Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
 */
#include <linux/mm.h>
#include <linux/swap.h>
#include <linux/bio.h>
#include <linux/blkdev.h>
#include <linux/uio.h>
#include <linux/iocontext.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/export.h>
#include <linux/mempool.h>
#include <linux/workqueue.h>
#include <linux/cgroup.h>
#include <linux/blk-cgroup.h>
#include <linux/highmem.h>
#include <linux/sched/sysctl.h>
#include <linux/blk-crypto.h>
#include <linux/xarray.h>

#include <trace/events/block.h>
#include "blk.h"
#include "blk-rq-qos.h"

static struct biovec_slab {
	int nr_vecs;
	char *name;
	struct kmem_cache *slab;
} bvec_slabs[] __read_mostly = {
	{ .nr_vecs = 16, .name = "biovec-16" },
	{ .nr_vecs = 64, .name = "biovec-64" },
	{ .nr_vecs = 128, .name = "biovec-128" },
	{ .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
};

static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
{
	switch (nr_vecs) {
	/* smaller bios use inline vecs */
	case 5 ... 16:
		return &bvec_slabs[0];
	case 17 ... 64:
		return &bvec_slabs[1];
	case 65 ... 128:
		return &bvec_slabs[2];
	case 129 ... BIO_MAX_VECS:
		return &bvec_slabs[3];
	default:
		BUG();
		return NULL;
	}
}

/*
 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
 * IO code that does not need private memory pools.
 */
struct bio_set fs_bio_set;
EXPORT_SYMBOL(fs_bio_set);

/*
 * Our slab pool management
 */
struct bio_slab {
	struct kmem_cache *slab;
	unsigned int slab_ref;
	unsigned int slab_size;
	char name[8];
};
static DEFINE_MUTEX(bio_slab_lock);
static DEFINE_XARRAY(bio_slabs);

static struct bio_slab *create_bio_slab(unsigned int size)
{
	struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);

	if (!bslab)
		return NULL;

	snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
	bslab->slab = kmem_cache_create(bslab->name, size,
			ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL);
	if (!bslab->slab)
		goto fail_alloc_slab;

	bslab->slab_ref = 1;
	bslab->slab_size = size;

	if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
		return bslab;

	kmem_cache_destroy(bslab->slab);

fail_alloc_slab:
	kfree(bslab);
	return NULL;
}

static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
{
	return bs->front_pad + sizeof(struct bio) + bs->back_pad;
}

static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
{
	unsigned int size = bs_bio_slab_size(bs);
	struct bio_slab *bslab;

	mutex_lock(&bio_slab_lock);
	bslab = xa_load(&bio_slabs, size);
	if (bslab)
		bslab->slab_ref++;
	else
		bslab = create_bio_slab(size);
	mutex_unlock(&bio_slab_lock);

	if (bslab)
		return bslab->slab;
	return NULL;
}

static void bio_put_slab(struct bio_set *bs)
{
	struct bio_slab *bslab = NULL;
	unsigned int slab_size = bs_bio_slab_size(bs);

	mutex_lock(&bio_slab_lock);

	bslab = xa_load(&bio_slabs, slab_size);
	if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
		goto out;

	WARN_ON_ONCE(bslab->slab != bs->bio_slab);

	WARN_ON(!bslab->slab_ref);

	if (--bslab->slab_ref)
		goto out;

	xa_erase(&bio_slabs, slab_size);

	kmem_cache_destroy(bslab->slab);
	kfree(bslab);

out:
	mutex_unlock(&bio_slab_lock);
}

void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
{
	BIO_BUG_ON(nr_vecs > BIO_MAX_VECS);

	if (nr_vecs == BIO_MAX_VECS)
		mempool_free(bv, pool);
	else if (nr_vecs > BIO_INLINE_VECS)
		kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
}

/*
 * Make the first allocation restricted and don't dump info on allocation
 * failures, since we'll fall back to the mempool in case of failure.
 */
static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
{
	return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
		__GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
}

struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
		gfp_t gfp_mask)
{
	struct biovec_slab *bvs = biovec_slab(*nr_vecs);

	if (WARN_ON_ONCE(!bvs))
		return NULL;

	/*
	 * Upgrade the nr_vecs request to take full advantage of the allocation.
	 * We also rely on this in the bvec_free path.
	 */
	*nr_vecs = bvs->nr_vecs;

	/*
	 * Try a slab allocation first for all smaller allocations.  If that
	 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
	 * The mempool is sized to handle up to BIO_MAX_VECS entries.
	 */
	if (*nr_vecs < BIO_MAX_VECS) {
		struct bio_vec *bvl;

		bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
		if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
			return bvl;
		*nr_vecs = BIO_MAX_VECS;
	}

	return mempool_alloc(pool, gfp_mask);
}

void bio_uninit(struct bio *bio)
{
#ifdef CONFIG_BLK_CGROUP
	if (bio->bi_blkg) {
		blkg_put(bio->bi_blkg);
		bio->bi_blkg = NULL;
	}
#endif
	if (bio_integrity(bio))
		bio_integrity_free(bio);

	bio_crypt_free_ctx(bio);
}
EXPORT_SYMBOL(bio_uninit);

static void bio_free(struct bio *bio)
{
	struct bio_set *bs = bio->bi_pool;
	void *p;

	bio_uninit(bio);

	if (bs) {
		bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);

		/*
		 * If we have front padding, adjust the bio pointer before freeing
		 */
		p = bio;
		p -= bs->front_pad;

		mempool_free(p, &bs->bio_pool);
	} else {
		/* Bio was allocated by bio_kmalloc() */
		kfree(bio);
	}
}

