanup post load */ arch_kimage_file_post_load_cleanup(image); /* * Above call should have called into bootloader to free up * any data stored in kimage->image_loader_data. It should * be ok now to free it up. */ kfree(image->image_loader_data); image->image_loader_data = NULL; } /* * In file mode list of segments is prepared by kernel. Copy relevant * data from user space, do error checking, prepare segment list */ static int kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd, const char __user *cmdline_ptr, unsigned long cmdline_len, unsigned flags) { int ret = 0; void *ldata; ret = copy_file_from_fd(kernel_fd, &image->kernel_buf, &image->kernel_buf_len); if (ret) return ret; /* Call arch image probe handlers */ ret = arch_kexec_kernel_image_probe(image, image->kernel_buf, image->kernel_buf_len); if (ret) goto out; #ifdef CONFIG_KEXEC_VERIFY_SIG ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf, image->kernel_buf_len); if (ret) { pr_debug("kernel signature verification failed.\n"); goto out; } pr_debug("kernel signature verification successful.\n"); #endif /* It is possible that there no initramfs is being loaded */ if (!(flags & KEXEC_FILE_NO_INITRAMFS)) { ret = copy_file_from_fd(initrd_fd, &image->initrd_buf, &image->initrd_buf_len); if (ret) goto out; } if (cmdline_len) { image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL); if (!image->cmdline_buf) { ret = -ENOMEM; goto out; } ret = copy_from_user(image->cmdline_buf, cmdline_ptr, cmdline_len); if (ret) { ret = -EFAULT; goto out; } image->cmdline_buf_len = cmdline_len; /* command line should be a string with last byte null */ if (image->cmdline_buf[cmdline_len - 1] != '\0') { ret = -EINVAL; goto out; } } /* Call arch image load handlers */ ldata = arch_kexec_kernel_image_load(image); if (IS_ERR(ldata)) { ret = PTR_ERR(ldata); goto out; } image->image_loader_data = ldata; out: /* In case of error, free up all allocated memory in this function */ if (ret) kimage_file_post_load_cleanup(image); return ret; } static int kimage_file_alloc_init(struct kimage **rimage, int kernel_fd, int initrd_fd, const char __user *cmdline_ptr, unsigned long cmdline_len, unsigned long flags) { int ret; struct kimage *image; bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH; image = do_kimage_alloc_init(); if (!image) return -ENOMEM; image->file_mode = 1; if (kexec_on_panic) { /* Enable special crash kernel control page alloc policy. */ image->control_page = crashk_res.start; image->type = KEXEC_TYPE_CRASH; } ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd, cmdline_ptr, cmdline_len, flags); if (ret) goto out_free_image; ret = sanity_check_segment_list(image); if (ret) goto out_free_post_load_bufs; ret = -ENOMEM; image->control_code_page = kimage_alloc_control_pages(image, get_order(KEXEC_CONTROL_PAGE_SIZE)); if (!image->control_code_page) { pr_err("Could not allocate control_code_buffer\n"); goto out_free_post_load_bufs; } if (!kexec_on_panic) { image->swap_page = kimage_alloc_control_pages(image, 0); if (!image->swap_page) { pr_err("Could not allocate swap buffer\n"); goto out_free_control_pages; } } *rimage = image; return 0; out_free_control_pages: kimage_free_page_list(&image->control_pages); out_free_post_load_bufs: kimage_file_post_load_cleanup(image); out_free_image: kfree(image); return ret; } #else /* CONFIG_KEXEC_FILE */ static inline void kimage_file_post_load_cleanup(struct kimage *image) { } #endif /* CONFIG_KEXEC_FILE */ static int kimage_is_destination_range(struct kimage *image, unsigned long start, unsigned long end) { unsigned long i; for (i = 0; i < image->nr_segments; i++) { unsigned long mstart, mend; mstart = image->segment[i].mem; mend = mstart + image->segment[i].memsz; if ((end > mstart) && (start < mend)) return 1; } return 0; } static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order) { struct page *pages; pages = alloc_pages(gfp_mask, order); if (pages) { unsigned int count, i; pages->mapping = NULL; set_page_private(pages, order); count = 1 << order; for (i = 0; i < count; i++) SetPageReserved(pages + i); } return pages; } static void kimage_free_pages(struct page *page) { unsigned int order, count, i; order = page_private(page); count = 1 << order; for (i = 0; i < count; i++) ClearPageReserved(page + i); __free_pages(page, order); } static void kimage_free_page_list(struct list_head *list) { struct list_head *pos, *next; list_for_each_safe(pos, next, list) { struct page *page; page = list_entry(pos, struct page, lru); list_del(&page->lru); kimage_free_pages(page); } } static struct page *kimage_alloc_normal_control_pages(struct kimage *image, unsigned int order) { /* Control pages are special, they are the intermediaries * that are needed while we copy the rest of the pages * to their final resting place. As such they must * not conflict with either the destination addresses * or memory the kernel is already using. * * The only case where we really need more than one of * these are for architectures where we cannot disable * the MMU and must instead generate an identity mapped * page table for all of the memory. * * At worst this runs in O(N) of the image size. */ struct list_head extra_pages; struct page *pages; unsigned int count; count = 1 << order; INIT_LIST_HEAD(&extra_pages); /* Loop while I can allocate a page and the page allocated * is a destination page. */ do { unsigned long pfn, epfn, addr, eaddr; pages = kimage_alloc_pages(GFP_KERNEL, order); if (!pages) break; pfn = page_to_pfn(pages); epfn = pfn + count; addr = pfn << PAGE_SHIFT; eaddr = epfn << PAGE_SHIFT; if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) || kimage_is_destination_range(image, addr, eaddr)) { list_add(&pages->lru, &extra_pages); pages = NULL; } } while (!pages); if (pages) { /* Remember the allocated page... */ list_add(&pages->lru, &image->control_pages); /* Because the page is already in it's destination * location we will never allocate another page at * that address. Therefore kimage_alloc_pages * will not return it (again) and we don't need * to give it an entry in image->segment[]. */ } /* Deal with the destination pages I have inadvertently allocated. * * Ideally I would convert multi-page allocations into single * page allocations, and add everything to image->dest_pages. * * For now it is simpler to just free the pages. */ kimage_free_page_list(&extra_pages); return pages; } static struct page *kimage_alloc_crash_control_pages(struct kimage *image, unsigned int order) { /* Control pages are special, they are the intermediaries * that are needed while we copy the rest of the pages * to their final