Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 | // SPDX-License-Identifier: GPL-2.0 /* * temp.c Thermal management for cpu's with Thermal Assist Units * * Written by Troy Benjegerdes <hozer@drgw.net> * * TODO: * dynamic power management to limit peak CPU temp (using ICTC) * calibration??? * * Silly, crazy ideas: use cpu load (from scheduler) and ICTC to extend battery * life in portables, and add a 'performance/watt' metric somewhere in /proc */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/workqueue.h> #include <asm/io.h> #include <asm/reg.h> #include <asm/nvram.h> #include <asm/cache.h> #include <asm/8xx_immap.h> #include <asm/machdep.h> #include <asm/asm-prototypes.h> #include "setup.h" static struct tau_temp { int interrupts; unsigned char low; unsigned char high; unsigned char grew; } tau[NR_CPUS]; static bool tau_int_enable; /* TODO: put these in a /proc interface, with some sanity checks, and maybe * dynamic adjustment to minimize # of interrupts */ /* configurable values for step size and how much to expand the window when * we get an interrupt. These are based on the limit that was out of range */ #define step_size 2 /* step size when temp goes out of range */ #define window_expand 1 /* expand the window by this much */ /* configurable values for shrinking the window */ #define shrink_timer 2000 /* period between shrinking the window */ #define min_window 2 /* minimum window size, degrees C */ static void set_thresholds(unsigned long cpu) { u32 maybe_tie = tau_int_enable ? THRM1_TIE : 0; /* setup THRM1, threshold, valid bit, interrupt when below threshold */ mtspr(SPRN_THRM1, THRM1_THRES(tau[cpu].low) | THRM1_V | maybe_tie | THRM1_TID); /* setup THRM2, threshold, valid bit, interrupt when above threshold */ mtspr(SPRN_THRM2, THRM1_THRES(tau[cpu].high) | THRM1_V | maybe_tie); } static void TAUupdate(int cpu) { u32 thrm; u32 bits = THRM1_TIV | THRM1_TIN | THRM1_V; /* if both thresholds are crossed, the step_sizes cancel out * and the window winds up getting expanded twice. */ thrm = mfspr(SPRN_THRM1); if ((thrm & bits) == bits) { mtspr(SPRN_THRM1, 0); if (tau[cpu].low >= step_size) { tau[cpu].low -= step_size; tau[cpu].high -= (step_size - window_expand); } tau[cpu].grew = 1; pr_debug("%s: low threshold crossed\n", __func__); } thrm = mfspr(SPRN_THRM2); if ((thrm & bits) == bits) { mtspr(SPRN_THRM2, 0); if (tau[cpu].high <= 127 - step_size) { tau[cpu].low += (step_size - window_expand); tau[cpu].high += step_size; } tau[cpu].grew = 1; pr_debug("%s: high threshold crossed\n", __func__); } } #ifdef CONFIG_TAU_INT /* * TAU interrupts - called when we have a thermal assist unit interrupt * with interrupts disabled */ void TAUException(struct pt_regs * regs) { int cpu = smp_processor_id(); irq_enter(); tau[cpu].interrupts++; TAUupdate(cpu); irq_exit(); } #endif /* CONFIG_TAU_INT */ static void tau_timeout(void * info) { int cpu; int size; int shrink; cpu = smp_processor_id(); if (!tau_int_enable) TAUupdate(cpu); /* Stop thermal sensor comparisons and interrupts */ mtspr(SPRN_THRM3, 0); size = tau[cpu].high - tau[cpu].low; if (size > min_window && ! tau[cpu].grew) { /* do an exponential shrink of half the amount currently over size */ shrink = (2 + size - min_window) / 4; if (shrink) { tau[cpu].low += shrink; tau[cpu].high -= shrink; } else { /* size must have been min_window + 1 */ tau[cpu].low += 1; #if 1 /* debug */ if ((tau[cpu].high - tau[cpu].low) != min_window){ printk(KERN_ERR "temp.c: line %d, logic error\n", __LINE__); } #endif } } tau[cpu].grew = 0; set_thresholds(cpu); /* Restart thermal sensor comparisons and interrupts. * The "PowerPC 740 and PowerPC 750 Microprocessor Datasheet" * recommends that "the maximum value be set in THRM3 under all * conditions." */ mtspr(SPRN_THRM3, THRM3_SITV(0x1fff) | THRM3_E); } static struct workqueue_struct *tau_workq; static void tau_work_func(struct work_struct *work) { msleep(shrink_timer); on_each_cpu(tau_timeout, NULL, 0); /* schedule ourselves to be run again */ queue_work(tau_workq, work); } DECLARE_WORK(tau_work, tau_work_func); /* * setup the TAU * * Set things up to use THRM1 as a temperature lower bound, and THRM2 as an upper bound. * Start off at zero */ int tau_initialized = 0; static void __init TAU_init_smp(void *info) { unsigned long cpu = smp_processor_id(); /* set these to a reasonable value and let the timer shrink the * window */ tau[cpu].low = 5; tau[cpu].high = 120; set_thresholds(cpu); } static int __init TAU_init(void) { /* We assume in SMP that if one CPU has TAU support, they * all have it --BenH */ if (!cpu_has_feature(CPU_FTR_TAU)) { printk("Thermal assist unit not available\n"); tau_initialized = 0; return 1; } tau_int_enable = IS_ENABLED(CONFIG_TAU_INT) && !strcmp(cur_cpu_spec->platform, "ppc750"); tau_workq = alloc_workqueue("tau", WQ_UNBOUND, 1, 0); if (!tau_workq) return -ENOMEM; on_each_cpu(TAU_init_smp, NULL, 0); queue_work(tau_workq, &tau_work); pr_info("Thermal assist unit using %s, shrink_timer: %d ms\n", tau_int_enable ? "interrupts" : "workqueue", shrink_timer); tau_initialized = 1; return 0; } __initcall(TAU_init); /* * return current temp */ u32 cpu_temp_both(unsigned long cpu) { return ((tau[cpu].high << 16) | tau[cpu].low); } u32 cpu_temp(unsigned long cpu) { return ((tau[cpu].high + tau[cpu].low) / 2); } u32 tau_interrupts(unsigned long cpu) { return (tau[cpu].interrupts); } |