/*
 * Users of this function have their own bio allocation. Subsequently,
 * they must remember to pair any call to bio_init() with bio_uninit()
 * when IO has completed, or when the bio is released.
 */
void bio_init(struct bio *bio, struct bio_vec *table,
	      unsigned short max_vecs)
{
	memset(bio, 0, sizeof(*bio));
	atomic_set(&bio->__bi_remaining, 1);
	atomic_set(&bio->__bi_cnt, 1);

	bio->bi_io_vec = table;
	bio->bi_max_vecs = max_vecs;
}
EXPORT_SYMBOL(bio_init);

/**
 * bio_reset - reinitialize a bio
 * @bio:	bio to reset
 *
 * Description:
 *   After calling bio_reset(), @bio will be in the same state as a freshly
 *   allocated bio returned bio bio_alloc_bioset() - the only fields that are
 *   preserved are the ones that are initialized by bio_alloc_bioset(). See
 *   comment in struct bio.
 */
void bio_reset(struct bio *bio)
{
	bio_uninit(bio);
	memset(bio, 0, BIO_RESET_BYTES);
	atomic_set(&bio->__bi_remaining, 1);
}
EXPORT_SYMBOL(bio_reset);

static struct bio *__bio_chain_endio(struct bio *bio)
{
	struct bio *parent = bio->bi_private;

	if (bio->bi_status && !parent->bi_status)
		parent->bi_status = bio->bi_status;
	bio_put(bio);
	return parent;
}

static void bio_chain_endio(struct bio *bio)
{
	bio_endio(__bio_chain_endio(bio));
}

/**
 * bio_chain - chain bio completions
 * @bio: the target bio
 * @parent: the parent bio of @bio
 *
 * The caller won't have a bi_end_io called when @bio completes - instead,
 * @parent's bi_end_io won't be called until both @parent and @bio have
 * completed; the chained bio will also be freed when it completes.
 *
 * The caller must not set bi_private or bi_end_io in @bio.
 */
void bio_chain(struct bio *bio, struct bio *parent)
{
	BUG_ON(bio->bi_private || bio->bi_end_io);

	bio->bi_private = parent;
	bio->bi_end_io	= bio_chain_endio;
	bio_inc_remaining(parent);
}
EXPORT_SYMBOL(bio_chain);

static void bio_alloc_rescue(struct work_struct *work)
{
	struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
	struct bio *bio;

	while (1) {
		spin_lock(&bs->rescue_lock);
		bio = bio_list_pop(&bs->rescue_list);
		spin_unlock(&bs->rescue_lock);

		if (!bio)
			break;

		submit_bio_noacct(bio);
	}
}

static void punt_bios_to_rescuer(struct bio_set *bs)
{
	struct bio_list punt, nopunt;
	struct bio *bio;

	if (WARN_ON_ONCE(!bs->rescue_workqueue))
		return;
	/*
	 * In order to guarantee forward progress we must punt only bios that
	 * were allocated from this bio_set; otherwise, if there was a bio on
	 * there for a stacking driver higher up in the stack, processing it
	 * could require allocating bios from this bio_set, and doing that from
	 * our own rescuer would be bad.
	 *
	 * Since bio lists are singly linked, pop them all instead of trying to
	 * remove from the middle of the list:
	 */

	bio_list_init(&punt);
	bio_list_init(&nopunt);

	while ((bio = bio_list_pop(&current->bio_list[0])))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
	current->bio_list[0] = nopunt;

	bio_list_init(&nopunt);
	while ((bio = bio_list_pop(&current->bio_list[1])))
		bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
	current->bio_list[1] = nopunt;

	spin_lock(&bs->rescue_lock);
	bio_list_merge(&bs->rescue_list, &punt);
	spin_unlock(&bs->rescue_lock);

	queue_work(bs->rescue_workqueue, &bs->rescue_work);
}

/**
 * bio_alloc_bioset - allocate a bio for I/O
 * @gfp_mask:   the GFP_* mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
 * @bs:		the bio_set to allocate from.
 *
 * Allocate a bio from the mempools in @bs.
 *
 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
 * allocate a bio.  This is due to the mempool guarantees.  To make this work,
 * callers must never allocate more than 1 bio at a time from the general pool.
 * Callers that need to allocate more than 1 bio must always submit the
 * previously allocated bio for IO before attempting to allocate a new one.
 * Failure to do so can cause deadlocks under memory pressure.
 *
 * Note that when running under submit_bio_noacct() (i.e. any block driver),
 * bios are not submitted until after you return - see the code in
 * submit_bio_noacct() that converts recursion into iteration, to prevent
 * stack overflows.
 *
 * This would normally mean allocating multiple bios under submit_bio_noacct()
 * would be susceptible to deadlocks, but we have
 * deadlock avoidance code that resubmits any blocked bios from a rescuer
 * thread.
 *
 * However, we do not guarantee forward progress for allocations from other
 * mempools. Doing multiple allocations from the same mempool under
 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
 * for per bio allocations.
 *
 * Returns: Pointer to new bio on success, NULL on failure.
 */
struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
			     struct bio_set *bs)
{
	gfp_t saved_gfp = gfp_mask;
	struct bio *bio;
	void *p;

	/* should not use nobvec bioset for nr_iovecs > 0 */
	if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
		return NULL;