resting place. As such they must * not conflict with either the destination addresses * or memory the kernel is already using. * * Control pages are also the only pags we must allocate * when loading a crash kernel. All of the other pages * are specified by the segments and we just memcpy * into them directly. * * The only case where we really need more than one of * these are for architectures where we cannot disable * the MMU and must instead generate an identity mapped * page table for all of the memory. * * Given the low demand this implements a very simple * allocator that finds the first hole of the appropriate * size in the reserved memory region, and allocates all * of the memory up to and including the hole. */ unsigned long hole_start, hole_end, size; struct page *pages; pages = NULL; size = (1 << order) << PAGE_SHIFT; hole_start = (image->control_page + (size - 1)) & ~(size - 1); hole_end = hole_start + size - 1; while (hole_end <= crashk_res.end) { unsigned long i; if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT) break; /* See if I overlap any of the segments */ for (i = 0; i < image->nr_segments; i++) { unsigned long mstart, mend; mstart = image->segment[i].mem; mend = mstart + image->segment[i].memsz - 1; if ((hole_end >= mstart) && (hole_start <= mend)) { /* Advance the hole to the end of the segment */ hole_start = (mend + (size - 1)) & ~(size - 1); hole_end = hole_start + size - 1; break; } } /* If I don't overlap any segments I have found my hole! */ if (i == image->nr_segments) { pages = pfn_to_page(hole_start >> PAGE_SHIFT); break; } } if (pages) image->control_page = hole_end; return pages; } struct page *kimage_alloc_control_pages(struct kimage *image, unsigned int order) { struct page *pages = NULL; switch (image->type) { case KEXEC_TYPE_DEFAULT: pages = kimage_alloc_normal_control_pages(image, order); break; case KEXEC_TYPE_CRASH: pages = kimage_alloc_crash_control_pages(image, order); break; } return pages; } static int kimage_add_entry(struct kimage *image, kimage_entry_t entry) { if (*image->entry != 0) image->entry++; if (image->entry == image->last_entry) { kimage_entry_t *ind_page; struct page *page; page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST); if (!page) return -ENOMEM; ind_page = page_address(page); *image->entry = virt_to_phys(ind_page) | IND_INDIRECTION; image->entry = ind_page; image->last_entry = ind_page + ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1); } *image->entry = entry; image->entry++; *image->entry = 0; return 0; } static int kimage_set_destination(struct kimage *image, unsigned long destination) { int result; destination &= PAGE_MASK; result = kimage_add_entry(image, destination | IND_DESTINATION); if (result == 0) image->destination = destination; return result; } static int kimage_add_page(struct kimage *image, unsigned long page) { int result; page &= PAGE_MASK; result = kimage_add_entry(image, page | IND_SOURCE); if (result == 0) image->destination += PAGE_SIZE; return result; } static void kimage_free_extra_pages(struct kimage *image) { /* Walk through and free any extra destination pages I may have */ kimage_free_page_list(&image->dest_pages); /* Walk through and free any unusable pages I have cached */ kimage_free_page_list(&image->unusable_pages); } static void kimage_terminate(struct kimage *image) { if (*image->entry != 0) image->entry++; *image->entry = IND_DONE; } #define for_each_kimage_entry(image, ptr, entry) \ for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \ ptr = (entry & IND_INDIRECTION) ? \ phys_to_virt((entry & PAGE_MASK)) : ptr + 1) static void kimage_free_entry(kimage_entry_t entry) { struct page *page; page = pfn_to_page(entry >> PAGE_SHIFT); kimage_free_pages(page); } static void kimage_free(struct kimage *image) { kimage_entry_t *ptr, entry; kimage_entry_t ind = 0; if (!image) return; kimage_free_extra_pages(image); for_each_kimage_entry(image, ptr, entry) { if (entry & IND_INDIRECTION) { /* Free the previous indirection page */ if (ind & IND_INDIRECTION) kimage_free_entry(ind); /* Save this indirection page until we are * done with it. */ ind = entry; } else if (entry & IND_SOURCE) kimage_free_entry(entry); } /* Free the final indirection page */ if (ind & IND_INDIRECTION) kimage_free_entry(ind); /* Handle any machine specific cleanup */ machine_kexec_cleanup(image); /* Free the kexec control pages... */ kimage_free_page_list(&image->control_pages); /* * Free up any temporary buffers allocated. This might hit if * error occurred much later after buffer allocation. */ if (image->file_mode) kimage_file_post_load_cleanup(image); kfree(image); } static kimage_entry_t *kimage_dst_used(struct kimage *image, unsigned long page) { kimage_entry_t *ptr, entry; unsigned long destination = 0; for_each_kimage_entry(image, ptr, entry) { if (entry & IND_DESTINATION) destination = entry & PAGE_MASK; else if (entry & IND_SOURCE) { if (page == destination) return ptr; destination += PAGE_SIZE; } } return NULL; } static struct page *kimage_alloc_page(struct kimage *image, gfp_t gfp_mask, unsigned long destination) { /* * Here we implement safeguards to ensure that a source page * is not copied to its destination page before the data on * the destination page is no longer useful. * * To do this we maintain the invariant that a source page is * either its own destination page, or it is not a * destination page at all. * * That is slightly stronger than required, but the proof * that no problems will not occur is trivial, and the * implementation is simply to verify. * * When allocating all pages normally this algorithm will run * in O(N) time, but in the worst case it will run in O(N^2) * time. If the runtime is a problem the data structures can * be fixed. */ struct page *page; unsigned long addr; /* * Walk through the list of destination pages, and see if I * have a match. */ list_for_each_entry(page, &image->dest_pages, lru) { addr = page_to_pfn(page) << PAGE_SHIFT; if (addr == destination) { list_del(&page->lru); return page; } } page = NULL; while (1) { kimage_entry_t *old; /* Allocate a page, if we run out of memory give up */ page = kimage_alloc_pages(gfp_mask, 0); if (!page) return NULL; /* If the page cannot be used file it away */ if (page_to_pfn(page) > (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) { list_add(&page->lru, &image->unusable_pages); continue; } addr = page_to_pfn(page) << PAGE_SHIFT; /* If it is the destination page we want use it */ if (addr == destination) break; /* If the page is not a destination page use it */ if (!kimage_is_destination_range(image, addr, addr + PAGE_SIZE)) break; /* * I know that the page is someones destination page. * See if there is already a source page for this * destination page. And if so swap the source pages. */ old = kimage_dst_used(image, addr); if (old) { /* If so move it */ unsigned long old_addr; struct page *old_page; old_addr = *old & PAGE_MASK; old_page = pfn_to_page(old_addr >> PAGE_SHIFT); copy_highpage(page, old_page); *old = addr | (*old & ~PAGE_MASK); /* The old page I have found cannot be a * destination page, so return it if it's * gfp_flags honor the ones passed in. */ if (!