Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
/*
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1994, 1995 Waldorf GmbH
 * Copyright (C) 1994 - 2000, 06 Ralf Baechle
 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
 * Copyright (C) 2004, 2005  MIPS Technologies, Inc.  All rights reserved.
 *	Author: Maciej W. Rozycki <macro@mips.com>
 */
#ifndef _ASM_IO_H
#define _ASM_IO_H

#define ARCH_HAS_IOREMAP_WC

#include <linux/compiler.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/irqflags.h>

#include <asm/addrspace.h>
#include <asm/barrier.h>
#include <asm/bug.h>
#include <asm/byteorder.h>
#include <asm/cpu.h>
#include <asm/cpu-features.h>
#include <asm-generic/iomap.h>
#include <asm/page.h>
#include <asm/pgtable-bits.h>
#include <asm/processor.h>
#include <asm/string.h>
#include <mangle-port.h>

/*
 * Raw operations are never swapped in software.  OTOH values that raw
 * operations are working on may or may not have been swapped by the bus
 * hardware.  An example use would be for flash memory that's used for
 * execute in place.
 */
# define __raw_ioswabb(a, x)	(x)
# define __raw_ioswabw(a, x)	(x)
# define __raw_ioswabl(a, x)	(x)
# define __raw_ioswabq(a, x)	(x)
# define ____raw_ioswabq(a, x)	(x)

# define __relaxed_ioswabb ioswabb
# define __relaxed_ioswabw ioswabw
# define __relaxed_ioswabl ioswabl
# define __relaxed_ioswabq ioswabq

/* ioswab[bwlq], __mem_ioswab[bwlq] are defined in mangle-port.h */

/*
 * On MIPS I/O ports are memory mapped, so we access them using normal
 * load/store instructions. mips_io_port_base is the virtual address to
 * which all ports are being mapped.  For sake of efficiency some code
 * assumes that this is an address that can be loaded with a single lui
 * instruction, so the lower 16 bits must be zero.  Should be true on
 * any sane architecture; generic code does not use this assumption.
 */
extern unsigned long mips_io_port_base;

static inline void set_io_port_base(unsigned long base)
{
	mips_io_port_base = base;
}

/*
 * Provide the necessary definitions for generic iomap. We make use of
 * mips_io_port_base for iomap(), but we don't reserve any low addresses for
 * use with I/O ports.
 */

#define HAVE_ARCH_PIO_SIZE
#define PIO_OFFSET	mips_io_port_base
#define PIO_MASK	IO_SPACE_LIMIT
#define PIO_RESERVED	0x0UL

/*
 * Enforce in-order execution of data I/O.  In the MIPS architecture
 * these are equivalent to corresponding platform-specific memory
 * barriers defined in <asm/barrier.h>.  API pinched from PowerPC,
 * with sync additionally defined.
 */
#define iobarrier_rw() mb()
#define iobarrier_r() rmb()
#define iobarrier_w() wmb()
#define iobarrier_sync() iob()

/*
 *     virt_to_phys    -       map virtual addresses to physical
 *     @address: address to remap
 *
 *     The returned physical address is the physical (CPU) mapping for
 *     the memory address given. It is only valid to use this function on
 *     addresses directly mapped or allocated via kmalloc.
 *
 *     This function does not give bus mappings for DMA transfers. In
 *     almost all conceivable cases a device driver should not be using
 *     this function
 */
static inline unsigned long virt_to_phys(volatile const void *address)
{
	return __pa(address);
}

/*
 *     phys_to_virt    -       map physical address to virtual
 *     @address: address to remap
 *
 *     The returned virtual address is a current CPU mapping for
 *     the memory address given. It is only valid to use this function on
 *     addresses that have a kernel mapping
 *
 *     This function does not handle bus mappings for DMA transfers. In
 *     almost all conceivable cases a device driver should not be using
 *     this function
 */
static inline void * phys_to_virt(unsigned long address)
{
	return (void *)(address + PAGE_OFFSET - PHYS_OFFSET);
}

/*
 * ISA I/O bus memory addresses are 1:1 with the physical address.
 */
static inline unsigned long isa_virt_to_bus(volatile void *address)
{
	return virt_to_phys(address);
}

static inline void *isa_bus_to_virt(unsigned long address)
{
	return phys_to_virt(address);
}

/*
 * However PCI ones are not necessarily 1:1 and therefore these interfaces
 * are forbidden in portable PCI drivers.
 *
 * Allow them for x86 for legacy drivers, though.
 */
#define virt_to_bus virt_to_phys
#define bus_to_virt phys_to_virt

/*
 * Change "struct page" to physical address.
 */
#define page_to_phys(page)	((dma_addr_t)page_to_pfn(page) << PAGE_SHIFT)

void __iomem *ioremap_prot(phys_addr_t offset, unsigned long size,
		unsigned long prot_val);
void iounmap(const volatile void __iomem *addr);

