Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> */ #include <linux/mm.h> #include <linux/swap.h> #include <linux/bio.h> #include <linux/blkdev.h> #include <linux/uio.h> #include <linux/iocontext.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/export.h> #include <linux/mempool.h> #include <linux/workqueue.h> #include <linux/cgroup.h> #include <linux/blk-cgroup.h> #include <linux/highmem.h> #include <linux/sched/sysctl.h> #include <linux/blk-crypto.h> #include <trace/events/block.h> #include "blk.h" #include "blk-rq-qos.h" /* * Test patch to inline a certain number of bi_io_vec's inside the bio * itself, to shrink a bio data allocation from two mempool calls to one */ #define BIO_INLINE_VECS 4 /* * if you change this list, also change bvec_alloc or things will * break badly! cannot be bigger than what you can fit into an * unsigned short */ #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n } static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = { BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max), }; #undef BV /* * fs_bio_set is the bio_set containing bio and iovec memory pools used by * IO code that does not need private memory pools. */ struct bio_set fs_bio_set; EXPORT_SYMBOL(fs_bio_set); /* * Our slab pool management */ struct bio_slab { struct kmem_cache *slab; unsigned int slab_ref; unsigned int slab_size; char name[8]; }; static DEFINE_MUTEX(bio_slab_lock); static struct bio_slab *bio_slabs; static unsigned int bio_slab_nr, bio_slab_max; static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size) { unsigned int sz = sizeof(struct bio) + extra_size; struct kmem_cache *slab = NULL; struct bio_slab *bslab, *new_bio_slabs; unsigned int new_bio_slab_max; unsigned int i, entry = -1; mutex_lock(&bio_slab_lock); i = 0; while (i < bio_slab_nr) { bslab = &bio_slabs[i]; if (!bslab->slab && entry == -1) entry = i; else if (bslab->slab_size == sz) { slab = bslab->slab; bslab->slab_ref++; break; } i++; } if (slab) goto out_unlock; if (bio_slab_nr == bio_slab_max && entry == -1) { new_bio_slab_max = bio_slab_max << 1; new_bio_slabs = krealloc(bio_slabs, new_bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL); if (!new_bio_slabs) goto out_unlock; bio_slab_max = new_bio_slab_max; bio_slabs = new_bio_slabs; } if (entry == -1) entry = bio_slab_nr++; bslab = &bio_slabs[entry]; snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry); slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN, SLAB_HWCACHE_ALIGN, NULL); if (!slab) goto out_unlock; bslab->slab = slab; bslab->slab_ref = 1; bslab->slab_size = sz; out_unlock: mutex_unlock(&bio_slab_lock); return slab; } static void bio_put_slab(struct bio_set *bs) { struct bio_slab *bslab = NULL; unsigned int i; mutex_lock(&bio_slab_lock); for (i = 0; i < bio_slab_nr; i++) { if (bs->bio_slab == bio_slabs[i].slab) { bslab = &bio_slabs[i]; break; } } if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n")) goto out; WARN_ON(!bslab->slab_ref); if (--bslab->slab_ref) goto out; kmem_cache_destroy(bslab->slab); bslab->slab = NULL; out: mutex_unlock(&bio_slab_lock); } unsigned int bvec_nr_vecs(unsigned short idx) { return bvec_slabs[--idx].nr_vecs; } void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx) { if (!idx) return; idx--; BIO_BUG_ON(idx >= BVEC_POOL_NR); if (idx == BVEC_POOL_MAX) { mempool_free(bv, pool); } else { struct biovec_slab *bvs = bvec_slabs + idx; kmem_cache_free(bvs->slab, bv); } } struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx, mempool_t *pool) { struct bio_vec *bvl; /* * see comment near bvec_array define! */ switch (nr) { case 1: *idx = 0; break; case 2 ... 4: *idx = 1; break; case 5 ... 16: *idx = 2; break; case 17 ... 64: *idx = 3; break; case 65 ... 128: *idx = 4; break; case 129 ... BIO_MAX_PAGES: *idx = 5; break; default: return NULL; } /* * idx now points to the pool we want to allocate from. only the * 1-vec entry pool is mempool backed. */ if (*idx == BVEC_POOL_MAX) { fallback: bvl = mempool_alloc(pool, gfp_mask); } else { struct biovec_slab *bvs = bvec_slabs + *idx; gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO); /* * Make this allocation restricted and don't dump info on * allocation failures, since we'll fallback to the mempool * in case of failure. */ __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN; /* * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM * is set, retry with the 1-entry mempool */ bvl = kmem_cache_alloc(bvs->slab, __gfp_mask); if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) { *idx = BVEC_POOL_MAX; goto fallback; } } (*idx)++; return bvl; } void bio_uninit(struct bio *bio) { #ifdef CONFIG_BLK_CGROUP if (bio->bi_blkg) { blkg_put(bio->bi_blkg); bio->bi_blkg = NULL; } #endif if (bio_integrity(bio)) bio_integrity_free(bio); bio_crypt_free_ctx(bio); } EXPORT_SYMBOL(bio_uninit); static void bio_free(struct bio *bio) { struct bio_set *bs = bio->bi_pool; void *p; bio_uninit(bio); if (bs) { bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio)); /* * If we have front padding, adjust the bio pointer before freeing */ p = bio; p -= bs->front_pad; mempool_free(p, &bs->bio_pool); } else { /* Bio was allocated by bio_kmalloc() */ kfree(bio); } } /* * Users of this function have their own