Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 | // SPDX-License-Identifier: GPL-2.0-or-later /* * Broadcom Starfighter 2 DSA switch CFP support * * Copyright (C) 2016, Broadcom */ #include <linux/list.h> #include <linux/ethtool.h> #include <linux/if_ether.h> #include <linux/in.h> #include <linux/netdevice.h> #include <net/dsa.h> #include <linux/bitmap.h> #include <net/flow_offload.h> #include <net/switchdev.h> #include <uapi/linux/if_bridge.h> #include "bcm_sf2.h" #include "bcm_sf2_regs.h" struct cfp_rule { int port; struct ethtool_rx_flow_spec fs; struct list_head next; }; struct cfp_udf_slice_layout { u8 slices[UDFS_PER_SLICE]; u32 mask_value; u32 base_offset; }; struct cfp_udf_layout { struct cfp_udf_slice_layout udfs[UDF_NUM_SLICES]; }; static const u8 zero_slice[UDFS_PER_SLICE] = { }; /* UDF slices layout for a TCPv4/UDPv4 specification */ static const struct cfp_udf_layout udf_tcpip4_layout = { .udfs = { [1] = { .slices = { /* End of L2, byte offset 12, src IP[0:15] */ CFG_UDF_EOL2 | 6, /* End of L2, byte offset 14, src IP[16:31] */ CFG_UDF_EOL2 | 7, /* End of L2, byte offset 16, dst IP[0:15] */ CFG_UDF_EOL2 | 8, /* End of L2, byte offset 18, dst IP[16:31] */ CFG_UDF_EOL2 | 9, /* End of L3, byte offset 0, src port */ CFG_UDF_EOL3 | 0, /* End of L3, byte offset 2, dst port */ CFG_UDF_EOL3 | 1, 0, 0, 0 }, .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, .base_offset = CORE_UDF_0_A_0_8_PORT_0 + UDF_SLICE_OFFSET, }, }, }; /* UDF slices layout for a TCPv6/UDPv6 specification */ static const struct cfp_udf_layout udf_tcpip6_layout = { .udfs = { [0] = { .slices = { /* End of L2, byte offset 8, src IP[0:15] */ CFG_UDF_EOL2 | 4, /* End of L2, byte offset 10, src IP[16:31] */ CFG_UDF_EOL2 | 5, /* End of L2, byte offset 12, src IP[32:47] */ CFG_UDF_EOL2 | 6, /* End of L2, byte offset 14, src IP[48:63] */ CFG_UDF_EOL2 | 7, /* End of L2, byte offset 16, src IP[64:79] */ CFG_UDF_EOL2 | 8, /* End of L2, byte offset 18, src IP[80:95] */ CFG_UDF_EOL2 | 9, /* End of L2, byte offset 20, src IP[96:111] */ CFG_UDF_EOL2 | 10, /* End of L2, byte offset 22, src IP[112:127] */ CFG_UDF_EOL2 | 11, /* End of L3, byte offset 0, src port */ CFG_UDF_EOL3 | 0, }, .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, .base_offset = CORE_UDF_0_B_0_8_PORT_0, }, [3] = { .slices = { /* End of L2, byte offset 24, dst IP[0:15] */ CFG_UDF_EOL2 | 12, /* End of L2, byte offset 26, dst IP[16:31] */ CFG_UDF_EOL2 | 13, /* End of L2, byte offset 28, dst IP[32:47] */ CFG_UDF_EOL2 | 14, /* End of L2, byte offset 30, dst IP[48:63] */ CFG_UDF_EOL2 | 15, /* End of L2, byte offset 32, dst IP[64:79] */ CFG_UDF_EOL2 | 16, /* End of L2, byte offset 34, dst IP[80:95] */ CFG_UDF_EOL2 | 17, /* End of L2, byte offset 36, dst IP[96:111] */ CFG_UDF_EOL2 | 18, /* End of L2, byte offset 38, dst IP[112:127] */ CFG_UDF_EOL2 | 19, /* End of L3, byte offset 2, dst port */ CFG_UDF_EOL3 | 1, }, .mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG, .base_offset = CORE_UDF_0_D_0_11_PORT_0, }, }, }; static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout) { unsigned