	/*
	 * submit_bio_noacct() converts recursion to iteration; this means if
	 * we're running beneath it, any bios we allocate and submit will not be
	 * submitted (and thus freed) until after we return.
	 *
	 * This exposes us to a potential deadlock if we allocate multiple bios
	 * from the same bio_set() while running underneath submit_bio_noacct().
	 * If we were to allocate multiple bios (say a stacking block driver
	 * that was splitting bios), we would deadlock if we exhausted the
	 * mempool's reserve.
	 *
	 * We solve this, and guarantee forward progress, with a rescuer
	 * workqueue per bio_set. If we go to allocate and there are bios on
	 * current->bio_list, we first try the allocation without
	 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
	 * blocking to the rescuer workqueue before we retry with the original
	 * gfp_flags.
	 */
	if (current->bio_list &&
	    (!bio_list_empty(&current->bio_list[0]) ||
	     !bio_list_empty(&current->bio_list[1])) &&
	    bs->rescue_workqueue)
		gfp_mask &= ~__GFP_DIRECT_RECLAIM;

	p = mempool_alloc(&bs->bio_pool, gfp_mask);
	if (!p && gfp_mask != saved_gfp) {
		punt_bios_to_rescuer(bs);
		gfp_mask = saved_gfp;
		p = mempool_alloc(&bs->bio_pool, gfp_mask);
	}
	if (unlikely(!p))
		return NULL;

	bio = p + bs->front_pad;
	if (nr_iovecs > BIO_INLINE_VECS) {
		struct bio_vec *bvl = NULL;

		bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
		if (!bvl && gfp_mask != saved_gfp) {
			punt_bios_to_rescuer(bs);
			gfp_mask = saved_gfp;
			bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
		}
		if (unlikely(!bvl))
			goto err_free;

		bio_init(bio, bvl, nr_iovecs);
	} else if (nr_iovecs) {
		bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
	} else {
		bio_init(bio, NULL, 0);
	}

	bio->bi_pool = bs;
	return bio;

err_free:
	mempool_free(p, &bs->bio_pool);
	return NULL;
}
EXPORT_SYMBOL(bio_alloc_bioset);

/**
 * bio_kmalloc - kmalloc a bio for I/O
 * @gfp_mask:   the GFP_* mask given to the slab allocator
 * @nr_iovecs:	number of iovecs to pre-allocate
 *
 * Use kmalloc to allocate and initialize a bio.
 *
 * Returns: Pointer to new bio on success, NULL on failure.
 */
struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
{
	struct bio *bio;

	if (nr_iovecs > UIO_MAXIOV)
		return NULL;

	bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
	if (unlikely(!bio))
		return NULL;
	bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
	bio->bi_pool = NULL;
	return bio;
}
EXPORT_SYMBOL(bio_kmalloc);

void zero_fill_bio(struct bio *bio)
{
	unsigned long flags;
	struct bio_vec bv;
	struct bvec_iter iter;

	bio_for_each_segment(bv, bio, iter) {
		char *data = bvec_kmap_irq(&bv, &flags);
		memset(data, 0, bv.bv_len);
		flush_dcache_page(bv.bv_page);
		bvec_kunmap_irq(data, &flags);
	}
}
EXPORT_SYMBOL(zero_fill_bio);

/**
 * bio_truncate - truncate the bio to small size of @new_size
 * @bio:	the bio to be truncated
 * @new_size:	new size for truncating the bio
 *
 * Description:
 *   Truncate the bio to new size of @new_size. If bio_op(bio) is
 *   REQ_OP_READ, zero the truncated part. This function should only
 *   be used for handling corner cases, such as bio eod.
 */
void bio_truncate(struct bio *bio, unsigned new_size)
{
	struct bio_vec bv;
	struct bvec_iter iter;
	unsigned int done = 0;
	bool truncated = false;

	if (new_size >= bio->bi_iter.bi_size)
		return;

	if (bio_op(bio) != REQ_OP_READ)
		goto exit;

	bio_for_each_segment(bv, bio, iter) {
		if (done + bv.bv_len > new_size) {
			unsigned offset;

			if (!truncated)
				offset = new_size - done;
			else
				offset = 0;
			zero_user(bv.bv_page, offset, bv.bv_len - offset);
			truncated = true;
		}
		done += bv.bv_len;
	}

 exit:
	/*
	 * Don't touch bvec table here and make it really immutable, since
	 * fs bio user has to retrieve all pages via bio_for_each_segment_all
	 * in its .end_bio() callback.
	 *
	 * It is enough to truncate bio by updating .bi_size since we can make
	 * correct bvec with the updated .bi_size for drivers.
	 */
	bio->bi_iter.bi_size = new_size;
}

/**
 * guard_bio_eod - truncate a BIO to fit the block device
 * @bio:	bio to truncate
 *
 * This allows us to do IO even on the odd last sectors of a device, even if the
 * block size is some multiple of the physical sector size.
 *
 * We'll just truncate the bio to the size of the device, and clear the end of
 * the buffer head manually.  Truly out-of-range accesses will turn into actual
 * I/O errors, this only handles the "we need to be able to do I/O at the final
 * sector" case.
 */
void guard_bio_eod(struct bio *bio)
{
	sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);

	if (!maxsector)
		return;

	/*
	 * If the *whole* IO is past the end of the device,
	 * let it through, and the IO layer will turn it into
	 * an EIO.
	 */
	if (unlikely(bio->bi_iter.bi_sector >= maxsector))
		return;

	maxsector -= bio->bi_iter.bi_sector;
	if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
		return;

	bio_truncate(bio, maxsector << 9);
}

/**
 * bio_put - release a reference to a bio
 * @bio:   bio to release reference to
 *
 * Description:
 *   Put a reference to a &struct bio, either one you have gotten with
 *   bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
 **/
void bio_put(struct bio *bio)
{
	if (!bio_flagged(bio, BIO_REFFED))
		bio_free(bio);
	else {
		BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));