bio allocation. Subsequently, * they must remember to pair any call to bio_init() with bio_uninit() * when IO has completed, or when the bio is released. */ void bio_init(struct bio *bio, struct bio_vec *table, unsigned short max_vecs) { memset(bio, 0, sizeof(*bio)); atomic_set(&bio->__bi_remaining, 1); atomic_set(&bio->__bi_cnt, 1); bio->bi_io_vec = table; bio->bi_max_vecs = max_vecs; } EXPORT_SYMBOL(bio_init); /** * bio_reset - reinitialize a bio * @bio: bio to reset * * Description: * After calling bio_reset(), @bio will be in the same state as a freshly * allocated bio returned bio bio_alloc_bioset() - the only fields that are * preserved are the ones that are initialized by bio_alloc_bioset(). See * comment in struct bio. */ void bio_reset(struct bio *bio) { unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS); bio_uninit(bio); memset(bio, 0, BIO_RESET_BYTES); bio->bi_flags = flags; atomic_set(&bio->__bi_remaining, 1); } EXPORT_SYMBOL(bio_reset); static struct bio *__bio_chain_endio(struct bio *bio) { struct bio *parent = bio->bi_private; if (!parent->bi_status) parent->bi_status = bio->bi_status; bio_put(bio); return parent; } static void bio_chain_endio(struct bio *bio) { bio_endio(__bio_chain_endio(bio)); } /** * bio_chain - chain bio completions * @bio: the target bio * @parent: the parent bio of @bio * * The caller won't have a bi_end_io called when @bio completes - instead, * @parent's bi_end_io won't be called until both @parent and @bio have * completed; the chained bio will also be freed when it completes. * * The caller must not set bi_private or bi_end_io in @bio. */ void bio_chain(struct bio *bio, struct bio *parent) { BUG_ON(bio->bi_private || bio->bi_end_io); bio->bi_private = parent; bio->bi_end_io = bio_chain_endio; bio_inc_remaining(parent); } EXPORT_SYMBOL(bio_chain); static void bio_alloc_rescue(struct work_struct *work) { struct bio_set *bs = container_of(work, struct bio_set, rescue_work); struct bio *bio; while (1) { spin_lock(&bs->rescue_lock); bio = bio_list_pop(&bs->rescue_list); spin_unlock(&bs->rescue_lock); if (!bio) break; submit_bio_noacct(bio); } } static void punt_bios_to_rescuer(struct bio_set *bs) { struct bio_list punt, nopunt; struct bio *bio; if (WARN_ON_ONCE(!bs->rescue_workqueue)) return; /* * In order to guarantee forward progress we must punt only bios that * were allocated from this bio_set; otherwise, if there was a bio on * there for a stacking driver higher up in the stack, processing it * could require allocating bios from this bio_set, and doing that from * our own rescuer would be bad. * * Since bio lists are singly linked, pop them all instead of trying to * remove from the middle of the list: */ bio_list_init(&punt); bio_list_init(&nopunt); while ((bio = bio_list_pop(¤t->bio_list[0]))) bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); current->bio_list[0] = nopunt; bio_list_init(&nopunt); while ((bio = bio_list_pop(¤t->bio_list[1]))) bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio); current->bio_list[1] = nopunt; spin_lock(&bs->rescue_lock); bio_list_merge(&bs->rescue_list, &punt); spin_unlock(&bs->rescue_lock); queue_work(bs->rescue_workqueue, &bs->rescue_work); } /** * bio_alloc_bioset - allocate a bio for I/O * @gfp_mask: the GFP_* mask given to the slab allocator * @nr_iovecs: number of iovecs to pre-allocate * @bs: the bio_set to allocate from. * * Description: * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is * backed by the @bs's mempool. * * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will * always be able to allocate a bio. This is due to the mempool guarantees. * To make this work, callers must never allocate more than 1 bio at a time * from this pool. Callers that need to allocate more than 1 bio must always * submit the previously allocated bio for IO before attempting to allocate * a new one. Failure to do so can cause deadlocks under memory pressure. * * Note that when running under submit_bio_noacct() (i.e. any block * driver), bios are not submitted until after you return - see the code in * submit_bio_noacct() that converts recursion into iteration, to prevent * stack overflows. * * This would normally mean allocating multiple bios under * submit_bio_noacct() would be susceptible to deadlocks, but we have * deadlock avoidance code that resubmits any blocked bios from a rescuer * thread. * * However, we do not guarantee forward progress for allocations from other * mempools. Doing multiple allocations from the same mempool under * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad * for per bio allocations. * * RETURNS: * Pointer to new bio on success, NULL on failure. */ struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs, struct bio_set *bs) { gfp_t saved_gfp = gfp_mask; unsigned front_pad; unsigned inline_vecs; struct bio_vec *bvl = NULL; struct bio *bio; void *p; if (!bs) { if (nr_iovecs > UIO_MAXIOV) return NULL; p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask); front_pad = 0; inline_vecs = nr_iovecs; } else { /* should not use nobvec bioset for nr_iovecs > 0 */ if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0)) return NULL; /* * submit_bio_noacct() converts recursion to iteration; this * means if we're running