int i, count = 0; for (i = 0; i < UDFS_PER_SLICE; i++) { if (layout[i] != 0) count++; } return count; } static inline u32 udf_upper_bits(int num_udf) { return GENMASK(num_udf - 1, 0) >> (UDFS_PER_SLICE - 1); } static inline u32 udf_lower_bits(int num_udf) { return (u8)GENMASK(num_udf - 1, 0); } static unsigned int bcm_sf2_get_slice_number(const struct cfp_udf_layout *l, unsigned int start) { const struct cfp_udf_slice_layout *slice_layout; unsigned int slice_idx; for (slice_idx = start; slice_idx < UDF_NUM_SLICES; slice_idx++) { slice_layout = &l->udfs[slice_idx]; if (memcmp(slice_layout->slices, zero_slice, sizeof(zero_slice))) break; } return slice_idx; } static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv, const struct cfp_udf_layout *layout, unsigned int slice_num) { u32 offset = layout->udfs[slice_num].base_offset; unsigned int i; for (i = 0; i < UDFS_PER_SLICE; i++) core_writel(priv, layout->udfs[slice_num].slices[i], offset + i * 4); } static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op) { unsigned int timeout = 1000; u32 reg; reg = core_readl(priv, CORE_CFP_ACC); reg &= ~(OP_SEL_MASK | RAM_SEL_MASK); reg |= OP_STR_DONE | op; core_writel(priv, reg, CORE_CFP_ACC); do { reg = core_readl(priv, CORE_CFP_ACC); if (!(reg & OP_STR_DONE)) break; cpu_relax(); } while (timeout--); if (!timeout) return -ETIMEDOUT; return 0; } static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv, unsigned int addr) { u32 reg; WARN_ON(addr >= priv->num_cfp_rules); reg = core_readl(priv, CORE_CFP_ACC); reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT); reg |= addr << XCESS_ADDR_SHIFT; core_writel(priv, reg, CORE_CFP_ACC); } static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv) { /* Entry #0 is reserved */ return priv->num_cfp_rules - 1; } static int bcm_sf2_cfp_act_pol_set(struct bcm_sf2_priv *priv, unsigned int rule_index, int src_port, unsigned int port_num, unsigned int queue_num, bool fwd_map_change) { int ret; u32 reg; /* Replace ARL derived destination with DST_MAP derived, define * which port and queue this should be forwarded to. */ if (fwd_map_change) reg = CHANGE_FWRD_MAP_IB_REP_ARL | BIT(port_num + DST_MAP_IB_SHIFT) | CHANGE_TC | queue_num << NEW_TC_SHIFT; else reg = 0; /* Enable looping back to the original port */ if (src_port == port_num) reg |= LOOP_BK_EN; core_writel(priv, reg, CORE_ACT_POL_DATA0); /* Set classification ID that needs to be put in Broadcom tag */ core_writel(priv, rule_index << CHAIN_ID_SHIFT, CORE_ACT_POL_DATA1); core_writel(priv, 0, CORE_ACT_POL_DATA2); /* Configure policer RAM now */ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM); if (ret) { pr_err("Policer entry at %d failed\n", rule_index); return ret; } /* Disable the policer */ core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0); /* Now the rate meter */ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM); if (ret) { pr_err("Meter entry at %d failed\n", rule_index); return ret; } return 0; } static void bcm_sf2_cfp_slice_ipv4(struct