		/*
		 * last put frees it
		 */
		if (atomic_dec_and_test(&bio->__bi_cnt))
			bio_free(bio);
	}
}
EXPORT_SYMBOL(bio_put);

/**
 * 	__bio_clone_fast - clone a bio that shares the original bio's biovec
 * 	@bio: destination bio
 * 	@bio_src: bio to clone
 *
 *	Clone a &bio. Caller will own the returned bio, but not
 *	the actual data it points to. Reference count of returned
 * 	bio will be one.
 *
 * 	Caller must ensure that @bio_src is not freed before @bio.
 */
void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
{
	WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);

	/*
	 * most users will be overriding ->bi_bdev with a new target,
	 * so we don't set nor calculate new physical/hw segment counts here
	 */
	bio->bi_bdev = bio_src->bi_bdev;
	bio_set_flag(bio, BIO_CLONED);
	if (bio_flagged(bio_src, BIO_THROTTLED))
		bio_set_flag(bio, BIO_THROTTLED);
	if (bio_flagged(bio_src, BIO_REMAPPED))
		bio_set_flag(bio, BIO_REMAPPED);
	bio->bi_opf = bio_src->bi_opf;
	bio->bi_ioprio = bio_src->bi_ioprio;
	bio->bi_write_hint = bio_src->bi_write_hint;
	bio->bi_iter = bio_src->bi_iter;
	bio->bi_io_vec = bio_src->bi_io_vec;

	bio_clone_blkg_association(bio, bio_src);
	blkcg_bio_issue_init(bio);
}
EXPORT_SYMBOL(__bio_clone_fast);

/**
 *	bio_clone_fast - clone a bio that shares the original bio's biovec
 *	@bio: bio to clone
 *	@gfp_mask: allocation priority
 *	@bs: bio_set to allocate from
 *
 * 	Like __bio_clone_fast, only also allocates the returned bio
 */
struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
{
	struct bio *b;

	b = bio_alloc_bioset(gfp_mask, 0, bs);
	if (!b)
		return NULL;

	__bio_clone_fast(b, bio);

	if (bio_crypt_clone(b, bio, gfp_mask) < 0)
		goto err_put;

	if (bio_integrity(bio) &&
	    bio_integrity_clone(b, bio, gfp_mask) < 0)
		goto err_put;

	return b;

err_put:
	bio_put(b);
	return NULL;
}
EXPORT_SYMBOL(bio_clone_fast);

const char *bio_devname(struct bio *bio, char *buf)
{
	return bdevname(bio->bi_bdev, buf);
}
EXPORT_SYMBOL(bio_devname);

static inline bool page_is_mergeable(const struct bio_vec *bv,
		struct page *page, unsigned int len, unsigned int off,
		bool *same_page)
{
	size_t bv_end = bv->bv_offset + bv->bv_len;
	phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
	phys_addr_t page_addr = page_to_phys(page);

	if (vec_end_addr + 1 != page_addr + off)
		return false;
	if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
		return false;

	*same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
	if (*same_page)
		return true;
	return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
}

/*
 * Try to merge a page into a segment, while obeying the hardware segment
 * size limit.  This is not for normal read/write bios, but for passthrough
 * or Zone Append operations that we can't split.
 */
static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
				 struct page *page, unsigned len,
				 unsigned offset, bool *same_page)
{
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
	unsigned long mask = queue_segment_boundary(q);
	phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
	phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;

	if ((addr1 | mask) != (addr2 | mask))
		return false;
	if (bv->bv_len + len > queue_max_segment_size(q))
		return false;
	return __bio_try_merge_page(bio, page, len, offset, same_page);
}

/**
 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 * @max_sectors: maximum number of sectors that can be added
 * @same_page: return if the segment has been merged inside the same page
 *
 * Add a page to a bio while respecting the hardware max_sectors, max_segment
 * and gap limitations.
 */
int bio_add_hw_page(struct request_queue *q, struct bio *bio,
		struct page *page, unsigned int len, unsigned int offset,
		unsigned int max_sectors, bool *same_page)
{
	struct bio_vec *bvec;

	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
		return 0;

	if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
		return 0;

	if (bio->bi_vcnt > 0) {
		if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
			return len;

		/*
		 * If the queue doesn't support SG gaps and adding this segment
		 * would create a gap, disallow it.
		 */
		bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
		if (bvec_gap_to_prev(q, bvec, offset))
			return 0;
	}

	if (bio_full(bio, len))
		return 0;

	if (bio->bi_vcnt >= queue_max_segments(q))
		return 0;

	bvec = &bio->bi_io_vec[bio->bi_vcnt];
	bvec->bv_page = page;
	bvec->bv_len = len;
	bvec->bv_offset = offset;
	bio->bi_vcnt++;
	bio->bi_iter.bi_size += len;
	return len;
}

/**
 * bio_add_pc_page	- attempt to add page to passthrough bio
 * @q: the target queue
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 *
 * Attempt to add a page to the bio_vec maplist. This can fail for a
 * number of reasons, such as the bio being full or target block device
 * limitations. The target block device must allow bio's up to PAGE_SIZE,
 * so it is always possible to add a single page to an empty bio.
 *
 * This should only be used by passthrough bios.
 */
int bio_add_pc_page(struct request_queue *q, struct bio *bio,
		struct page *page, unsigned int len, unsigned int offset)
{
	bool same_page = false;
	return bio_add_hw_page(q, bio, page, len, offset,
			queue_max_hw_sectors(q), &same_page);
}
EXPORT_SYMBOL(bio_add_pc_page);