beneath it, any bios we allocate and * submit will not be submitted (and thus freed) until after we * return. * * This exposes us to a potential deadlock if we allocate * multiple bios from the same bio_set() while running * underneath submit_bio_noacct(). If we were to allocate * multiple bios (say a stacking block driver that was splitting * bios), we would deadlock if we exhausted the mempool's * reserve. * * We solve this, and guarantee forward progress, with a rescuer * workqueue per bio_set. If we go to allocate and there are * bios on current->bio_list, we first try the allocation * without __GFP_DIRECT_RECLAIM; if that fails, we punt those * bios we would be blocking to the rescuer workqueue before * we retry with the original gfp_flags. */ if (current->bio_list && (!bio_list_empty(¤t->bio_list[0]) || !bio_list_empty(¤t->bio_list[1])) && bs->rescue_workqueue) gfp_mask &= ~__GFP_DIRECT_RECLAIM; p = mempool_alloc(&bs->bio_pool, gfp_mask); if (!p && gfp_mask != saved_gfp) { punt_bios_to_rescuer(bs); gfp_mask = saved_gfp; p = mempool_alloc(&bs->bio_pool, gfp_mask); } front_pad = bs->front_pad; inline_vecs = BIO_INLINE_VECS; } if (unlikely(!p)) return NULL; bio = p + front_pad; bio_init(bio, NULL, 0); if (nr_iovecs > inline_vecs) { unsigned long idx = 0; bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); if (!bvl && gfp_mask != saved_gfp) { punt_bios_to_rescuer(bs); gfp_mask = saved_gfp; bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool); } if (unlikely(!bvl)) goto err_free; bio->bi_flags |= idx << BVEC_POOL_OFFSET; } else if (nr_iovecs) { bvl = bio->bi_inline_vecs; } bio->bi_pool = bs; bio->bi_max_vecs = nr_iovecs; bio->bi_io_vec = bvl; return bio; err_free: mempool_free(p, &bs->bio_pool); return NULL; } EXPORT_SYMBOL(bio_alloc_bioset); void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start) { unsigned long flags; struct bio_vec bv; struct bvec_iter iter; __bio_for_each_segment(bv, bio, iter, start) { char *data = bvec_kmap_irq(&bv, &flags); memset(data, 0, bv.bv_len); flush_dcache_page(bv.bv_page); bvec_kunmap_irq(data, &flags); } } EXPORT_SYMBOL(zero_fill_bio_iter); /** * bio_truncate - truncate the bio to small size of @new_size * @bio: the bio to be truncated * @new_size: new size for truncating the bio * * Description: * Truncate the bio to new size of @new_size. If bio_op(bio) is * REQ_OP_READ, zero the truncated part. This function should only * be used for handling corner cases, such as bio eod. */ void bio_truncate(struct bio *bio, unsigned new_size) { struct bio_vec bv; struct bvec_iter iter; unsigned int done = 0; bool truncated = false; if (new_size >= bio->bi_iter.bi_size) return; if (bio_op(bio) != REQ_OP_READ) goto exit; bio_for_each_segment(bv, bio, iter) { if (done + bv.bv_len > new_size) { unsigned offset; if (!truncated) offset = new_size - done; else offset = 0; zero_user(bv.bv_page, offset, bv.bv_len - offset); truncated = true; } done += bv.bv_len; } exit: /* * Don't touch bvec table here and make it really immutable, since * fs bio user has to retrieve all pages via bio_for_each_segment_all * in its .end_bio() callback. * * It is enough to truncate bio by updating .bi_size since we can make * correct bvec with the updated .bi_size for drivers. */ bio->bi_iter.bi_size = new_size; } /** * guard_bio_eod - truncate a BIO to fit the block device * @bio: bio to truncate * * This allows us to do IO even on the odd last sectors of a device, even if the * block size is some multiple of the physical sector size. * * We'll just truncate the bio to the size of the device, and clear the end of * the buffer head manually. Truly out-of-range accesses will turn into actual * I/O errors, this only handles the "we need to be able to do I/O at the final * sector" case. */ void guard_bio_eod(struct bio *bio) { sector_t maxsector; struct block_device *part; rcu_read_lock(); part = __disk_get_part(bio->bi_disk, bio->bi_partno); if (part) maxsector = bdev_nr_sectors(part); else maxsector = get_capacity(bio->bi_disk); rcu_read_unlock(); if (!maxsector) return; /* * If the *whole* IO is past the end of the device, * let it through, and the IO layer will turn it into * an EIO. */ if (unlikely(bio->bi_iter.bi_sector >= maxsector)) return; maxsector -= bio->bi_iter.bi_sector; if (likely((bio->bi_iter.bi_size >> 9) <= maxsector)) return; bio_truncate(bio, maxsector << 9); } /** * bio_put - release a reference to a bio * @bio: bio to release reference to * * Description: * Put a reference to a &struct bio, either one you have gotten with * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it. **/ void bio_put(struct bio *bio) { if (!bio_flagged(bio, BIO_REFFED)) bio_free(bio); else { BIO_BUG_ON(!atomic_read(&bio->__bi_cnt)); /* * last put frees it */ if (atomic_dec_and_test(&bio->__bi_cnt)) bio_free(bio); } } EXPORT_SYMBOL(bio_put); /** * __bio_clone_fast - clone a bio that shares the original bio's biovec * @bio: destination bio * @bio_src: bio to clone * * Clone a &bio. Caller will own the returned bio, but not * the actual data it points to. Reference count of returned * bio will be one. * * Caller must ensure that @bio_src is not freed before @bio. */ void __bio_clone_fast(struct bio *bio, struct bio *bio_src) { BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio)); /* * most users will be overriding ->bi_disk with a new target, * so we don't set nor calculate new physical/hw segment counts here */ bio->bi_disk = bio_src->bi_disk; bio->bi_partno = bio_src->bi_partno; bio_set_flag(bio, BIO_CLONED); if (bio_flagged(bio_src, BIO_THROTTLED)) bio_set_flag(bio, BIO_THROTTLED); bio->bi_opf = bio_src->bi_opf; bio->bi_ioprio = bio_src->bi_ioprio; bio->bi_write_hint = bio_src->bi_write_hint; bio->bi_iter = bio_src->bi_iter; bio->bi_io_vec = bio_src->bi_io_vec; bio_clone_blkg_association(bio, bio_src); blkcg_bio_issue_init(bio); } EXPORT_SYMBOL(__bio_clone_fast); /** * bio_clone_fast - clone a bio that shares the original bio's biovec * @bio: bio to clone * @gfp_mask: allocation priority * @bs: bio_set to allocate from * * Like __bio_clone_fast, only also allocates the returned bio */ struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs) { struct bio *b; b = bio_alloc_bioset(gfp_mask, 0, bs); if (!b) return NULL; __bio_clone_fast(b, bio); if (bio_crypt_clone(b, bio, gfp_mask) < 0) goto err_put; if (bio_integrity(bio) && bio_integrity_clone(b, bio, gfp_mask) < 0) goto err_put; return b; err_put: bio_put(b); return NULL; } EXPORT_SYMBOL(bio_clone_fast); const char *bio_devname(struct bio *bio, char *buf) { return disk_name(bio->bi_disk, bio->bi_partno, buf); } EXPORT_SYMBOL(bio_devname); static inline bool page_is_mergeable(const struct bio_vec *bv, struct page *page, unsigned int len, unsigned int off, bool *same_page) { size_t bv_end = bv->bv_offset + bv->bv_len; phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1; phys_addr_t page_addr = page_to_phys(page); if (vec_end_addr + 1 != page_addr + off) return false; if (xen_domain() && !xen_biovec_phys_mergeable(bv, page)) return false; *same_page = ((vec_end_addr & PAGE_MASK) == page_addr); if (*same_page) return true; return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE); } /* * Try to merge a page into a segment, while obeying the hardware segment * size limit. This is not for normal read/write bios, but for passthrough * or Zone Append operations that we can't split. */ static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio, struct page *page, unsigned len, unsigned offset, bool *same_page) { struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; unsigned long mask = queue_segment_boundary(q); phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset; phys_addr_t addr2 = page_to_phys(page) + offset + len - 1; if ((addr1 | mask) != (addr2 | mask)) return false; if (bv->bv_len + len > queue_max_segment_size(q)) return false; return __bio_try_merge_page(bio, page, len, offset, same_page); } /** * bio_add_hw_page - attempt to add a page to a bio with hw constraints * @q: the target queue * @bio: destination bio * @page: page to add * @len: vec entry length * @offset: vec entry offset * @max_sectors: maximum number of sectors that can be added * @same_page: return if the segment has been merged inside the same page * * Add a page to a bio while respecting the hardware max_sectors, max_segment * and gap limitations. */ int bio_add_hw_page(struct request_queue *q, struct bio *bio, struct page *page, unsigned int len, unsigned int offset, unsigned int max_sectors, bool *same_page) { struct bio_vec *bvec; if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) return 0; if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors) return 0; if (bio->bi_vcnt > 0) { if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page)) return len; /* * If the queue doesn't support SG gaps and adding this segment * would create a gap, disallow it. */ bvec = &bio->bi_io_vec[bio->bi_vcnt - 1]; if (bvec_gap_to_prev(q, bvec, offset)) return 0; } if (bio_full(bio, len)) return 0; if (bio->bi_vcnt >= queue_max_segments(q)) return 0; bvec = &bio->bi_io_vec[bio->bi_vcnt]; bvec->bv_page = page; bvec->bv_len = len; bvec->bv_offset = offset; bio->bi_vcnt++; bio->bi_iter.bi_size += len; return len; } /** * bio_add_pc_page - attempt to add page to passthrough bio * @q: the target queue * @bio: destination bio * @page: page to add * @len: vec entry length * @offset: vec entry offset * * Attempt to add a page to the bio_vec maplist. This can fail for a * number of reasons, such as the bio being full or target block device * limitations. The target block device must allow bio's up to PAGE_SIZE, * so it is always possible to add a single page to an empty bio. * * This should only be used by passthrough bios. */ int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page *page, unsigned int len, unsigned int offset) { bool same_page = false; return bio_add_hw_page(q, bio, page, len, offset, queue_max_hw_sectors(q), &same_page); } EXPORT_SYMBOL(bio_add_pc_page); /** * __bio_try_merge_page - try appending data to an existing bvec. * @bio: destination bio * @page: start page to add * @len: length of the data to add * @off: offset of the data relative to @page * @same_page: return if the segment has been merged inside the same page * * Try to add the data at @page + @off to the last bvec of @bio. This is a * useful optimisation for file systems with a block size smaller than the * page size. * * Warn if (@len, @off) crosses pages