/*
 * ioremap     -   map bus memory into CPU space
 * @offset:    bus address of the memory
 * @size:      size of the resource to map
 *
 * ioremap performs a platform specific sequence of operations to
 * make bus memory CPU accessible via the readb/readw/readl/writeb/
 * writew/writel functions and the other mmio helpers. The returned
 * address is not guaranteed to be usable directly as a virtual
 * address.
 */
#define ioremap(offset, size)						\
	ioremap_prot((offset), (size), _CACHE_UNCACHED)
#define ioremap_uc		ioremap

/*
 * ioremap_cache -	map bus memory into CPU space
 * @offset:	    bus address of the memory
 * @size:	    size of the resource to map
 *
 * ioremap_cache performs a platform specific sequence of operations to
 * make bus memory CPU accessible via the readb/readw/readl/writeb/
 * writew/writel functions and the other mmio helpers. The returned
 * address is not guaranteed to be usable directly as a virtual
 * address.
 *
 * This version of ioremap ensures that the memory is marked cachable by
 * the CPU.  Also enables full write-combining.	 Useful for some
 * memory-like regions on I/O busses.
 */
#define ioremap_cache(offset, size)					\
	ioremap_prot((offset), (size), _page_cachable_default)

/*
 * ioremap_wc     -   map bus memory into CPU space
 * @offset:    bus address of the memory
 * @size:      size of the resource to map
 *
 * ioremap_wc performs a platform specific sequence of operations to
 * make bus memory CPU accessible via the readb/readw/readl/writeb/
 * writew/writel functions and the other mmio helpers. The returned
 * address is not guaranteed to be usable directly as a virtual
 * address.
 *
 * This version of ioremap ensures that the memory is marked uncachable
 * but accelerated by means of write-combining feature. It is specifically
 * useful for PCIe prefetchable windows, which may vastly improve a
 * communications performance. If it was determined on boot stage, what
 * CPU CCA doesn't support UCA, the method shall fall-back to the
 * _CACHE_UNCACHED option (see cpu_probe() method).
 */
#define ioremap_wc(offset, size)					\
	ioremap_prot((offset), (size), boot_cpu_data.writecombine)

#if defined(CONFIG_CPU_CAVIUM_OCTEON) || defined(CONFIG_CPU_LOONGSON64)
#define war_io_reorder_wmb()		wmb()
#else
#define war_io_reorder_wmb()		barrier()
#endif

#define __BUILD_MEMORY_SINGLE(pfx, bwlq, type, barrier, relax, irq)	\
									\
static inline void pfx##write##bwlq(type val,				\
				    volatile void __iomem *mem)		\
{									\
	volatile type *__mem;						\
	type __val;							\
									\
	if (barrier)							\
		iobarrier_rw();						\
	else								\
		war_io_reorder_wmb();					\
									\
	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
									\
	__val = pfx##ioswab##bwlq(__mem, val);				\
									\
	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
		*__mem = __val;						\
	else if (cpu_has_64bits) {					\
		unsigned long __flags;					\
		type __tmp;						\
									\
		if (irq)						\
			local_irq_save(__flags);			\
		__asm__ __volatile__(					\
			".set	push"		"\t\t# __writeq""\n\t"	\
			".set	arch=r4000"			"\n\t"	\
			"dsll32 %L0, %L0, 0"			"\n\t"	\
			"dsrl32 %L0, %L0, 0"			"\n\t"	\
			"dsll32 %M0, %M0, 0"			"\n\t"	\
			"or	%L0, %L0, %M0"			"\n\t"	\
			"sd	%L0, %2"			"\n\t"	\
			".set	pop"				"\n"	\
			: "=r" (__tmp)					\
			: "0" (__val), "m" (*__mem));			\
		if (irq)						\
			local_irq_restore(__flags);			\
	} else								\
		BUG();							\
}									\
									\
static inline type pfx##read##bwlq(const volatile void __iomem *mem)	\
{									\
	volatile type *__mem;						\
	type __val;							\
									\
	__mem = (void *)__swizzle_addr_##bwlq((unsigned long)(mem));	\
									\
	if (barrier)							\
		iobarrier_rw();						\
									\
	if (sizeof(type) != sizeof(u64) || sizeof(u64) == sizeof(long)) \
		__val = *__mem;						\
	else if (cpu_has_64bits) {					\
		unsigned long __flags;					\
									\
		if (irq)						\
			local_irq_save(__flags);			\
		__asm__ __volatile__(					\
			".set	push"		"\t\t# __readq" "\n\t"	\
			".set	arch=r4000"			"\n\t"	\
			"ld	%L0, %1"			"\n\t"	\
			"dsra32 %M0, %L0, 0"			"\n\t"	\
			"sll	%L0, %L0, 0"			"\n\t"	\
			".set	pop"				"\n"	\
			: "=r" (__val)					\
			: "m" (*__mem));				\
		if (irq)						\
			local_irq_restore(__flags);			\
	} else {							\
		__val = 0;						\
		BUG();							\
	}								\
									\
	/* prevent prefetching of coherent DMA data prematurely */	\
	if (!relax)							\
		rmb();							\
	return pfx##ioswab##bwlq(__mem, __val);				\
}