/**
 * bio_add_zone_append_page - attempt to add page to zone-append bio
 * @bio: destination bio
 * @page: page to add
 * @len: vec entry length
 * @offset: vec entry offset
 *
 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
 * for a zone-append request. This can fail for a number of reasons, such as the
 * bio being full or the target block device is not a zoned block device or
 * other limitations of the target block device. The target block device must
 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
 * to an empty bio.
 *
 * Returns: number of bytes added to the bio, or 0 in case of a failure.
 */
int bio_add_zone_append_page(struct bio *bio, struct page *page,
			     unsigned int len, unsigned int offset)
{
	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
	bool same_page = false;

	if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
		return 0;

	if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
		return 0;

	return bio_add_hw_page(q, bio, page, len, offset,
			       queue_max_zone_append_sectors(q), &same_page);
}
EXPORT_SYMBOL_GPL(bio_add_zone_append_page);

/**
 * __bio_try_merge_page - try appending data to an existing bvec.
 * @bio: destination bio
 * @page: start page to add
 * @len: length of the data to add
 * @off: offset of the data relative to @page
 * @same_page: return if the segment has been merged inside the same page
 *
 * Try to add the data at @page + @off to the last bvec of @bio.  This is a
 * useful optimisation for file systems with a block size smaller than the
 * page size.
 *
 * Warn if (@len, @off) crosses pages in case that @same_page is true.
 *
 * Return %true on success or %false on failure.
 */
bool __bio_try_merge_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off, bool *same_page)
{
	if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
		return false;

	if (bio->bi_vcnt > 0) {
		struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];

		if (page_is_mergeable(bv, page, len, off, same_page)) {
			if (bio->bi_iter.bi_size > UINT_MAX - len) {
				*same_page = false;
				return false;
			}
			bv->bv_len += len;
			bio->bi_iter.bi_size += len;
			return true;
		}
	}
	return false;
}
EXPORT_SYMBOL_GPL(__bio_try_merge_page);

/**
 * __bio_add_page - add page(s) to a bio in a new segment
 * @bio: destination bio
 * @page: start page to add
 * @len: length of the data to add, may cross pages
 * @off: offset of the data relative to @page, may cross pages
 *
 * Add the data at @page + @off to @bio as a new bvec.  The caller must ensure
 * that @bio has space for another bvec.
 */
void __bio_add_page(struct bio *bio, struct page *page,
		unsigned int len, unsigned int off)
{
	struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];

	WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
	WARN_ON_ONCE(bio_full(bio, len));

	bv->bv_page = page;
	bv->bv_offset = off;
	bv->bv_len = len;

	bio->bi_iter.bi_size += len;
	bio->bi_vcnt++;

	if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
		bio_set_flag(bio, BIO_WORKINGSET);
}
EXPORT_SYMBOL_GPL(__bio_add_page);

/**
 *	bio_add_page	-	attempt to add page(s) to bio
 *	@bio: destination bio
 *	@page: start page to add
 *	@len: vec entry length, may cross pages
 *	@offset: vec entry offset relative to @page, may cross pages
 *
 *	Attempt to add page(s) to the bio_vec maplist. This will only fail
 *	if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
 */
int bio_add_page(struct bio *bio, struct page *page,
		 unsigned int len, unsigned int offset)
{
	bool same_page = false;

	if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
		if (bio_full(bio, len))
			return 0;
		__bio_add_page(bio, page, len, offset);
	}
	return len;
}
EXPORT_SYMBOL(bio_add_page);

void bio_release_pages(struct bio *bio, bool mark_dirty)
{
	struct bvec_iter_all iter_all;
	struct bio_vec *bvec;

	if (bio_flagged(bio, BIO_NO_PAGE_REF))
		return;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		if (mark_dirty && !PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
		put_page(bvec->bv_page);
	}
}
EXPORT_SYMBOL_GPL(bio_release_pages);

static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
{
	WARN_ON_ONCE(bio->bi_max_vecs);

	bio->bi_vcnt = iter->nr_segs;
	bio->bi_io_vec = (struct bio_vec *)iter->bvec;
	bio->bi_iter.bi_bvec_done = iter->iov_offset;
	bio->bi_iter.bi_size = iter->count;
	bio_set_flag(bio, BIO_NO_PAGE_REF);
	bio_set_flag(bio, BIO_CLONED);
}

static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
{
	__bio_iov_bvec_set(bio, iter);
	iov_iter_advance(iter, iter->count);
	return 0;
}

static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
{
	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
	struct iov_iter i = *iter;

	iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
	__bio_iov_bvec_set(bio, &i);
	iov_iter_advance(iter, i.count);
	return 0;
}

static void bio_put_pages(struct page **pages, size_t size, size_t off)
{
	size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);

	for (i = 0; i < nr; i++)
		put_page(pages[i]);
}

#define PAGE_PTRS_PER_BVEC     (sizeof(struct bio_vec) / sizeof(struct page *))

/**
 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
 * @bio: bio to add pages to
 * @iter: iov iterator describing the region to be mapped
 *
 * Pins pages from *iter and appends them to @bio's bvec array. The
 * pages will have to be released using put_page() when done.
 * For multi-segment *iter, this function only adds pages from the
 * next non-empty segment of the iov iterator.
 */
static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
	bool same_page = false;
	ssize_t size, left;
	unsigned len, i;
	size_t offset;