in case that @same_page is true. * * Return %true on success or %false on failure. */ bool __bio_try_merge_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off, bool *same_page) { if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED))) return false; if (bio->bi_vcnt > 0) { struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1]; if (page_is_mergeable(bv, page, len, off, same_page)) { if (bio->bi_iter.bi_size > UINT_MAX - len) { *same_page = false; return false; } bv->bv_len += len; bio->bi_iter.bi_size += len; return true; } } return false; } EXPORT_SYMBOL_GPL(__bio_try_merge_page); /** * __bio_add_page - add page(s) to a bio in a new segment * @bio: destination bio * @page: start page to add * @len: length of the data to add, may cross pages * @off: offset of the data relative to @page, may cross pages * * Add the data at @page + @off to @bio as a new bvec. The caller must ensure * that @bio has space for another bvec. */ void __bio_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int off) { struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt]; WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)); WARN_ON_ONCE(bio_full(bio, len)); bv->bv_page = page; bv->bv_offset = off; bv->bv_len = len; bio->bi_iter.bi_size += len; bio->bi_vcnt++; if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page))) bio_set_flag(bio, BIO_WORKINGSET); } EXPORT_SYMBOL_GPL(__bio_add_page); /** * bio_add_page - attempt to add page(s) to bio * @bio: destination bio * @page: start page to add * @len: vec entry length, may cross pages * @offset: vec entry offset relative to @page, may cross pages * * Attempt to add page(s) to the bio_vec maplist. This will only fail * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio. */ int bio_add_page(struct bio *bio, struct page *page, unsigned int len, unsigned int offset) { bool same_page = false; if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) { if (bio_full(bio, len)) return 0; __bio_add_page(bio, page, len, offset); } return len; } EXPORT_SYMBOL(bio_add_page); void bio_release_pages(struct bio *bio, bool mark_dirty) { struct bvec_iter_all iter_all; struct bio_vec *bvec; if (bio_flagged(bio, BIO_NO_PAGE_REF)) return; bio_for_each_segment_all(bvec, bio, iter_all) { if (mark_dirty && !PageCompound(bvec->bv_page)) set_page_dirty_lock(bvec->bv_page); put_page(bvec->bv_page); } } EXPORT_SYMBOL_GPL(bio_release_pages); static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter) { const struct bio_vec *bv = iter->bvec; unsigned int len; size_t size; if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len)) return -EINVAL; len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count); size = bio_add_page(bio, bv->bv_page, len, bv->bv_offset + iter->iov_offset); if (unlikely(size != len)) return -EINVAL; iov_iter_advance(iter, size); return 0; } #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *)) /** * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio * @bio: bio to add pages to * @iter: iov iterator describing the region to be mapped * * Pins pages from *iter and appends them to @bio's bvec array. The * pages will have to be released using put_page() when done. * For multi-segment *iter, this function only adds pages from the * next non-empty segment of the iov iterator. */ static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) { unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; struct page **pages = (struct page **)bv; bool same_page = false; ssize_t size, left; unsigned len, i; size_t offset; /* * Move page array up in the allocated memory for the bio vecs as far as * possible so that we can start filling biovecs from the beginning * without overwriting the temporary page array. */ BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); if (unlikely(size <= 0)) return size ? size : -EFAULT; for (left = size, i = 0; left > 0; left -= len, i++) { struct page *page = pages[i]; len = min_t(size_t, PAGE_SIZE - offset, left); if (__bio_try_merge_page(bio, page, len, offset, &same_page)) { if (same_page) put_page(page); } else { if (WARN_ON_ONCE(bio_full(bio, len))) return -EINVAL; __bio_add_page(bio, page, len, offset); } offset = 0; } iov_iter_advance(iter, size); return 0; } static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter) { unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt; unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt; struct request_queue *q = bio->bi_disk->queue; unsigned int max_append_sectors = queue_max_zone_append_sectors(q); struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt; struct page **pages = (struct page **)bv; ssize_t size, left; unsigned len, i; size_t offset; int ret = 0; if (WARN_ON_ONCE(!max_append_sectors)) return 0; /* * Move page array up in the allocated memory for the bio vecs as far as * possible so that we can start filling biovecs from the beginning * without overwriting the temporary page array. */ BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2); pages += entries_left * (PAGE_PTRS_PER_BVEC - 1); size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset); if (unlikely(size <= 0)) return size ? size : -EFAULT; for (left = size, i = 0; left > 0; left -= len, i++) { struct page *page = pages[i]; bool same_page = false; len = min_t(size_t, PAGE_SIZE - offset, left); if (bio_add_hw_page(q, bio, page, len, offset, max_append_sectors, &same_page) != len) { ret = -EINVAL; break; } if (same_page) put_page(page); offset = 0; } iov_iter_advance(iter, size - left); return ret; } /** * bio_iov_iter_get_pages - add user or kernel pages to a bio * @bio: bio to add pages to * @iter: iov iterator describing the region to be added * * This takes either an iterator pointing to user memory, or one pointing to * kernel pages (BVEC iterator). If we're adding user pages, we pin them and * map them into the kernel. On IO completion, the caller should put those * pages. If we're adding kernel pages, and the caller told us it's safe to * do so, we just have to add the pages to the bio directly. We don't grab an * extra reference to those pages (the user should already have that), and we * don't put the page on IO completion. The caller needs to check if the bio is * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be * released. * * The function tries, but does not guarantee, to pin as many pages as * fit into the bio, or are requested in @iter, whatever is smaller. If * MM encounters an error pinning the requested pages, it stops. Error * is returned only if 0 pages could be pinned. */ int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter) { const bool is_bvec = iov_iter_is_bvec(iter); int ret; if (WARN_ON_ONCE(bio->bi_vcnt)) return -EINVAL; do { if (bio_op(bio) == REQ_OP_ZONE_APPEND) { if (WARN_ON_ONCE(is_bvec)) return -EINVAL; ret = __bio_iov_append_get_pages(bio, iter); } else { if (is_bvec) ret = __bio_iov_bvec_add_pages(bio, iter); else ret = __bio_iov_iter_get_pages(bio, iter); } } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0)); if (is_bvec) bio_set_flag(bio, BIO_NO_PAGE_REF); return bio->bi_vcnt ? 0 : ret; } EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages); static void submit_bio_wait_endio(struct bio *bio) { complete(bio->bi_private); } /** * submit_bio_wait - submit a bio, and wait until it completes * @bio: The &struct bio which describes the I/O * * Simple wrapper around submit_bio(). Returns 0 on success, or the error from * bio_endio() on failure. * * WARNING: Unlike to how submit_bio() is usually used, this function does not * result in bio reference to be consumed. The caller must drop the reference * on his own. */ int submit_bio_wait(struct bio *bio) { DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map); unsigned long hang_check; bio->bi_private = &done; bio->bi_end_io = submit_bio_wait_endio; bio->bi_opf |= REQ_SYNC; submit_bio(bio); /* Prevent hang_check timer from firing at us during very long I/O */ hang_check = sysctl_hung_task_timeout_secs; if (hang_check) while (!wait_for_completion_io_timeout(&done, hang_check * (HZ/2))) ; else wait_for_completion_io(&done); return blk_status_to_errno(bio->bi_status); } EXPORT_SYMBOL(submit_bio_wait); /** * bio_advance - increment/complete a bio by some number of bytes * @bio: bio to advance * @bytes: number of bytes to complete * * This updates bi_sector, bi_size and bi_idx; if the number of bytes to * complete doesn't align with a bvec boundary, then bv_len and bv_offset will * be updated on the last bvec as well. * * @bio will then represent the remaining, uncompleted portion of the io. */ void bio_advance(struct bio *bio, unsigned bytes) { if (bio_integrity(bio)) bio_integrity_advance(bio, bytes); bio_crypt_advance(bio, bytes); bio_advance_iter(bio, &bio->bi_iter, bytes); } EXPORT_SYMBOL(bio_advance); void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter, struct bio *src, struct bvec_iter *src_iter) { struct bio_vec src_bv, dst_bv; void *src_p, *dst_p; unsigned bytes; while (src_iter->bi_size && dst_iter->bi_size) { src_bv = bio_iter_iovec(src, *src_iter); dst_bv = bio_iter_iovec(dst, *dst_iter); bytes = min(src_bv.bv_len, dst_bv.bv_len); src_p = kmap_atomic(src_bv.bv_page); dst_p = kmap_atomic(dst_bv.bv_page); memcpy(dst_p + dst_bv.bv_offset, src_p + src_bv.bv_offset, bytes); kunmap_atomic(dst_p); kunmap_atomic(src_p); flush_dcache_page(dst_bv.bv_page); bio_advance_iter_single(src, src_iter, bytes); bio_advance_iter_single(dst, dst_iter, bytes); } } EXPORT_SYMBOL(bio_copy_data_iter); /** * bio_copy_data - copy contents of data buffers from one bio to another * @src: source bio * @dst: destination bio * * Stops when it reaches the end of either @src or @dst - that is, copies * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios). */ void bio_copy_data(struct bio *dst, struct bio *src) { struct bvec_iter src_iter = src->bi_iter; struct bvec_iter dst_iter = dst->bi_iter; bio_copy_data_iter(dst, &dst_iter, src, &src_iter); } EXPORT_SYMBOL(bio_copy_data); /** * bio_list_copy_data - copy contents of data buffers from one chain of bios to * another * @src: source bio list * @dst: destination bio list * * Stops when it reaches the end of either the @src list or @dst list - that is, * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of * bios). */ void bio_list_copy_data(struct bio *dst, struct bio *src) { struct bvec_iter src_iter = src->bi_iter; struct bvec_iter dst_iter = dst->bi_iter; while (1) { if (!src_iter.bi_size) { src = src->bi_next; if (!src) break; src_iter = src->bi_iter; } if (!dst_iter.bi_size) { dst = dst->bi_next; if (!dst) break; dst_iter = dst->bi_iter; } bio_copy_data_iter(dst, &dst_iter, src, &src_iter); } } EXPORT_SYMBOL(bio_list_copy_data); void bio_free_pages(struct bio *bio) { struct bio_vec *bvec; struct bvec_iter_all iter_all; bio_for_each_segment_all(bvec, bio, iter_all) __free_page(bvec->bv_page); } EXPORT_SYMBOL(bio_free_pages); /* * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions * for performing direct-IO in BIOs. * * The problem is that we cannot run set_page_dirty() from interrupt context * because the required locks are not interrupt-safe. So what we can do is to * mark the pages dirty _before_ performing IO. And in interrupt context, * check that the pages are still dirty. If so, fine. If not, redirty them * in process context. * * We special-case compound pages here: normally this means reads into hugetlb * pages. The logic in here doesn't really work right for compound pages * because the VM does not uniformly chase down the head page in all cases. * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't * handle them at all. So we skip compound pages here at an early stage. * * Note that this code is very hard to test under normal circumstances because * direct-io pins the pages with get_user_pages(). This makes * is_page_cache_freeable return false, and the VM will not clean the pages. * But other code (eg, flusher threads) could clean the pages if they are mapped * pagecache. * * Simply disabling the call to bio_set_pages_dirty() is a good way to test the * deferred bio dirtying paths. */ /* * bio_set_pages_dirty() will mark all the bio's pages as dirty. */ void bio_set_pages_dirty(struct bio *bio) { struct bio_vec *bvec; struct bvec_iter_all iter_all; bio_for_each_segment_all(bvec, bio, iter_all) { if (!PageCompound(bvec->bv_page)) set_page_dirty_lock(bvec->bv_page); } } /* * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. * If they are, then fine. If, however, some pages are clean then they must * have been written out during the direct-IO read. So we take another ref on * the BIO and re-dirty the pages in process context. * * It is expected that bio_check_pages_dirty() will wholly own the BIO from * here on. It will run one put_page() against each page and will run one * bio_put() against the BIO. */ static void bio_dirty_fn(struct work_struct *work); static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); static DEFINE_SPINLOCK(bio_dirty_lock); static struct bio *bio_dirty_list; /* * This runs in process context */ static void bio_dirty_fn(struct work_struct *work) { struct bio *bio, *next; spin_lock_irq(&bio_dirty_lock); next = bio_dirty_list; bio_dirty_list = NULL; spin_unlock_irq(&bio_dirty_lock); while ((bio = next) != NULL) { next = bio->bi_private; bio_release_pages(bio, true); bio_put(bio); } } void bio_check_pages_dirty(struct bio *bio) { struct bio_vec *bvec; unsigned long flags; struct bvec_iter_all iter_all; bio_for_each_segment_all(bvec, bio, iter_all) { if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page)) goto defer; } bio_release_pages(bio, false); bio_put(bio); return; defer: spin_lock_irqsave(&bio_dirty_lock, flags); bio->bi_private = bio_dirty_list; bio_dirty_list = bio; spin_unlock_irqrestore(&bio_dirty_lock, flags); schedule_work(&bio_dirty_work); } static inline bool bio_remaining_done(struct bio *bio) { /* * If we're not chaining, then ->__bi_remaining is always 1 and * we always end io on the first invocation. */ if (!bio_flagged(bio, BIO_CHAIN)) return true; BUG_ON(atomic_read(&bio->__bi_remaining) <= 0); if (atomic_dec_and_test(&bio->__bi_remaining)) { bio_clear_flag(bio, BIO_CHAIN); return true; } return false; } /** * bio_endio - end I/O on a bio * @bio: bio * * Description: * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred * way to end I/O on a bio. No one should call bi_end_io() directly on a * bio unless they own it and thus know that it has an end_io function. * * bio_endio() can be called several times on a bio that has been chained * using bio_chain(). The ->bi_end_io() function will only be called the * last time. At this point the BLK_TA_COMPLETE tracing event will be * generated if BIO_TRACE_COMPLETION is set. **/ void bio_endio(struct bio *bio) { again: if (!bio_remaining_done(bio)) return; if (!bio_integrity_endio(bio)) return; if (bio->bi_disk) rq_qos_done_bio(bio->bi_disk->queue, bio); /* * Need to have a real endio function for chained bios, otherwise * various corner cases will break (like stacking block devices that * save/restore bi_end_io) - however, we want to avoid unbounded * recursion and blowing the stack. Tail call optimization would * handle this, but compiling with frame pointers also disables * gcc's sibling call optimization. */ if (bio->bi_end_io == bio_chain_endio) { bio = __bio_chain_endio(bio); goto again; } if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) { trace_block_bio_complete(bio->bi_disk->queue, bio); bio_clear_flag(bio, BIO_TRACE_COMPLETION); } blk_throtl_bio_endio(bio); /* release cgroup info */ bio_uninit(bio); if (bio->bi_end_io) bio->bi_end_io(bio); } EXPORT_SYMBOL(bio_endio); /** * bio_split - split a bio * @bio: bio to split * @sectors: number of sectors to split from the front of @bio * @gfp: gfp mask * @bs: bio set to allocate from * * Allocates and returns a new bio which represents @sectors from the start of * @bio, and updates @bio to represent the remaining sectors. * * Unless this is a discard request the newly allocated bio will point * to @bio's bi_io_vec. It is the caller's responsibility to ensure that * neither @bio nor @bs are freed before the split bio. */ struct bio *bio_split(struct bio *bio, int sectors, gfp_t gfp, struct bio_set *bs) { struct bio *split; BUG_ON(sectors <= 0); BUG_ON(sectors >= bio_sectors(bio)); /* Zone append commands cannot be split */ if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND)) return NULL; split = bio_clone_fast(bio, gfp, bs); if (!split) return NULL; split->bi_iter.bi_size = sectors << 9; if (bio_integrity(split)) bio_integrity_trim(split); bio_advance(bio, split->bi_iter.bi_size); if (bio_flagged(bio, BIO_TRACE_COMPLETION)) bio_set_flag(split, BIO_TRACE_COMPLETION); return split; } EXPORT_SYMBOL(bio_split); /** * bio_trim - trim a bio * @bio: bio to trim * @offset: number of sectors to trim from the front of @bio * @size: size we want to trim @bio to, in sectors */ void bio_trim(struct bio *bio, int offset, int size) { /* 'bio' is a cloned bio which we need to trim to match * the given offset and size. */ size <<= 9; if (offset == 0 && size == bio->bi_iter.bi_size) return; bio_advance(bio, offset << 9); bio->bi_iter.bi_size = size; if (bio_integrity(bio)) bio_integrity_trim(bio); } EXPORT_SYMBOL_GPL(bio_trim); /* * create memory pools for biovec's in a bio_set. * use the global biovec slabs created for general use. */ int biovec_init_pool(mempool_t *pool, int pool_entries) { struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX; return mempool_init_slab_pool(pool, pool_entries, bp->slab); } /* * bioset_exit - exit a bioset initialized with bioset_init() * * May be called on a zeroed but uninitialized bioset (i.e. allocated with * kzalloc()). */ void bioset_exit(struct bio_set *bs) { if (bs->rescue_workqueue) destroy_workqueue(bs->rescue_workqueue); bs->rescue_workqueue = NULL; mempool_exit(&bs->bio_pool); mempool_exit(&bs->bvec_pool); bioset_integrity_free(bs); if (bs->bio_slab) bio_put_slab(bs); bs->bio_slab = NULL; } EXPORT_SYMBOL(bioset_exit); /** * bioset_init - Initialize a bio_set * @bs: pool to initialize * @pool_size: Number of bio and bio_vecs to cache in the mempool * @front_pad: Number of bytes to allocate in front of the returned bio * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS * and %BIOSET_NEED_RESCUER * * Description: * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller * to ask for a number of bytes to be allocated in front of the bio. * Front pad allocation is useful for embedding the bio inside * another structure, to avoid allocating extra data to go with the bio. * Note that the bio must be embedded at the END of that structure always, * or things will break badly. * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast(). * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to * dispatch queued requests when the mempool runs out of space. * */ int bioset_init(struct bio_set *bs, unsigned int pool_size, unsigned int front_pad, int flags) { unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec); bs->front_pad = front_pad; spin_lock_init(&bs->rescue_lock); bio_list_init(&bs->rescue_list); INIT_WORK(&bs->rescue_work, bio_alloc_rescue); bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad); if (!bs->bio_slab) return -ENOMEM; if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab)) goto bad; if ((flags & BIOSET_NEED_BVECS) && biovec_init_pool(&bs->bvec_pool, pool_size)) goto bad; if (!(flags & BIOSET_NEED_RESCUER)) return 0; bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0); if (!bs->rescue_workqueue) goto bad; return 0; bad: bioset_exit(bs); return -ENOMEM; } EXPORT_SYMBOL(bioset_init); /* * Initialize and setup a new bio_set, based on the settings from * another bio_set. */ int bioset_init_from_src(struct bio_set *bs, struct bio_set *src) { int flags; flags = 0; if (src->bvec_pool.min_nr) flags |= BIOSET_NEED_BVECS; if (src->rescue_workqueue) flags |= BIOSET_NEED_RESCUER; return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags); } EXPORT_SYMBOL(bioset_init_from_src); static void __init biovec_init_slabs(void) { int i; for (i = 0; i < BVEC_POOL_NR; i++) { int size; struct biovec_slab *bvs = bvec_slabs + i; if (bvs->nr_vecs <= BIO_INLINE_VECS) { bvs->slab = NULL; continue; } size = bvs->nr_vecs * sizeof(struct bio_vec); bvs->slab = kmem_cache_create(bvs->name, size, 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL); } } static int __init init_bio(void) { bio_slab_max = 2; bio_slab_nr = 0; bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab), GFP_KERNEL); BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET); if (!bio_slabs) panic("bio: can't allocate bios\n"); bio_integrity_init(); biovec_init_slabs(); if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS)) panic("bio: can't allocate bios\n"); if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE)) panic("bio: can't create integrity pool\n"); return 0; } subsys_initcall(init_bio); |