#define __BUILD_IOPORT_SINGLE(pfx, bwlq, type, barrier, relax, p)	\
									\
static inline void pfx##out##bwlq##p(type val, unsigned long port)	\
{									\
	volatile type *__addr;						\
	type __val;							\
									\
	if (barrier)							\
		iobarrier_rw();						\
	else								\
		war_io_reorder_wmb();					\
									\
	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
									\
	__val = pfx##ioswab##bwlq(__addr, val);				\
									\
	/* Really, we want this to be atomic */				\
	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
									\
	*__addr = __val;						\
}									\
									\
static inline type pfx##in##bwlq##p(unsigned long port)			\
{									\
	volatile type *__addr;						\
	type __val;							\
									\
	__addr = (void *)__swizzle_addr_##bwlq(mips_io_port_base + port); \
									\
	BUILD_BUG_ON(sizeof(type) > sizeof(unsigned long));		\
									\
	if (barrier)							\
		iobarrier_rw();						\
									\
	__val = *__addr;						\
									\
	/* prevent prefetching of coherent DMA data prematurely */	\
	if (!relax)							\
		rmb();							\
	return pfx##ioswab##bwlq(__addr, __val);			\
}

#define __BUILD_MEMORY_PFX(bus, bwlq, type, relax)			\
									\
__BUILD_MEMORY_SINGLE(bus, bwlq, type, 1, relax, 1)

#define BUILDIO_MEM(bwlq, type)						\
									\
__BUILD_MEMORY_PFX(__raw_, bwlq, type, 0)				\
__BUILD_MEMORY_PFX(__relaxed_, bwlq, type, 1)				\
__BUILD_MEMORY_PFX(__mem_, bwlq, type, 0)				\
__BUILD_MEMORY_PFX(, bwlq, type, 0)

BUILDIO_MEM(b, u8)
BUILDIO_MEM(w, u16)
BUILDIO_MEM(l, u32)
#ifdef CONFIG_64BIT
BUILDIO_MEM(q, u64)
#else
__BUILD_MEMORY_PFX(__raw_, q, u64, 0)
__BUILD_MEMORY_PFX(__mem_, q, u64, 0)
#endif

#define __BUILD_IOPORT_PFX(bus, bwlq, type)				\
	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0,)			\
	__BUILD_IOPORT_SINGLE(bus, bwlq, type, 1, 0, _p)

#define BUILDIO_IOPORT(bwlq, type)					\
	__BUILD_IOPORT_PFX(, bwlq, type)				\
	__BUILD_IOPORT_PFX(__mem_, bwlq, type)

BUILDIO_IOPORT(b, u8)
BUILDIO_IOPORT(w, u16)
BUILDIO_IOPORT(l, u32)
#ifdef CONFIG_64BIT
BUILDIO_IOPORT(q, u64)
#endif

#define __BUILDIO(bwlq, type)						\
									\
__BUILD_MEMORY_SINGLE(____raw_, bwlq, type, 1, 0, 0)

__BUILDIO(q, u64)

#define readb_relaxed			__relaxed_readb
#define readw_relaxed			__relaxed_readw
#define readl_relaxed			__relaxed_readl
#ifdef CONFIG_64BIT
#define readq_relaxed			__relaxed_readq
#endif

#define writeb_relaxed			__relaxed_writeb
#define writew_relaxed			__relaxed_writew
#define writel_relaxed			__relaxed_writel
#ifdef CONFIG_64BIT
#define writeq_relaxed			__relaxed_writeq
#endif

#define readb_be(addr)							\
	__raw_readb((__force unsigned *)(addr))
#define readw_be(addr)							\
	be16_to_cpu(__raw_readw((__force unsigned *)(addr)))
#define readl_be(addr)							\
	be32_to_cpu(__raw_readl((__force unsigned *)(addr)))
#define readq_be(addr)							\
	be64_to_cpu(__raw_readq((__force unsigned *)(addr)))

#define writeb_be(val, addr)						\
	__raw_writeb((val), (__force unsigned *)(addr))
#define writew_be(val, addr)						\
	__raw_writew(cpu_to_be16((val)), (__force unsigned *)(addr))
#define writel_be(val, addr)						\
	__raw_writel(cpu_to_be32((val)), (__force unsigned *)(addr))
#define writeq_be(val, addr)						\
	__raw_writeq(cpu_to_be64((val)), (__force unsigned *)(addr))