bcm_sf2_priv *priv, struct flow_dissector_key_ipv4_addrs *addrs, struct flow_dissector_key_ports *ports, const __be16 vlan_tci, unsigned int slice_num, u8 num_udf, bool mask) { u32 reg, offset; /* UDF_Valid[7:0] [31:24] * S-Tag [23:8] * C-Tag [7:0] */ reg = udf_lower_bits(num_udf) << 24 | be16_to_cpu(vlan_tci) >> 8; if (mask) core_writel(priv, reg, CORE_CFP_MASK_PORT(5)); else core_writel(priv, reg, CORE_CFP_DATA_PORT(5)); /* C-Tag [31:24] * UDF_n_A8 [23:8] * UDF_n_A7 [7:0] */ reg = (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24; if (mask) offset = CORE_CFP_MASK_PORT(4); else offset = CORE_CFP_DATA_PORT(4); core_writel(priv, reg, offset); /* UDF_n_A7 [31:24] * UDF_n_A6 [23:8] * UDF_n_A5 [7:0] */ reg = be16_to_cpu(ports->dst) >> 8; if (mask) offset = CORE_CFP_MASK_PORT(3); else offset = CORE_CFP_DATA_PORT(3); core_writel(priv, reg, offset); /* UDF_n_A5 [31:24] * UDF_n_A4 [23:8] * UDF_n_A3 [7:0] */ reg = (be16_to_cpu(ports->dst) & 0xff) << 24 | (u32)be16_to_cpu(ports->src) << 8 | (be32_to_cpu(addrs->dst) & 0x0000ff00) >> 8; if (mask) offset = CORE_CFP_MASK_PORT(2); else offset = CORE_CFP_DATA_PORT(2); core_writel(priv, reg, offset); /* UDF_n_A3 [31:24] * UDF_n_A2 [23:8] * UDF_n_A1 [7:0] */ reg = (u32)(be32_to_cpu(addrs->dst) & 0xff) << 24 | (u32)(be32_to_cpu(addrs->dst) >> 16) << 8 | (be32_to_cpu(addrs->src) & 0x0000ff00) >> 8; if (mask) offset = CORE_CFP_MASK_PORT(1); else offset = CORE_CFP_DATA_PORT(1); core_writel(priv, reg, offset); /* UDF_n_A1 [31:24] * UDF_n_A0 [23:8] * Reserved [7:4] * Slice ID [3:2] * Slice valid [1:0] */ reg = (u32)(be32_to_cpu(addrs->src) & 0xff) << 24 | (u32)(be32_to_cpu(addrs->src) >> 16) << 8 | SLICE_NUM(slice_num) | SLICE_VALID; if (mask) offset = CORE_CFP_MASK_PORT(0); else offset = CORE_CFP_DATA_PORT(0); core_writel(priv, reg, offset); } static int bcm_sf2_cfp_ipv4_rule_set(struct bcm_sf2_priv *priv, int port, unsigned int port_num, unsigned int queue_num, struct ethtool_rx_flow_spec *fs) { __be16 vlan_tci = 0, vlan_m_tci = htons(0xffff); struct ethtool_rx_flow_spec_input input = {}; const struct cfp_udf_layout *layout; unsigned int slice_num, rule_index; struct ethtool_rx_flow_rule *flow; struct flow_match_ipv4_addrs ipv4; struct flow_match_ports ports; struct flow_match_ip ip; u8 ip_proto, ip_frag; u8 num_udf; u32 reg; int ret; switch (fs->flow_type & ~FLOW_EXT) { case TCP_V4_FLOW: ip_proto = IPPROTO_TCP; break; case UDP_V4_FLOW: ip_proto = IPPROTO_UDP; break; default: return -EINVAL; } ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1); /* Extract VLAN TCI */ if (fs->flow_type & FLOW_EXT) { vlan_tci = fs->h_ext.vlan_tci; vlan_m_tci = fs->m_ext.vlan_tci; } /* Locate the first rule available */ if (fs->location == RX_CLS_LOC_ANY) rule_index = find_first_zero_bit(priv->cfp.used, priv->num_cfp_rules); else rule_index = fs->location; if (rule_index > bcm_sf2_cfp_rule_size(priv)) return -ENOSPC; input.fs = fs; flow = ethtool_rx_flow_rule_create(&input); if (IS_ERR(flow)) return