(gfp_mask & __GFP_HIGHMEM) && PageHighMem(old_page)) { kimage_free_pages(old_page); continue; } addr = old_addr; page = old_page; break; } else { /* Place the page on the destination list I * will use it later. */ list_add(&page->lru, &image->dest_pages); } } return page; } static int kimage_load_normal_segment(struct kimage *image, struct kexec_segment *segment) { unsigned long maddr; size_t ubytes, mbytes; int result; unsigned char __user *buf = NULL; unsigned char *kbuf = NULL; result = 0; if (image->file_mode) kbuf = segment->kbuf; else buf = segment->buf; ubytes = segment->bufsz; mbytes = segment->memsz; maddr = segment->mem; result = kimage_set_destination(image, maddr); if (result < 0) goto out; while (mbytes) { struct page *page; char *ptr; size_t uchunk, mchunk; page = kimage_alloc_page(image, GFP_HIGHUSER, maddr); if (!page) { result = -ENOMEM; goto out; } result = kimage_add_page(image, page_to_pfn(page) << PAGE_SHIFT); if (result < 0) goto out; ptr = kmap(page); /* Start with a clear page */ clear_page(ptr); ptr += maddr & ~PAGE_MASK; mchunk = min_t(size_t, mbytes, PAGE_SIZE - (maddr & ~PAGE_MASK)); uchunk = min(ubytes, mchunk); /* For file based kexec, source pages are in kernel memory */ if (image->file_mode) memcpy(ptr, kbuf, uchunk); else result = copy_from_user(ptr, buf, uchunk); kunmap(page); if (result) { result = -EFAULT; goto out; } ubytes -= uchunk; maddr += mchunk; if (image->file_mode) kbuf += mchunk; else buf += mchunk; mbytes -= mchunk; } out: return result; } static int kimage_load_crash_segment(struct kimage *image, struct kexec_segment *segment) { /* For crash dumps kernels we simply copy the data from * user space to it's destination. * We do things a page at a time for the sake of kmap. */ unsigned long maddr; size_t ubytes, mbytes; int result; unsigned char __user *buf = NULL; unsigned char *kbuf = NULL; result = 0; if (image->file_mode) kbuf = segment->kbuf; else buf = segment->buf; ubytes = segment->bufsz; mbytes = segment->memsz; maddr = segment->mem; while (mbytes) { struct page *page; char *ptr; size_t uchunk, mchunk; page = pfn_to_page(maddr >> PAGE_SHIFT); if (!page) { result = -ENOMEM; goto out; } ptr = kmap(page); ptr += maddr & ~PAGE_MASK; mchunk = min_t(size_t, mbytes, PAGE_SIZE - (maddr & ~PAGE_MASK)); uchunk = min(ubytes, mchunk); if (mchunk > uchunk) { /* Zero the trailing part of the page */ memset(ptr + uchunk, 0, mchunk - uchunk); } /* For file based kexec, source pages are in kernel memory */ if (image->file_mode) memcpy(ptr, kbuf, uchunk); else result = copy_from_user(ptr, buf, uchunk); kexec_flush_icache_page(page); kunmap(page); if (result) { result = -EFAULT; goto out; } ubytes -= uchunk; maddr += mchunk; if (image->file_mode) kbuf += mchunk; else buf += mchunk; mbytes -= mchunk; } out: return result; } static int kimage_load_segment(struct kimage *image, struct kexec_segment *segment) { int result = -ENOMEM; switch (image->type) { case KEXEC_TYPE_DEFAULT: result = kimage_load_normal_segment(image, segment); break; case KEXEC_TYPE_CRASH: result = kimage_load_crash_segment(image, segment); break; } return result; } /* * Exec Kernel system call: for obvious reasons only root may call it. * * This call breaks up into three pieces. * - A generic part which loads the new kernel from the current * address space, and very carefully places the data in the * allocated pages. * * - A generic part that interacts with the kernel and tells all of * the devices to shut down. Preventing on-going dmas, and placing * the devices in a consistent state so a later kernel can * reinitialize them. * * - A machine specific part that includes the syscall number * and then copies the image to it's final destination. And * jumps into the image at entry. * * kexec does not sync, or unmount filesystems so if you need * that to happen you need to do that yourself. */ struct kimage *kexec_image; struct kimage *kexec_crash_image; int kexec_load_disabled; static DEFINE_MUTEX(kexec_mutex); SYSCALL_DEFINE4(kexec_load, unsigned long, entry, unsigned long, nr_segments, struct kexec_segment __user *, segments, unsigned long, flags) { struct kimage **dest_image, *image; int result; /* We only trust the superuser with rebooting the system. */ if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) return -EPERM; /* * Verify we have a legal set of flags * This leaves us room for future extensions. */ if ((flags & KEXEC_FLAGS) != (flags & ~KEXEC_ARCH_MASK)) return -EINVAL; /* Verify we are on the appropriate architecture */ if (((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH) && ((flags & KEXEC_ARCH_MASK) != KEXEC_ARCH_DEFAULT)) return -EINVAL; /* Put an artificial cap on the number * of segments passed to kexec_load. */ if (nr_segments > KEXEC_SEGMENT_MAX) return -EINVAL; image = NULL; result = 0; /* Because we write directly to the reserved memory * region when loading crash kernels we need a mutex here to * prevent multiple crash kernels from attempting to load * simultaneously, and to prevent a crash kernel from loading * over the top of a in use crash kernel. * * KISS: always take the mutex. */ if (!mutex_trylock(&kexec_mutex)) return -EBUSY; dest_image = &kexec_image; if (flags & KEXEC_ON_CRASH) dest_image = &kexec_crash_image; if (nr_segments > 0) { unsigned long i; /* Loading another kernel to reboot into */ if ((flags & KEXEC_ON_CRASH) == 0) result = kimage_alloc_init(&image, entry, nr_segments, segments, flags); /* Loading another kernel to switch to if this one crashes */ else if (flags & KEXEC_ON_CRASH) { /* Free any current crash dump kernel before * we corrupt it. */ kimage_free(xchg(&kexec_crash_image, NULL)); result = kimage_alloc_init(&image, entry, nr_segments, segments, flags); crash_map_reserved_pages(); } if (result) goto out; if (flags & KEXEC_PRESERVE_CONTEXT) image->preserve_context = 1; result = machine_kexec_prepare(image); if (result) goto out; for (i = 0; i < nr_segments; i++) { result = kimage_load_segment(image, &image->segment[i]); if (result) goto out; } kimage_terminate(image); if (flags & KEXEC_ON_CRASH) crash_unmap_reserved_pages(); } /* Install the new kernel, and Uninstall the old */ image = xchg(dest_image, image); out: mutex_unlock(&kexec_mutex); kimage_free(image); return result; } /* * Add and remove page tables for crashkernel memory * * Provide an empty default implementation here -- architecture * code may override this */ void __weak crash_map_reserved_pages(void) {} void __weak crash_unmap_reserved_pages(void) {} #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE4(kexec_load, compat_ulong_t, entry, compat_ulong_t, nr_segments, struct compat_kexec_segment __user *, segments, compat_ulong_t, flags) { struct compat_kexec_segment in; struct kexec_segment out, __user *ksegments; unsigned long i, result; /* Don't allow clients that don't understand the native * architecture to do anything. */ if ((flags & KEXEC_ARCH_MASK) == KEXEC_ARCH_DEFAULT) return -EINVAL; if (nr_segments > KEXEC_SEGMENT_MAX) return -EINVAL; ksegments = compat_alloc_user_space(nr_segments * sizeof(out)); for (i = 0; i < nr_segments; i++) { result = copy_from_user(&in, &segments[i], sizeof(in)); if (result) return -EFAULT; out.buf = compat_ptr(in.buf); out.bufsz = in.bufsz; out.mem = in.mem; out.memsz = in.memsz; result = copy_to_user(&ksegments[i], &out, sizeof(out)); if (result) return -EFAULT; } return sys_kexec_load(entry, nr_segments, ksegments, flags); } #endif #ifdef CONFIG_KEXEC_FILE SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd, unsigned long, cmdline_len, const char __user *, cmdline_ptr, unsigned long, flags) { int ret = 0, i; struct kimage **dest_image, *image; /* We only trust the superuser with rebooting the system. */ if (!capable(CAP_SYS_BOOT) || kexec_load_disabled) return -EPERM; /* Make sure we have a legal set of flags */ if (flags != (flags & KEXEC_FILE_FLAGS)) return -EINVAL; image = NULL; if (!mutex_trylock(&kexec_mutex)) return -EBUSY; dest_image = &kexec_image; if (flags & KEXEC_FILE_ON_CRASH) dest_image = &kexec_crash_image; if (flags & KEXEC_FILE_UNLOAD) goto exchange; /* * In case of crash, new kernel gets loaded in reserved region. It is * same memory where old crash kernel might be loaded. Free any * current crash dump kernel before we corrupt it. */ if (flags & KEXEC_FILE_ON_CRASH) kimage_free(xchg(&kexec_crash_image, NULL)); ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr, cmdline_len, flags); if (ret) goto out; ret = machine_kexec_prepare(image); if (ret) goto out; ret = kexec_calculate_store_digests(image); if (ret) goto out; for (i = 0; i < image->nr_segments; i++) { struct kexec_segment *ksegment; ksegment = &image->segment[i]; pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n", i, ksegment->buf, ksegment->bufsz, ksegment->mem, ksegment->memsz); ret = kimage_load_segment(image, &image->segment[i]); if (ret) goto out; } kimage_terminate(image); /* * Free up any temporary buffers allocated which are not needed * after image has been loaded */ kimage_file_post_load_cleanup(image); exchange: image = xchg(dest_image, image); out: mutex_unlock(&kexec_mutex); kimage_free(image); return ret; } #endif /* CONFIG_KEXEC_FILE */ void crash_kexec(struct pt_regs *regs) { /* Take the kexec_mutex here to prevent sys_kexec_load * running on one cpu from replacing the crash kernel * we are using after a panic on a different cpu. * * If the crash kernel was not located in a fixed area * of memory the xchg(&kexec_crash_image) would be * sufficient. But since I reuse the memory... */ if (mutex_trylock(&kexec_mutex)) { if (kexec_crash_image) { struct pt_regs fixed_regs; crash_setup_regs(&fixed_regs, regs); crash_save_vmcoreinfo(); machine_crash_shutdown(&fixed_regs); machine_kexec(kexec_crash_image); } mutex_unlock(&kexec_mutex); } } size_t crash_get_memory_size(void) { size_t size = 0; mutex_lock(&kexec_mutex); if (crashk_res.end != crashk_res.start) size = resource_size(&crashk_res); mutex_unlock(&kexec_mutex); return size; } void __weak crash_free_reserved_phys_range(unsigned long begin, unsigned long end) { unsigned long addr; for (addr = begin; addr < end; addr += PAGE_SIZE) free_reserved_page(pfn_to_page(addr >> PAGE_SHIFT)); } int crash_shrink_memory(unsigned long new_size) { int ret = 0; unsigned long start, end; unsigned long old_size; struct resource *ram_res; mutex_lock(&kexec_mutex); if (kexec_crash_image) { ret = -ENOENT; goto unlock; } start = crashk_res.start; end = crashk_res.end; old_size = (end == 0) ? 0 : end - start + 1; if (new_size >= old_size) { ret = (new_size == old_size) ? 0 : -EINVAL; goto unlock; } ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL); if (!ram_res) { ret = -ENOMEM; goto unlock; } start = roundup(start, KEXEC_CRASH_MEM_ALIGN); end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN); crash_map_reserved_pages(); crash_free_reserved_phys_range(end, crashk_res.end); if ((start == end) && (crashk_res.parent != NULL)) release_resource(&crashk_res); ram_res->start = end; ram_res->end = crashk_res.end; ram_res->flags = IORESOURCE_BUSY | IORESOURCE_MEM; ram_res->name = "System RAM"; crashk_res.end = end - 1; insert_resource(&iomem_resource, ram_res); crash_unmap_reserved_pages(); unlock: mutex_unlock(&kexec_mutex); return ret; } static u32 *append_elf_note(u32 *buf, char *name, unsigned type, void *data, size_t data_len) { struct elf_note note; note.n_namesz = strlen(name) + 1; note.n_descsz = data_len; note.n_type = type; memcpy(buf, ¬e, sizeof(note)); buf += (sizeof(note) + 3)/4; memcpy(buf, name, note.n_namesz); buf += (note.n_namesz + 3)/4; memcpy(buf, data, note.n_descsz); buf += (note.n_descsz + 3)/4; return buf; } static void final_note(u32 *buf) { struct elf_note note; note.n_namesz = 0; note.n_descsz = 0; note.n_type = 0; memcpy(buf, ¬e, sizeof(note)); } void crash_save_cpu(struct pt_regs *regs, int cpu) { struct elf_prstatus prstatus; u32 *buf; if ((cpu < 0) || (cpu >= nr_cpu_ids)) return; /* Using ELF notes here is opportunistic. * I need a well defined structure format * for the data I pass, and I need tags * on the data to indicate what information I have * squirrelled away. ELF notes happen to provide * all of that, so there is no need to invent something new. */ buf = (u32 *)per_cpu_ptr(crash_notes, cpu); if (!buf) return; memset(&prstatus, 0, sizeof(prstatus)); prstatus.pr_pid = current->pid; elf_core_copy_kernel_regs(&prstatus.pr_reg, regs); buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS, &prstatus, sizeof(prstatus)); final_note(buf); } static int __init crash_notes_memory_init(void) { /* Allocate memory for saving cpu registers. */ crash_notes = alloc_percpu(note_buf_t); if (!crash_notes) { pr_warn("Kexec: Memory allocation for saving cpu register states failed\n"); return -ENOMEM; } return 0; } subsys_initcall(crash_notes_memory_init); /* * parsing the "crashkernel" commandline * * this code is intended to be called from architecture specific code */ /* * This function parses command lines in the format * * crashkernel=ramsize-range:size[,...][@offset] * * The function returns 0 on success and -EINVAL on failure. */ static int __init parse_crashkernel_mem(char *cmdline, unsigned long long system_ram, unsigned long long *crash_size, unsigned long long *crash_base) { char *cur = cmdline, *tmp; /* for each entry of the comma-separated list */ do { unsigned long long start, end = ULLONG_MAX, size; /* get the start of the range */ start = memparse(cur, &tmp); if (cur == tmp) { pr_warn("crashkernel: Memory value expected\n"); return -EINVAL; } cur = tmp; if (*cur != '-') { pr_warn("crashkernel: '-' expected\n"); return -EINVAL; } cur++; /* if no ':' is here, than we read the end */ if (*cur != ':') { end = memparse(cur, &tmp); if (cur == tmp) { pr_warn("crashkernel: Memory value expected\n"); return -EINVAL; } cur = tmp; if (end <= start) { pr_warn("crashkernel: end <= start\n"); return -EINVAL; } } if (*cur != ':') { pr_warn("crashkernel: ':' expected\n"); return -EINVAL; } cur++; size = memparse(cur, &tmp); if (cur == tmp) { pr_warn("Memory value expected\n"); return -EINVAL; } cur = tmp; if (size >= system_ram) { pr_warn("crashkernel: invalid size\n"); return -EINVAL; } /* match ? */ if (system_ram >= start && system_ram < end) { *crash_size = size; break; } } while (*cur++ == ','); if (*crash_size > 0) { while (*cur && *cur != ' ' && *cur != '@') cur++; if (*cur == '@') { cur++; *crash_base = memparse(cur, &tmp); if (cur == tmp) { pr_warn("Memory value expected after '@'\n"); return -EINVAL; } } } return 0; } /* * That function parses "simple" (old) crashkernel command lines like * * crashkernel=size[@offset] * * It returns 0 on success and -EINVAL on failure. */ static int __init parse_crashkernel_simple(char *cmdline, unsigned long long *crash_size, unsigned long long *crash_base) { char *cur = cmdline; *crash_size = memparse(cmdline, &cur); if (cmdline == cur) { pr_warn("crashkernel: memory value expected\n"); return -EINVAL; } if (*cur == '@') *crash_base = memparse(cur+1, &cur); else if (*cur != ' ' && *cur != '\0') { pr_warn("crashkernel: unrecognized char\n"); return -EINVAL; } return 0; } #define SUFFIX_HIGH 0 #define SUFFIX_LOW 1 #define SUFFIX_NULL 2 static __initdata char *suffix_tbl[] = { [SUFFIX_HIGH] = ",high", [SUFFIX_LOW] = ",low", [SUFFIX_NULL] = NULL, }; /* * That function parses "suffix" crashkernel command lines like * * crashkernel=size,[high|low] * * It returns 0 on success and -EINVAL on failure. */ static int __init parse_crashkernel_suffix(char *cmdline, unsigned long long *crash_size, const char *suffix) { char *cur = cmdline; *crash_size = memparse(cmdline, &cur); if (cmdline == cur) { pr_warn("crashkernel: memory value expected\n"); return -EINVAL; } /* check with suffix */ if (strncmp(cur, suffix, strlen(suffix))) { pr_warn("crashkernel: unrecognized char\n"); return -EINVAL; } cur += strlen(suffix); if (*cur != ' ' && *cur != '\0') { pr_warn("crashkernel: unrecognized char\n"); return -EINVAL; } return 0; } static __init char *get_last_crashkernel(char *cmdline, const char *name, const char *suffix) { char *p = cmdline, *ck_cmdline = NULL; /* find crashkernel and use the last one if there are more */ p = strstr(p, name); while (p) { char *end_p = strchr(p, ' '); char *q; if (!end_p) end_p = p + strlen(p); if (!suffix) { int i; /* skip the one with any known suffix */ for (i = 0; suffix_tbl[i]; i++) { q = end_p - strlen(suffix_tbl[i]); if (!strncmp(q, suffix_tbl[i], strlen(suffix_tbl[i]))) goto next; } ck_cmdline = p; } else { q = end_p - strlen(suffix); if (!strncmp(q, suffix, strlen(suffix))) ck_cmdline = p; } next: p = strstr(p+1, name); } if (!ck_cmdline) return NULL; return ck_cmdline; } static int __init __parse_crashkernel(char *cmdline, unsigned long long system_ram, unsigned long long *crash_size, unsigned long long *crash_base, const char *name, const char *suffix) { char *first_colon, *first_space; char *ck_cmdline; BUG_ON(!crash_size || !crash_base); *crash_size = 0; *crash_base = 0; ck_cmdline = get_last_crashkernel(cmdline, name, suffix); if (!ck_cmdline) return -EINVAL; ck_cmdline += strlen(name); if (suffix) return parse_crashkernel_suffix(ck_cmdline, crash_size, suffix); /* * if the commandline contains a ':', then that's the extended * syntax -- if not, it must be the classic syntax */ first_colon = strchr(ck_cmdline, ':'); first_space = strchr(ck_cmdline, ' '); if (first_colon && (!first_space || first_colon < first_space)) return parse_crashkernel_mem(ck_cmdline, system_ram, crash_size, crash_base); return parse_crashkernel_simple(ck_cmdline, crash_size, crash_base); } /* * That function is the entry point for command line parsing and should be * called from the arch-specific code. */ int __init parse_crashkernel(char *cmdline, unsigned long long system_ram, unsigned long long *crash_size, unsigned long long *crash_base) { return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, "crashkernel=", NULL); } int __init parse_crashkernel_high(char *cmdline, unsigned long long system_ram, unsigned long long *crash_size, unsigned long long *crash_base) { return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, "crashkernel=", suffix_tbl[SUFFIX_HIGH]); } int __init parse_crashkernel_low(char *cmdline, unsigned long long system_ram, unsigned long long *crash_size, unsigned long long *crash_base) { return __parse_crashkernel(cmdline, system_ram, crash_size, crash_base, "crashkernel=", suffix_tbl[SUFFIX_LOW]); } static void update_vmcoreinfo_note(void) { u32 *buf = vmcoreinfo_note; if (!vmcoreinfo_size) return; buf = append_elf_note(buf, VMCOREINFO_NOTE_NAME, 0, vmcoreinfo_data, vmcoreinfo_size); final_note(buf); } void crash_save_vmcoreinfo(void) { vmcoreinfo_append_str("CRASHTIME=%ld\n", get_seconds()); update_vmcoreinfo_note(); } void vmcoreinfo_append_str(const char *fmt, ...) { va_list args; char buf[0x50]; size_t r; va_start(args, fmt); r = vscnprintf(buf, sizeof(buf), fmt, args); va_end(args); r = min(r, vmcoreinfo_max_size - vmcoreinfo_size); memcpy(&vmcoreinfo_data[vmcoreinfo_size], buf, r); vmcoreinfo_size += r; } /* * provide an empty default implementation here -- architecture * code may override this */ void __weak arch_crash_save_vmcoreinfo(void) {} unsigned long __weak paddr_vmcoreinfo_note(void) { return __pa((unsigned long)(char *)&vmcoreinfo_note); } static int __init crash_save_vmcoreinfo_init(void) { VMCOREINFO_OSRELEASE(init_uts_ns.name.release); VMCOREINFO_PAGESIZE(PAGE_SIZE); VMCOREINFO_SYMBOL(init_uts_ns); VMCOREINFO_SYMBOL(node_online_map); #ifdef CONFIG_MMU VMCOREINFO_SYMBOL(swapper_pg_dir); #endif VMCOREINFO_SYMBOL(_stext); VMCOREINFO_SYMBOL(vmap_area_list); #ifndef CONFIG_NEED_MULTIPLE_NODES VMCOREINFO_SYMBOL(mem_map); VMCOREINFO_SYMBOL(contig_page_data); #endif #ifdef CONFIG_SPARSEMEM VMCOREINFO_SYMBOL(mem_section); VMCOREINFO_LENGTH(mem_section, NR_SECTION_ROOTS); VMCOREINFO_STRUCT_SIZE(mem_section); VMCOREINFO_OFFSET(mem_section, section_mem_map); #endif VMCOREINFO_STRUCT_SIZE(page); VMCOREINFO_STRUCT_SIZE(pglist_data); VMCOREINFO_STRUCT_SIZE(zone); VMCOREINFO_STRUCT_SIZE(free_area); VMCOREINFO_STRUCT_SIZE(list_head); VMCOREINFO_SIZE(nodemask_t); VMCOREINFO_OFFSET(page, flags); VMCOREINFO_OFFSET(page, _count); VMCOREINFO_OFFSET(page, mapping); VMCOREINFO_OFFSET(page, lru); VMCOREINFO_OFFSET(page, _mapcount); VMCOREINFO_OFFSET(page, private); VMCOREINFO_OFFSET(pglist_data, node_zones); VMCOREINFO_OFFSET(pglist_data, nr_zones); #ifdef CONFIG_FLAT_NODE_MEM_MAP VMCOREINFO_OFFSET(pglist_data, node_mem_map); #endif VMCOREINFO_OFFSET(pglist_data, node_start_pfn); VMCOREINFO_OFFSET(pglist_data, node_spanned_pages); VMCOREINFO_OFFSET(pglist_data, node_id); VMCOREINFO_OFFSET(zone, free_area); VMCOREINFO_OFFSET(zone, vm_stat); VMCOREINFO_OFFSET(zone, spanned_pages); VMCOREINFO_OFFSET(free_area, free_list); VMCOREINFO_OFFSET(list_head, next); VMCOREINFO_OFFSET(list_head, prev); VMCOREINFO_OFFSET(vmap_area, va_start); VMCOREINFO_OFFSET(vmap_area, list); VMCOREINFO_LENGTH(zone.free_area, MAX_ORDER); log_buf_kexec_setup(); VMCOREINFO_LENGTH(free_area.free_list, MIGRATE_TYPES); VMCOREINFO_NUMBER(NR_FREE_PAGES); VMCOREINFO_NUMBER(PG_lru); VMCOREINFO_NUMBER(PG_private); VMCOREINFO_NUMBER(PG_swapcache); VMCOREINFO_NUMBER(PG_slab); #ifdef CONFIG_MEMORY_FAILURE VMCOREINFO_NUMBER(PG_hwpoison); #endif VMCOREINFO_NUMBER(PG_head_mask); VMCOREINFO_NUMBER(PAGE_BUDDY_MAPCOUNT_VALUE); #ifdef CONFIG_HUGETLBFS VMCOREINFO_SYMBOL(free_huge_page); #endif arch_crash_save_vmcoreinfo(); update_vmcoreinfo_note(); return 0; } subsys_initcall(crash_save_vmcoreinfo_init); #ifdef CONFIG_KEXEC_FILE static int locate_mem_hole_top_down(unsigned long start, unsigned long end, struct kexec_buf *kbuf) { struct kimage *image = kbuf->image; unsigned long temp_start, temp_end; temp_end = min(end, kbuf->buf_max); temp_start = temp_end - kbuf->memsz; do { /* align down start */ temp_start = temp_start & (~(kbuf->buf_align - 1)); if (temp_start < start || temp_start < kbuf->buf_min) return 0; temp_end = temp_start + kbuf->memsz - 1; /* * Make sure this does not conflict with any of existing * segments */ if (kimage_is_destination_range(image, temp_start, temp_end)) { temp_start = temp_start - PAGE_SIZE; continue; } /* We found a suitable memory range */ break; } while (1); /* If we are here, we found a suitable memory range */ kbuf->mem = temp_start; /* Success, stop navigating through remaining System RAM ranges */ return 1; } static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end, struct kexec_buf *kbuf) { struct kimage *image = kbuf->image; unsigned long temp_start, temp_end; temp_start = max(start, kbuf->buf_min); do { temp_start = ALIGN(temp_start, kbuf->buf_align); temp_end = temp_start + kbuf->memsz - 1; if (temp_end > end || temp_end > kbuf->buf_max) return 0; /* * Make sure this does not conflict with any of existing * segments */ if (kimage_is_destination_range(image, temp_start, temp_end)) { temp_start = temp_start + PAGE_SIZE; continue; } /* We found a suitable memory range */ break; } while (1); /* If we are here, we found a suitable memory range */ kbuf->mem = temp_start; /* Success, stop navigating through remaining System RAM ranges */ return 1; } static int locate_mem_hole_callback(u64 start, u64 end, void *arg) { struct kexec_buf *kbuf = (struct kexec_buf *)arg; unsigned long sz = end - start + 1; /* Returning 0 will take to next memory range */ if (sz < kbuf->memsz) return 0; if (end < kbuf->buf_min || start > kbuf->buf_max) return 0; /* * Allocate memory top down with-in ram range. Otherwise bottom up * allocation. */ if (kbuf->top_down) return locate_mem_hole_top_down(start, end, kbuf); return locate_mem_hole_bottom_up(start, end, kbuf); } /* * Helper function for placing a buffer in a kexec segment. This assumes * that kexec_mutex is held. */ int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz, unsigned long memsz, unsigned long buf_align, unsigned long buf_min, unsigned long buf_max, bool top_down, unsigned long *load_addr) { struct kexec_segment *ksegment; struct kexec_buf buf, *kbuf; int ret; /* Currently adding segment this way is allowed only in file mode */ if (!image->file_mode) return -EINVAL; if (image->nr_segments >= KEXEC_SEGMENT_MAX) return -EINVAL; /* * Make sure we are not trying to add buffer after allocating * control pages. All segments need to be placed first before * any control pages are allocated. As control page allocation * logic goes through list of segments to make sure there are * no destination overlaps. */ if (!list_empty(&image->control_pages)) { WARN_ON(1); return -EINVAL; } memset(&buf, 0, sizeof(struct kexec_buf)); kbuf = &buf; kbuf->image = image; kbuf->buffer = buffer; kbuf->bufsz = bufsz; kbuf->memsz = ALIGN(memsz, PAGE_SIZE); kbuf->buf_align = max(buf_align, PAGE_SIZE); kbuf->buf_min = buf_min; kbuf->buf_max = buf_max; kbuf->top_down = top_down; /* Walk the RAM ranges and allocate a suitable range for the buffer */ if (image->type == KEXEC_TYPE_CRASH) ret = walk_iomem_res("Crash kernel", IORESOURCE_MEM | IORESOURCE_BUSY, crashk_res.start, crashk_res.end, kbuf, locate_mem_hole_callback); else ret = walk_system_ram_res(0, -1, kbuf, locate_mem_hole_callback); if (ret != 1) { /* A suitable memory range could not be found for buffer */ return -EADDRNOTAVAIL; } /* Found a suitable memory range */ ksegment = &image->segment[image->nr_segments]; ksegment->kbuf = kbuf->buffer; ksegment->bufsz = kbuf->bufsz; ksegment->mem = kbuf->mem; ksegment->memsz = kbuf->memsz; image->nr_segments++; *load_addr = ksegment->mem; return 0; } /* Calculate and store the digest of segments */ static int kexec_calculate_store_digests(struct kimage *image) { struct crypto_shash *tfm; struct shash_desc *desc; int ret = 0, i, j, zero_buf_sz, sha_region_sz; size_t desc_size, nullsz; char *digest; void *zero_buf; struct kexec_sha_region *sha_regions; struct purgatory_info *pi = &image->purgatory_info; zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT); zero_buf_sz = PAGE_SIZE; tfm = crypto_alloc_shash("sha256", 0, 0); if (IS_ERR(tfm)) { ret = PTR_ERR(tfm); goto out; } desc_size = crypto_shash_descsize(tfm) + sizeof(*desc); desc = kzalloc(desc_size, GFP_KERNEL); if (!desc) { ret = -ENOMEM; goto out_free_tfm; } sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region); sha_regions = vzalloc(sha_region_sz); if (!sha_regions) goto out_free_desc; desc->tfm = tfm; desc->flags = 0; ret = crypto_shash_init(desc); if (ret < 0) goto out_free_sha_regions; digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL); if (!digest) { ret = -ENOMEM; goto out_free_sha_regions; } for (j = i = 0; i < image->nr_segments; i++) { struct kexec_segment *ksegment; ksegment = &image->segment[i]; /* * Skip purgatory as it will be modified once we put digest * info in purgatory. */ if (ksegment->kbuf == pi->purgatory_buf) continue; ret = crypto_shash_update(desc, ksegment->kbuf, ksegment->bufsz); if (ret) break; /* * Assume rest of the buffer is filled with zero and * update digest accordingly. */ nullsz = ksegment->memsz - ksegment->bufsz; while (nullsz) { unsigned long bytes = nullsz; if (bytes > zero_buf_sz) bytes = zero_buf_sz; ret = crypto_shash_update(desc, zero_buf, bytes); if (ret) break; nullsz -= bytes; } if (ret) break; sha_regions[j].start = ksegment->mem; sha_regions[j].len = ksegment->memsz; j++; } if (!ret) { ret = crypto_shash_final(desc, digest); if (ret) goto out_free_digest; ret = kexec_purgatory_get_set_symbol(image, "sha_regions", sha_regions, sha_region_sz, 0); if (ret) goto out_free_digest; ret = kexec_purgatory_get_set_symbol(image, "sha256_digest", digest, SHA256_DIGEST_SIZE, 0); if (ret) goto out_free_digest; } out_free_digest: kfree(digest); out_free_sha_regions: vfree(sha_regions); out_free_desc: kfree(desc); out_free_tfm: kfree(tfm); out: return ret; } /* Actually load purgatory. Lot of code taken from kexec-tools */ static int __kexec_load_purgatory(struct kimage *image, unsigned long min, unsigned long max, int top_down) { struct purgatory_info *pi = &image->purgatory_info; unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad; unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset; unsigned char *buf_addr, *src; int i, ret = 0, entry_sidx = -1; const Elf_Shdr *sechdrs_c; Elf_Shdr *sechdrs = NULL; void *purgatory_buf = NULL; /* * sechdrs_c points to section headers in purgatory and are read * only. No modifications allowed. */ sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff; /* * We can not modify sechdrs_c[] and its fields. It is read only. * Copy it over to a local copy where one can store some temporary * data and free it at the end. We need to modify ->sh_addr and * ->sh_offset fields to keep track of permanent and temporary * locations of sections. */ sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr)); if (!sechdrs) return -ENOMEM; memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr)); /* * We seem to have multiple copies of sections. First copy is which * is embedded in kernel in read only section. Some of these sections * will be copied to a temporary buffer and relocated. And these * sections will finally be copied to their final destination at * segment load time. * * Use ->sh_offset to reflect section address in memory. It will * point to original read only copy if section is not allocatable. * Otherwise it will point to temporary copy which will be relocated. * * Use ->sh_addr to contain final address of the section where it * will go during execution time. */ for (i = 0; i < pi->ehdr->e_shnum; i++) { if (sechdrs[i].sh_type == SHT_NOBITS) continue; sechdrs[i].sh_offset = (unsigned long)pi->ehdr + sechdrs[i].sh_offset; } /* * Identify entry point section and make entry relative to section * start. */ entry = pi->ehdr->e_entry; for (i = 0; i < pi->ehdr->e_shnum; i++) { if (!(sechdrs[i].sh_flags & SHF_ALLOC)) continue; if (!(sechdrs[i].sh_flags & SHF_EXECINSTR)) continue; /* Make entry section relative */ if (sechdrs[i].sh_addr <= pi->ehdr->e_entry && ((sechdrs[i].sh_addr + sechdrs[i].sh_size) > pi->ehdr->e_entry)) { entry_sidx = i; entry -= sechdrs[i].sh_addr; break; } } /* Determine how much memory is needed to load relocatable object. */ buf_align = 1; bss_align = 1; buf_sz = 0; bss_sz = 0; for (i = 0; i < pi->ehdr->e_shnum; i++) { if (!(sechdrs[i].sh_flags & SHF_ALLOC)) continue; align = sechdrs[i].sh_addralign; if (sechdrs[i].sh_type != SHT_NOBITS) { if (buf_align < align) buf_align = align; buf_sz = ALIGN(buf_sz, align); buf_sz += sechdrs[i].sh_size; } else { /* bss section */ if (bss_align < align) bss_align = align; bss_sz = ALIGN(bss_sz, align); bss_sz += sechdrs[i].sh_size; } } /* Determine the bss padding required to align bss properly */ bss_pad = 0; if (buf_sz & (bss_align - 1)) bss_pad = bss_align - (buf_sz & (bss_align - 1)); memsz = buf_sz + bss_pad + bss_sz; /* Allocate buffer for purgatory */ purgatory_buf = vzalloc(buf_sz); if (!purgatory_buf) { ret = -ENOMEM; goto out; } if (buf_align < bss_align) buf_align = bss_align; /* Add buffer to segment list */ ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz, buf_align, min, max, top_down, &pi->purgatory_load_addr); if (ret) goto out; /* Load SHF_ALLOC sections */ buf_addr = purgatory_buf; load_addr = curr_load_addr = pi->purgatory_load_addr; bss_addr = load_addr + buf_sz + bss_pad; for (i = 0; i < pi->ehdr->e_shnum; i++) { if (!(sechdrs[i].sh_flags & SHF_ALLOC)) continue; align = sechdrs[i].sh_addralign; if (sechdrs[i].sh_type != SHT_NOBITS) { curr_load_addr = ALIGN(curr_load_addr, align); offset = curr_load_addr - load_addr; /* We already modifed ->sh_offset to keep src addr */ src = (char *) sechdrs[i].sh_offset; memcpy(buf_addr + offset, src, sechdrs[i].sh_size); /* Store load address and source address of section */ sechdrs[i].sh_addr = curr_load_addr; /* * This section got copied to temporary buffer. Update * ->sh_offset accordingly. */ sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset); /* Advance to the next address */ curr_load_addr += sechdrs[i].sh_size; } else { bss_addr = ALIGN(bss_addr, align); sechdrs[i].sh_addr = bss_addr; bss_addr += sechdrs[i].sh_size; } } /* Update entry point based on load address of text section */ if (entry_sidx >= 0) entry += sechdrs[entry_sidx].sh_addr; /* Make kernel jump to purgatory after shutdown */ image->start = entry; /* Used later to get/set symbol values */ pi->sechdrs = sechdrs; /* * Used later to identify which section is purgatory and skip it * from checksumming. */ pi->purgatory_buf = purgatory_buf; return ret; out: vfree(sechdrs); vfree(purgatory_buf); return ret; } static int kexec_apply_relocations(struct kimage *image) { int i, ret; struct purgatory_info *pi = &image->purgatory_info; Elf_Shdr *sechdrs = pi->sechdrs; /* Apply relocations */ for (i = 0; i < pi->ehdr->e_shnum; i++) { Elf_Shdr *section, *symtab; if (sechdrs[i].sh_type != SHT_RELA && sechdrs[i].sh_type != SHT_REL) continue; /* * For section of type SHT_RELA/SHT_REL, * ->sh_link contains section header index of associated * symbol table. And ->sh_info contains section header * index of section to which relocations apply. */ if (sechdrs[i].sh_info >= pi->ehdr->e_shnum || sechdrs[i].sh_link >= pi->ehdr->e_shnum) return -ENOEXEC; section = &sechdrs[sechdrs[i].sh_info]; symtab = &sechdrs[sechdrs[i].sh_link]; if (!