Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 | // SPDX-License-Identifier: GPL-2.0 /* * temp.c Thermal management for cpu's with Thermal Assist Units * * Written by Troy Benjegerdes <hozer@drgw.net> * * TODO: * dynamic power management to limit peak CPU temp (using ICTC) * calibration??? * * Silly, crazy ideas: use cpu load (from scheduler) and ICTC to extend battery * life in portables, and add a 'performance/watt' metric somewhere in /proc */ #include <linux/errno.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/param.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/interrupt.h> #include <linux/init.h> #include <asm/io.h> #include <asm/reg.h> #include <asm/nvram.h> #include <asm/cache.h> #include <asm/8xx_immap.h> #include <asm/machdep.h> static struct tau_temp { int interrupts; unsigned char low; unsigned char high; unsigned char grew; } tau[NR_CPUS]; struct timer_list tau_timer; #undef DEBUG /* TODO: put these in a /proc interface, with some sanity checks, and maybe * dynamic adjustment to minimize # of interrupts */ /* configurable values for step size and how much to expand the window when * we get an interrupt. These are based on the limit that was out of range */ #define step_size 2 /* step size when temp goes out of range */ #define window_expand 1 /* expand the window by this much */ /* configurable values for shrinking the window */ #define shrink_timer 2*HZ /* period between shrinking the window */ #define min_window 2 /* minimum window size, degrees C */ void set_thresholds(unsigned long cpu) { #ifdef CONFIG_TAU_INT /* * setup THRM1, * threshold, valid bit, enable interrupts, interrupt when below threshold */ mtspr(SPRN_THRM1, THRM1_THRES(tau[cpu].low) | THRM1_V | THRM1_TIE | THRM1_TID); /* setup THRM2, * threshold, valid bit, enable interrupts, interrupt when above threshold */ mtspr (SPRN_THRM2, THRM1_THRES(tau[cpu].high) | THRM1_V | THRM1_TIE); #else /* same thing but don't enable interrupts */ mtspr(SPRN_THRM1, THRM1_THRES(tau[cpu].low) | THRM1_V | THRM1_TID); mtspr(SPRN_THRM2, THRM1_THRES(tau[cpu].high) | THRM1_V); #endif } void TAUupdate(int cpu) { unsigned thrm; #ifdef DEBUG printk("TAUupdate "); #endif /* if both thresholds are crossed, the step_sizes cancel out * and the window winds up getting expanded twice. */ if((thrm = mfspr(SPRN_THRM1)) & THRM1_TIV){ /* is valid? */ if(thrm & THRM1_TIN){ /* crossed low threshold */ if (tau[cpu].low >= step_size){ tau[cpu].low -= step_size; tau[cpu].high -= (step_size - window_expand); } tau[cpu].grew = 1; #ifdef DEBUG printk("low threshold crossed "); #endif } } if((thrm = mfspr(SPRN_THRM2)) & THRM1_TIV){ /* is valid? */ if(thrm & THRM1_TIN){ /* crossed high threshold */ if (tau[cpu].high <= 127-step_size){ tau[cpu].low += (step_size - window_expand); tau[cpu].high += step_size; } tau[cpu].grew = 1; #ifdef DEBUG printk("high threshold crossed "); #endif } } #ifdef DEBUG printk("grew = %d\n", tau[cpu].grew); #endif #ifndef CONFIG_TAU_INT /* tau_timeout will do this if not using interrupts */ set_thresholds(cpu); #endif } #ifdef CONFIG_TAU_INT /* * TAU interrupts - called when we have a thermal assist unit interrupt * with interrupts disabled */ void TAUException(struct pt_regs * regs) { int cpu = smp_processor_id(); irq_enter(); tau[cpu].interrupts++; TAUupdate(cpu); irq_exit(); } #endif /* CONFIG_TAU_INT */ static void tau_timeout(void * info) { int cpu; unsigned long flags; int size; int shrink; /* disabling interrupts *should* be okay */ local_irq_save(flags); cpu = smp_processor_id(); #ifndef CONFIG_TAU_INT TAUupdate(cpu); #endif size = tau[cpu].high - tau[cpu].low; if (size > min_window && ! tau[cpu].grew) { /* do an exponential shrink of half the amount currently over size */ shrink = (2 + size - min_window) / 4; if (shrink) { tau[cpu].low += shrink; tau[cpu].high -= shrink; } else { /* size must have been min_window + 1 */ tau[cpu].low += 1; #if 1 /* debug */ if ((tau[cpu].high - tau[cpu].low) != min_window){ printk(KERN_ERR "temp.c: line %d, logic error\n", __LINE__); } #endif } } tau[cpu].grew = 0; set_thresholds(cpu); /* * Do the enable every time, since otherwise a bunch of (relatively) * complex sleep code needs to be added. One mtspr every time * tau_timeout is called is probably not a big deal. * * Enable thermal sensor and set up sample interval timer * need 20 us to do the compare.. until a nice 'cpu_speed' function * call is implemented, just assume a 500 mhz clock. It doesn't really * matter if we take too long for a compare since it's all interrupt * driven anyway. * * use a extra long time.. (60 us @ 500 mhz) */ mtspr(SPRN_THRM3, THRM3_SITV(500*60) | THRM3_E); local_irq_restore(flags); } static void tau_timeout_smp(unsigned long unused) { /* schedule ourselves to be run again */ mod_timer(&tau_timer, jiffies + shrink_timer) ; on_each_cpu(tau_timeout, NULL, 0); } /* * setup the TAU * * Set things up to use THRM1 as a temperature lower bound, and THRM2 as an upper bound. * Start off at zero */ int tau_initialized = 0; void __init TAU_init_smp(void * info) { unsigned long cpu = smp_processor_id(); /* set these to a reasonable value and let the timer shrink the * window */ tau[cpu].low = 5; tau[cpu].high = 120; set_thresholds(cpu); } int __init TAU_init(void) { /* We assume in SMP that if one CPU has TAU support, they * all have it --BenH */ if (!cpu_has_feature(CPU_FTR_TAU)) { printk("Thermal assist unit not available\n"); tau_initialized = 0; return 1; } /* first, set up the window shrinking timer */ init_timer(&tau_timer); tau_timer.function = tau_timeout_smp; tau_timer.expires = jiffies + shrink_timer; add_timer(&tau_timer); on_each_cpu(TAU_init_smp, NULL, 0); printk("Thermal assist unit "); #ifdef CONFIG_TAU_INT printk("using interrupts, "); #else printk("using timers, "); #endif printk("shrink_timer: %d jiffies\n", shrink_timer); tau_initialized = 1; return 0; } __initcall(TAU_init); /* * return current temp */ u32 cpu_temp_both(unsigned long cpu) { return ((tau[cpu].high << 16) | tau[cpu].low); } int cpu_temp(unsigned long cpu) { return ((tau[cpu].high + tau[cpu].low) / 2); } int tau_interrupts(unsigned long cpu) { return (tau[cpu].interrupts); } |