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	*/
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];

		len = min_t(size_t, PAGE_SIZE - offset, left);

		if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
			if (same_page)
				put_page(page);
		} else {
			if (WARN_ON_ONCE(bio_full(bio, len))) {
				bio_put_pages(pages + i, left, offset);
				return -EINVAL;
			}
			__bio_add_page(bio, page, len, offset);
		}
		offset = 0;
	}

	iov_iter_advance(iter, size);
	return 0;
}

static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
{
	unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
	unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
	struct request_queue *q = bio->bi_bdev->bd_disk->queue;
	unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
	struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
	struct page **pages = (struct page **)bv;
	ssize_t size, left;
	unsigned len, i;
	size_t offset;
	int ret = 0;

	if (WARN_ON_ONCE(!max_append_sectors))
		return 0;

	/*
	 * Move page array up in the allocated memory for the bio vecs as far as
	 * possible so that we can start filling biovecs from the beginning
	 * without overwriting the temporary page array.
	 */
	BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
	pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);

	size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
	if (unlikely(size <= 0))
		return size ? size : -EFAULT;

	for (left = size, i = 0; left > 0; left -= len, i++) {
		struct page *page = pages[i];
		bool same_page = false;

		len = min_t(size_t, PAGE_SIZE - offset, left);
		if (bio_add_hw_page(q, bio, page, len, offset,
				max_append_sectors, &same_page) != len) {
			bio_put_pages(pages + i, left, offset);
			ret = -EINVAL;
			break;
		}
		if (same_page)
			put_page(page);
		offset = 0;
	}

	iov_iter_advance(iter, size - left);
	return ret;
}

/**
 * bio_iov_iter_get_pages - add user or kernel pages to a bio
 * @bio: bio to add pages to
 * @iter: iov iterator describing the region to be added
 *
 * This takes either an iterator pointing to user memory, or one pointing to
 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
 * map them into the kernel. On IO completion, the caller should put those
 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
 * to ensure the bvecs and pages stay referenced until the submitted I/O is
 * completed by a call to ->ki_complete() or returns with an error other than
 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
 * on IO completion. If it isn't, then pages should be released.
 *
 * The function tries, but does not guarantee, to pin as many pages as
 * fit into the bio, or are requested in @iter, whatever is smaller. If
 * MM encounters an error pinning the requested pages, it stops. Error
 * is returned only if 0 pages could be pinned.
 *
 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
 * responsible for setting BIO_WORKINGSET if necessary.
 */
int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
{
	int ret = 0;

	if (iov_iter_is_bvec(iter)) {
		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
			return bio_iov_bvec_set_append(bio, iter);
		return bio_iov_bvec_set(bio, iter);
	}

	do {
		if (bio_op(bio) == REQ_OP_ZONE_APPEND)
			ret = __bio_iov_append_get_pages(bio, iter);
		else
			ret = __bio_iov_iter_get_pages(bio, iter);
	} while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));

	/* don't account direct I/O as memory stall */
	bio_clear_flag(bio, BIO_WORKINGSET);
	return bio->bi_vcnt ? 0 : ret;
}
EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);

static void submit_bio_wait_endio(struct bio *bio)
{
	complete(bio->bi_private);
}

/**
 * submit_bio_wait - submit a bio, and wait until it completes
 * @bio: The &struct bio which describes the I/O
 *
 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
 * bio_endio() on failure.
 *
 * WARNING: Unlike to how submit_bio() is usually used, this function does not
 * result in bio reference to be consumed. The caller must drop the reference
 * on his own.
 */
int submit_bio_wait(struct bio *bio)
{
	DECLARE_COMPLETION_ONSTACK_MAP(done,
			bio->bi_bdev->bd_disk->lockdep_map);
	unsigned long hang_check;

	bio->bi_private = &done;
	bio->bi_end_io = submit_bio_wait_endio;
	bio->bi_opf |= REQ_SYNC;
	submit_bio(bio);

	/* Prevent hang_check timer from firing at us during very long I/O */
	hang_check = sysctl_hung_task_timeout_secs;
	if (hang_check)
		while (!wait_for_completion_io_timeout(&done,
					hang_check * (HZ/2)))
			;
	else
		wait_for_completion_io(&done);

	return blk_status_to_errno(bio->bi_status);
}
EXPORT_SYMBOL(submit_bio_wait);

/**
 * bio_advance - increment/complete a bio by some number of bytes
 * @bio:	bio to advance
 * @bytes:	number of bytes to complete
 *
 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
 * be updated on the last bvec as well.
 *
 * @bio will then represent the remaining, uncompleted portion of the io.
 */
void bio_advance(struct bio *bio, unsigned bytes)
{
	if (bio_integrity(bio))
		bio_integrity_advance(bio, bytes);

	bio_crypt_advance(bio, bytes);
	bio_advance_iter(bio, &bio->bi_iter, bytes);
}
EXPORT_SYMBOL(bio_advance);

void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
			struct bio *src, struct bvec_iter *src_iter)
{
	struct bio_vec src_bv, dst_bv;
	void *src_p, *dst_p;
	unsigned bytes;

	while (src_iter->bi_size && dst_iter->bi_size) {
		src_bv = bio_iter_iovec(src, *src_iter);
		dst_bv = bio_iter_iovec(dst, *dst_iter);

		bytes = min(src_bv.bv_len, dst_bv.bv_len);

		src_p = kmap_atomic(src_bv.bv_page);
		dst_p = kmap_atomic(dst_bv.bv_page);

		memcpy(dst_p + dst_bv.bv_offset,
		       src_p + src_bv.bv_offset,
		       bytes);

		kunmap_atomic(dst_p);
		kunmap_atomic(src_p);

		flush_dcache_page(dst_bv.bv_page);

		bio_advance_iter_single(src, src_iter, bytes);
		bio_advance_iter_single(dst, dst_iter, bytes);
	}
}
EXPORT_SYMBOL(bio_copy_data_iter);