(section->sh_flags & SHF_ALLOC)) continue; /* * symtab->sh_link contain section header index of associated * string table. */ if (symtab->sh_link >= pi->ehdr->e_shnum) /* Invalid section number? */ continue; /* * Respective archicture needs to provide support for applying * relocations of type SHT_RELA/SHT_REL. */ if (sechdrs[i].sh_type == SHT_RELA) ret = arch_kexec_apply_relocations_add(pi->ehdr, sechdrs, i); else if (sechdrs[i].sh_type == SHT_REL) ret = arch_kexec_apply_relocations(pi->ehdr, sechdrs, i); if (ret) return ret; } return 0; } /* Load relocatable purgatory object and relocate it appropriately */ int kexec_load_purgatory(struct kimage *image, unsigned long min, unsigned long max, int top_down, unsigned long *load_addr) { struct purgatory_info *pi = &image->purgatory_info; int ret; if (kexec_purgatory_size <= 0) return -EINVAL; if (kexec_purgatory_size < sizeof(Elf_Ehdr)) return -ENOEXEC; pi->ehdr = (Elf_Ehdr *)kexec_purgatory; if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0 || pi->ehdr->e_type != ET_REL || !elf_check_arch(pi->ehdr) || pi->ehdr->e_shentsize != sizeof(Elf_Shdr)) return -ENOEXEC; if (pi->ehdr->e_shoff >= kexec_purgatory_size || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) > kexec_purgatory_size - pi->ehdr->e_shoff)) return -ENOEXEC; ret = __kexec_load_purgatory(image, min, max, top_down); if (ret) return ret; ret = kexec_apply_relocations(image); if (ret) goto out; *load_addr = pi->purgatory_load_addr; return 0; out: vfree(pi->sechdrs); vfree(pi->purgatory_buf); return ret; } static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi, const char *name) { Elf_Sym *syms; Elf_Shdr *sechdrs; Elf_Ehdr *ehdr; int i, k; const char *strtab; if (!pi->sechdrs || !pi->ehdr) return NULL; sechdrs = pi->sechdrs; ehdr = pi->ehdr; for (i = 0; i < ehdr->e_shnum; i++) { if (sechdrs[i].sh_type != SHT_SYMTAB) continue; if (sechdrs[i].sh_link >= ehdr->e_shnum) /* Invalid strtab section number */ continue; strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset; syms = (Elf_Sym *)sechdrs[i].sh_offset; /* Go through symbols for a match */ for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) { if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL) continue; if (strcmp(strtab + syms[k].st_name, name) != 0) continue; if (syms[k].st_shndx == SHN_UNDEF || syms[k].st_shndx >= ehdr->e_shnum) { pr_debug("Symbol: %s has bad section index %d.\n", name, syms[k].st_shndx); return NULL; } /* Found the symbol we are looking for */ return &syms[k]; } } return NULL; } void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name) { struct purgatory_info *pi = &image->purgatory_info; Elf_Sym *sym; Elf_Shdr *sechdr; sym = kexec_purgatory_find_symbol(pi, name); if (!sym) return ERR_PTR(-EINVAL); sechdr = &pi->sechdrs[sym->st_shndx]; /* * Returns the address where symbol will finally be loaded after * kexec_load_segment() */ return (void *)(sechdr->sh_addr + sym->st_value); } /* * Get or set value of a symbol. If "get_value" is true, symbol value is * returned in buf otherwise symbol value is set based on value in buf. */ int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name, void *buf, unsigned int size, bool get_value) { Elf_Sym *sym; Elf_Shdr *sechdrs; struct purgatory_info *pi = &image->purgatory_info; char *sym_buf; sym = kexec_purgatory_find_symbol(pi, name); if (!sym) return -EINVAL; if (sym->st_size != size) { pr_err("symbol %s size mismatch: expected %lu actual %u\n", name, (unsigned long)sym->st_size, size); return -EINVAL; } sechdrs = pi->sechdrs; if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) { pr_err("symbol %s is in a bss section. Cannot %s\n", name, get_value ? "get" : "set"); return -EINVAL; } sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset + sym->st_value; if (get_value) memcpy((void *)buf, sym_buf, size); else memcpy((void *)sym_buf, buf, size); return 0; } #endif /* CONFIG_KEXEC_FILE */ /* * Move into place and start executing a preloaded standalone * executable. If nothing was preloaded return an error. */ int kernel_kexec(void) { int error = 0; if (!mutex_trylock(&kexec_mutex)) return -EBUSY; if (!kexec_image) { error = -EINVAL; goto Unlock; } #ifdef CONFIG_KEXEC_JUMP if (kexec_image->preserve_context) { lock_system_sleep(); pm_prepare_console(); error = freeze_processes(); if (error) { error = -EBUSY; goto Restore_console; } suspend_console(); error = dpm_suspend_start(PMSG_FREEZE); if (error) goto Resume_console; /* At this point, dpm_suspend_start() has been called, * but *not* dpm_suspend_end(). We *must* call * dpm_suspend_end() now. Otherwise, drivers for * some devices (e.g. interrupt controllers) become * desynchronized with the actual state of the * hardware at resume time, and evil weirdness ensues. */ error = dpm_suspend_end(PMSG_FREEZE); if (error) goto Resume_devices; error = disable_nonboot_cpus(); if (error) goto Enable_cpus; local_irq_disable(); error = syscore_suspend(); if (error) goto Enable_irqs; } else #endif { kexec_in_progress = true; kernel_restart_prepare(NULL); migrate_to_reboot_cpu(); /* * migrate_to_reboot_cpu() disables CPU hotplug assuming that * no further code needs to use CPU hotplug (which is true in * the reboot case). However, the kexec path depends on using * CPU hotplug again; so re-enable it here. */ cpu_hotplug_enable(); pr_emerg("Starting new kernel\n"); machine_shutdown(); } machine_kexec(kexec_image); #ifdef CONFIG_KEXEC_JUMP if (kexec_image->preserve_context) { syscore_resume(); Enable_irqs: local_irq_enable(); Enable_cpus: enable_nonboot_cpus(); dpm_resume_start(PMSG_RESTORE); Resume_devices: dpm_resume_end(PMSG_RESTORE); Resume_console: resume_console(); thaw_processes(); Restore_console: pm_restore_console(); unlock_system_sleep(); } #endif Unlock: mutex_unlock(&kexec_mutex); return error; } |