/*
 * Some code tests for these symbols
 */
#ifdef CONFIG_64BIT
#define readq				readq
#define writeq				writeq
#endif

#define __BUILD_MEMORY_STRING(bwlq, type)				\
									\
static inline void writes##bwlq(volatile void __iomem *mem,		\
				const void *addr, unsigned int count)	\
{									\
	const volatile type *__addr = addr;				\
									\
	while (count--) {						\
		__mem_write##bwlq(*__addr, mem);			\
		__addr++;						\
	}								\
}									\
									\
static inline void reads##bwlq(volatile void __iomem *mem, void *addr,	\
			       unsigned int count)			\
{									\
	volatile type *__addr = addr;					\
									\
	while (count--) {						\
		*__addr = __mem_read##bwlq(mem);			\
		__addr++;						\
	}								\
}

#define __BUILD_IOPORT_STRING(bwlq, type)				\
									\
static inline void outs##bwlq(unsigned long port, const void *addr,	\
			      unsigned int count)			\
{									\
	const volatile type *__addr = addr;				\
									\
	while (count--) {						\
		__mem_out##bwlq(*__addr, port);				\
		__addr++;						\
	}								\
}									\
									\
static inline void ins##bwlq(unsigned long port, void *addr,		\
			     unsigned int count)			\
{									\
	volatile type *__addr = addr;					\
									\
	while (count--) {						\
		*__addr = __mem_in##bwlq(port);				\
		__addr++;						\
	}								\
}

#define BUILDSTRING(bwlq, type)						\
									\
__BUILD_MEMORY_STRING(bwlq, type)					\
__BUILD_IOPORT_STRING(bwlq, type)

BUILDSTRING(b, u8)
BUILDSTRING(w, u16)
BUILDSTRING(l, u32)
#ifdef CONFIG_64BIT
BUILDSTRING(q, u64)
#endif

static inline void memset_io(volatile void __iomem *addr, unsigned char val, int count)
{
	memset((void __force *) addr, val, count);
}
static inline void memcpy_fromio(void *dst, const volatile void __iomem *src, int count)
{
	memcpy(dst, (void __force *) src, count);
}
static inline void memcpy_toio(volatile void __iomem *dst, const void *src, int count)
{
	memcpy((void __force *) dst, src, count);
}

/*
 * The caches on some architectures aren't dma-coherent and have need to
 * handle this in software.  There are three types of operations that
 * can be applied to dma buffers.
 *
 *  - dma_cache_wback_inv(start, size) makes caches and coherent by
 *    writing the content of the caches back to memory, if necessary.
 *    The function also invalidates the affected part of the caches as
 *    necessary before DMA transfers from outside to memory.
 *  - dma_cache_wback(start, size) makes caches and coherent by
 *    writing the content of the caches back to memory, if necessary.
 *    The function also invalidates the affected part of the caches as
 *    necessary before DMA transfers from outside to memory.
 *  - dma_cache_inv(start, size) invalidates the affected parts of the
 *    caches.  Dirty lines of the caches may be written back or simply
 *    be discarded.  This operation is necessary before dma operations
 *    to the memory.
 *
 * This API used to be exported; it now is for arch code internal use only.
 */
#ifdef CONFIG_DMA_NONCOHERENT

extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);

#define dma_cache_wback_inv(start, size)	_dma_cache_wback_inv(start, size)
#define dma_cache_wback(start, size)		_dma_cache_wback(start, size)
#define dma_cache_inv(start, size)		_dma_cache_inv(start, size)

#else /* Sane hardware */

#define dma_cache_wback_inv(start,size) \
	do { (void) (start); (void) (size); } while (0)
#define dma_cache_wback(start,size)	\
	do { (void) (start); (void) (size); } while (0)
#define dma_cache_inv(start,size)	\
	do { (void) (start); (void) (size); } while (0)

#endif /* CONFIG_DMA_NONCOHERENT */

/*
 * Read a 32-bit register that requires a 64-bit read cycle on the bus.
 * Avoid interrupt mucking, just adjust the address for 4-byte access.
 * Assume the addresses are 8-byte aligned.
 */
#ifdef __MIPSEB__
#define __CSR_32_ADJUST 4
#else
#define __CSR_32_ADJUST 0
#endif

#define csr_out32(v, a) (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST) = (v))
#define csr_in32(a)    (*(volatile u32 *)((unsigned long)(a) + __CSR_32_ADJUST))

/*
 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
 * access
 */
#define xlate_dev_mem_ptr(p)	__va(p)

/*
 * Convert a virtual cached pointer to an uncached pointer
 */
#define xlate_dev_kmem_ptr(p)	p

void __ioread64_copy(void *to, const void __iomem *from, size_t count);

#endif /* _ASM_IO_H */