/**
 * bio_copy_data - copy contents of data buffers from one bio to another
 * @src: source bio
 * @dst: destination bio
 *
 * Stops when it reaches the end of either @src or @dst - that is, copies
 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
 */
void bio_copy_data(struct bio *dst, struct bio *src)
{
	struct bvec_iter src_iter = src->bi_iter;
	struct bvec_iter dst_iter = dst->bi_iter;

	bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
}
EXPORT_SYMBOL(bio_copy_data);

void bio_free_pages(struct bio *bio)
{
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	bio_for_each_segment_all(bvec, bio, iter_all)
		__free_page(bvec->bv_page);
}
EXPORT_SYMBOL(bio_free_pages);

/*
 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
 * for performing direct-IO in BIOs.
 *
 * The problem is that we cannot run set_page_dirty() from interrupt context
 * because the required locks are not interrupt-safe.  So what we can do is to
 * mark the pages dirty _before_ performing IO.  And in interrupt context,
 * check that the pages are still dirty.   If so, fine.  If not, redirty them
 * in process context.
 *
 * We special-case compound pages here: normally this means reads into hugetlb
 * pages.  The logic in here doesn't really work right for compound pages
 * because the VM does not uniformly chase down the head page in all cases.
 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
 * handle them at all.  So we skip compound pages here at an early stage.
 *
 * Note that this code is very hard to test under normal circumstances because
 * direct-io pins the pages with get_user_pages().  This makes
 * is_page_cache_freeable return false, and the VM will not clean the pages.
 * But other code (eg, flusher threads) could clean the pages if they are mapped
 * pagecache.
 *
 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
 * deferred bio dirtying paths.
 */

/*
 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
 */
void bio_set_pages_dirty(struct bio *bio)
{
	struct bio_vec *bvec;
	struct bvec_iter_all iter_all;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		if (!PageCompound(bvec->bv_page))
			set_page_dirty_lock(bvec->bv_page);
	}
}

/*
 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
 * If they are, then fine.  If, however, some pages are clean then they must
 * have been written out during the direct-IO read.  So we take another ref on
 * the BIO and re-dirty the pages in process context.
 *
 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
 * here on.  It will run one put_page() against each page and will run one
 * bio_put() against the BIO.
 */

static void bio_dirty_fn(struct work_struct *work);

static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
static DEFINE_SPINLOCK(bio_dirty_lock);
static struct bio *bio_dirty_list;

/*
 * This runs in process context
 */
static void bio_dirty_fn(struct work_struct *work)
{
	struct bio *bio, *next;

	spin_lock_irq(&bio_dirty_lock);
	next = bio_dirty_list;
	bio_dirty_list = NULL;
	spin_unlock_irq(&bio_dirty_lock);

	while ((bio = next) != NULL) {
		next = bio->bi_private;

		bio_release_pages(bio, true);
		bio_put(bio);
	}
}

void bio_check_pages_dirty(struct bio *bio)
{
	struct bio_vec *bvec;
	unsigned long flags;
	struct bvec_iter_all iter_all;

	bio_for_each_segment_all(bvec, bio, iter_all) {
		if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
			goto defer;
	}

	bio_release_pages(bio, false);
	bio_put(bio);
	return;
defer:
	spin_lock_irqsave(&bio_dirty_lock, flags);
	bio->bi_private = bio_dirty_list;
	bio_dirty_list = bio;
	spin_unlock_irqrestore(&bio_dirty_lock, flags);
	schedule_work(&bio_dirty_work);
}

static inline bool bio_remaining_done(struct bio *bio)
{
	/*
	 * If we're not chaining, then ->__bi_remaining is always 1 and
	 * we always end io on the first invocation.
	 */
	if (!bio_flagged(bio, BIO_CHAIN))
		return true;

	BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);

	if (atomic_dec_and_test(&bio->__bi_remaining)) {
		bio_clear_flag(bio, BIO_CHAIN);
		return true;
	}

	return false;
}

/**
 * bio_endio - end I/O on a bio
 * @bio:	bio
 *
 * Description:
 *   bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
 *   way to end I/O on a bio. No one should call bi_end_io() directly on a
 *   bio unless they own it and thus know that it has an end_io function.
 *
 *   bio_endio() can be called several times on a bio that has been chained
 *   using bio_chain().  The ->bi_end_io() function will only be called the
 *   last time.
 **/
void bio_endio(struct bio *bio)
{
again:
	if (!bio_remaining_done(bio))
		return;
	if (!bio_integrity_endio(bio))
		return;

	if (bio->bi_bdev)
		rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);

	if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
		trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
		bio_clear_flag(bio, BIO_TRACE_COMPLETION);
	}

	/*
	 * Need to have a real endio function for chained bios, otherwise
	 * various corner cases will break (like stacking block devices that
	 * save/restore bi_end_io) - however, we want to avoid unbounded
	 * recursion and blowing the stack. Tail call optimization would
	 * handle this, but compiling with frame pointers also disables
	 * gcc's sibling call optimization.
	 */
	if (bio->bi_end_io == bio_chain_endio) {
		bio = __bio_chain_endio(bio);
		goto again;
	}

	blk_throtl_bio_endio(bio);
	/* release cgroup info */
	bio_uninit(bio);
	if (bio->bi_end_io)
		bio->bi_end_io(bio);
}
EXPORT_SYMBOL(bio_endio);

/**
 * bio_split - split a bio
 * @bio:	bio to split
 * @sectors:	number of sectors to split from the front of @bio
 * @gfp:	gfp mask
 * @bs:		bio set to allocate from
 *
 * Allocates and returns a new bio which represents @sectors from the start of
 * @bio, and updates @bio to represent the remaining sectors.
 *
 * Unless this is a discard request the newly allocated bio will point
 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
 * neither @bio nor @bs are freed before the split bio.
 */
struct bio *bio_split(struct bio *bio, int sectors,
		      gfp_t gfp, struct bio_set *bs)
{
	struct bio *split;

	BUG_ON(sectors <= 0);
	BUG_ON(sectors >= bio_sectors(bio));

	/* Zone append commands cannot be split */
	if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
		return NULL;

	split = bio_clone_fast(bio, gfp, bs);
	if (!split)
		return NULL;

	split->bi_iter.bi_size = sectors << 9;

	if (bio_integrity(split))
		bio_integrity_trim(split);

	bio_advance(bio, split->bi_iter.bi_size);

	if (bio_flagged(bio, BIO_TRACE_COMPLETION))
		bio_set_flag(split, BIO_TRACE_COMPLETION);

	return split;
}
EXPORT_SYMBOL(bio_split);

/**
 * bio_trim - trim a bio
 * @bio:	bio to trim
 * @offset:	number of sectors to trim from the front of @bio
 * @size:	size we want to trim @bio to, in sectors
 */
void bio_trim(struct bio *bio, int offset, int size)
{
	/* 'bio' is a cloned bio which we need to trim to match
	 * the given offset and size.
	 */

	size <<= 9;
	if (offset == 0 && size == bio->bi_iter.bi_size)
		return;

	bio_advance(bio, offset << 9);
	bio->bi_iter.bi_size = size;

	if (bio_integrity(bio))
		bio_integrity_trim(bio);

}
EXPORT_SYMBOL_GPL(bio_trim);

/*
 * create memory pools for biovec's in a bio_set.
 * use the global biovec slabs created for general use.
 */
int biovec_init_pool(mempool_t *pool, int pool_entries)
{
	struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;

	return mempool_init_slab_pool(pool, pool_entries, bp->slab);
}

/*
 * bioset_exit - exit a bioset initialized with bioset_init()
 *
 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
 * kzalloc()).
 */
void bioset_exit(struct bio_set *bs)
{
	if (bs->rescue_workqueue)
		destroy_workqueue(bs->rescue_workqueue);
	bs->rescue_workqueue = NULL;

	mempool_exit(&bs->bio_pool);
	mempool_exit(&bs->bvec_pool);

	bioset_integrity_free(bs);
	if (bs->bio_slab)
		bio_put_slab(bs);
	bs->bio_slab = NULL;
}
EXPORT_SYMBOL(bioset_exit);

/**
 * bioset_init - Initialize a bio_set
 * @bs:		pool to initialize
 * @pool_size:	Number of bio and bio_vecs to cache in the mempool
 * @front_pad:	Number of bytes to allocate in front of the returned bio
 * @flags:	Flags to modify behavior, currently %BIOSET_NEED_BVECS
 *              and %BIOSET_NEED_RESCUER
 *
 * Description:
 *    Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
 *    to ask for a number of bytes to be allocated in front of the bio.
 *    Front pad allocation is useful for embedding the bio inside
 *    another structure, to avoid allocating extra data to go with the bio.
 *    Note that the bio must be embedded at the END of that structure always,
 *    or things will break badly.
 *    If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
 *    for allocating iovecs.  This pool is not needed e.g. for bio_clone_fast().
 *    If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
 *    dispatch queued requests when the mempool runs out of space.
 *
 */
int bioset_init(struct bio_set *bs,
		unsigned int pool_size,
		unsigned int front_pad,
		int flags)
{
	bs->front_pad = front_pad;
	if (flags & BIOSET_NEED_BVECS)
		bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
	else
		bs->back_pad = 0;

	spin_lock_init(&bs->rescue_lock);
	bio_list_init(&bs->rescue_list);
	INIT_WORK(&bs->rescue_work, bio_alloc_rescue);

	bs->bio_slab = bio_find_or_create_slab(bs);
	if (!bs->bio_slab)
		return -ENOMEM;

	if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
		goto bad;

	if ((flags & BIOSET_NEED_BVECS) &&
	    biovec_init_pool(&bs->bvec_pool, pool_size))
		goto bad;

	if (!(flags & BIOSET_NEED_RESCUER))
		return 0;

	bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
	if (!bs->rescue_workqueue)
		goto bad;

	return 0;
bad:
	bioset_exit(bs);
	return -ENOMEM;
}
EXPORT_SYMBOL(bioset_init);

/*
 * Initialize and setup a new bio_set, based on the settings from
 * another bio_set.
 */
int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
{
	int flags;

	flags = 0;
	if (src->bvec_pool.min_nr)
		flags |= BIOSET_NEED_BVECS;
	if (src->rescue_workqueue)
		flags |= BIOSET_NEED_RESCUER;

	return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
}
EXPORT_SYMBOL(bioset_init_from_src);

static int __init init_bio(void)
{
	int i;

	bio_integrity_init();

	for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
		struct biovec_slab *bvs = bvec_slabs + i;

		bvs->slab = kmem_cache_create(bvs->name,
				bvs->nr_vecs * sizeof(struct bio_vec), 0,
				SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
	}

	if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
		panic("bio: can't allocate bios\n");

	if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
		panic("bio: can't create integrity pool\n");

	return 0;
}
subsys_initcall(init_bio);