PTR_ERR(flow); flow_rule_match_ipv4_addrs(flow->rule, &ipv4); flow_rule_match_ports(flow->rule, &ports); flow_rule_match_ip(flow->rule, &ip); layout = &udf_tcpip4_layout; /* We only use one UDF slice for now */ slice_num = bcm_sf2_get_slice_number(layout, 0); if (slice_num == UDF_NUM_SLICES) { ret = -EINVAL; goto out_err_flow_rule; } num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); /* Apply the UDF layout for this filter */ bcm_sf2_cfp_udf_set(priv, layout, slice_num); /* Apply to all packets received through this port */ core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); /* Source port map match */ core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); /* S-Tag status [31:30] * C-Tag status [29:28] * L2 framing [27:26] * L3 framing [25:24] * IP ToS [23:16] * IP proto [15:08] * IP Fragm [7] * Non 1st frag [6] * IP Authen [5] * TTL range [4:3] * PPPoE session [2] * Reserved [1] * UDF_Valid[8] [0] */ core_writel(priv, ip.key->tos << IPTOS_SHIFT | ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf), CORE_CFP_DATA_PORT(6)); /* Mask with the specific layout for IPv4 packets */ core_writel(priv, layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf), CORE_CFP_MASK_PORT(6)); /* Program the match and the mask */ bcm_sf2_cfp_slice_ipv4(priv, ipv4.key, ports.key, vlan_tci, slice_num, num_udf, false); bcm_sf2_cfp_slice_ipv4(priv, ipv4.mask, ports.mask, vlan_m_tci, SLICE_NUM_MASK, num_udf, true); /* Insert into TCAM now */ bcm_sf2_cfp_rule_addr_set(priv, rule_index); ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); if (ret) { pr_err("TCAM entry at addr %d failed\n", rule_index); goto out_err_flow_rule; } /* Insert into Action and policer RAMs now */ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index, port, port_num, queue_num, true); if (ret) goto out_err_flow_rule; /* Turn on CFP for this rule now */ reg = core_readl(priv, CORE_CFP_CTL_REG); reg |= BIT(port); core_writel(priv, reg, CORE_CFP_CTL_REG); /* Flag the rule as being used and return it */ set_bit(rule_index, priv->cfp.used); set_bit(rule_index, priv->cfp.unique); fs->location = rule_index; return 0; out_err_flow_rule: ethtool_rx_flow_rule_destroy(flow); return ret; } static void bcm_sf2_cfp_slice_ipv6(struct bcm_sf2_priv *priv, const __be32 *ip6_addr, const __be16 port, const __be16 vlan_tci, unsigned int slice_num, u32 udf_bits, bool mask) { u32 reg, tmp, val, offset; /* UDF_Valid[7:0] [31:24] * S-Tag [23:8] * C-Tag [7:0] */ reg = udf_bits << 24 | be16_to_cpu(vlan_tci) >> 8; if (mask) core_writel(priv, reg, CORE_CFP_MASK_PORT(5)); else core_writel(priv, reg, CORE_CFP_DATA_PORT(5)); /* C-Tag [31:24] * UDF_n_B8 [23:8] (port) * UDF_n_B7 (upper) [7:0] (addr[15:8]) */ reg = be32_to_cpu(ip6_addr[3]); val = (u32)be16_to_cpu(port) << 8 | ((reg >> 8) & 0xff); val |= (u32)(be16_to_cpu(vlan_tci) & 0xff) << 24; if (mask) offset = CORE_CFP_MASK_PORT(4); else offset = CORE_CFP_DATA_PORT(4); core_writel(priv, val, offset); /* UDF_n_B7 (lower) [31:24] (addr[7:0]) * UDF_n_B6 [23:8] (addr[31:16]) * UDF_n_B5 (upper) [7:0] (addr[47:40]) */ tmp = be32_to_cpu(ip6_addr[2]); val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | ((tmp >> 8) & 0xff); if (mask) offset = CORE_CFP_MASK_PORT(3); else offset = CORE_CFP_DATA_PORT(3); core_writel(priv, val, offset); /* UDF_n_B5 (lower) [31:24] (addr[39:32]) * UDF_n_B4 [23:8] (addr[63:48]) * UDF_n_B3 (upper) [7:0] (addr[79:72]) */ reg = be32_to_cpu(ip6_addr[1]); val = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | ((reg >> 8) & 0xff); if (mask) offset = CORE_CFP_MASK_PORT(2); else offset = CORE_CFP_DATA_PORT(2); core_writel(priv, val, offset); /* UDF_n_B3 (lower) [31:24] (addr[71:64]) * UDF_n_B2 [23:8] (addr[95:80]) * UDF_n_B1 (upper) [7:0] (addr[111:104]) */ tmp = be32_to_cpu(ip6_addr[0]); val = (u32)(reg & 0xff) << 24 | (u32)(reg >> 16) << 8 | ((tmp >> 8) & 0xff); if (mask) offset = CORE_CFP_MASK_PORT(1); else offset = CORE_CFP_DATA_PORT(1); core_writel(priv, val, offset); /* UDF_n_B1 (lower) [31:24] (addr[103:96]) * UDF_n_B0 [23:8] (addr[127:112]) * Reserved [7:4] * Slice ID [3:2] * Slice valid [1:0] */ reg = (u32)(tmp & 0xff) << 24 | (u32)(tmp >> 16) << 8 | SLICE_NUM(slice_num) | SLICE_VALID; if (mask) offset = CORE_CFP_MASK_PORT(0); else offset = CORE_CFP_DATA_PORT(0); core_writel(priv, reg, offset); } static struct cfp_rule *bcm_sf2_cfp_rule_find(struct bcm_sf2_priv *priv, int port, u32 location) { struct cfp_rule *rule = NULL; list_for_each_entry(rule, &priv->cfp.rules_list, next) { if (rule->port == port && rule->fs.location == location) break; } return rule; } static int bcm_sf2_cfp_rule_cmp(struct bcm_sf2_priv *priv, int port, struct ethtool_rx_flow_spec *fs) { struct cfp_rule *rule = NULL; size_t fs_size = 0; int ret = 1; if (list_empty(&priv->cfp.rules_list)) return ret; list_for_each_entry(rule, &priv->cfp.rules_list, next) { ret = 1; if (rule->port != port) continue; if (rule->fs.flow_type != fs->flow_type || rule->fs.ring_cookie != fs->ring_cookie || rule->fs.h_ext.data[0] != fs->h_ext.data[0]) continue; switch (fs->flow_type & ~FLOW_EXT) { case TCP_V6_FLOW: case UDP_V6_FLOW: fs_size = sizeof(struct ethtool_tcpip6_spec); break; case TCP_V4_FLOW: case UDP_V4_FLOW: fs_size = sizeof(struct ethtool_tcpip4_spec); break; default: continue; } ret = memcmp(&rule->fs.h_u, &fs->h_u, fs_size); ret |= memcmp(&rule->fs.m_u, &fs->m_u, fs_size); /* Compare VLAN TCI values as well */ if (rule->fs.flow_type & FLOW_EXT) { ret |= rule->fs.h_ext.vlan_tci != fs->h_ext.vlan_tci; ret |= rule->fs.m_ext.vlan_tci != fs->m_ext.vlan_tci; } if (ret == 0) break; } return ret; } static int bcm_sf2_cfp_ipv6_rule_set(struct bcm_sf2_priv *priv, int port, unsigned int port_num, unsigned int queue_num, struct ethtool_rx_flow_spec *fs) { __be16 vlan_tci = 0, vlan_m_tci = htons(0xffff); struct ethtool_rx_flow_spec_input input = {}; unsigned int slice_num, rule_index[2]; const struct cfp_udf_layout *layout; struct ethtool_rx_flow_rule *flow; struct flow_match_ipv6_addrs ipv6; struct flow_match_ports ports; u8 ip_proto, ip_frag; int ret = 0; u8 num_udf; u32 reg; switch (fs->flow_type & ~FLOW_EXT) { case TCP_V6_FLOW: ip_proto = IPPROTO_TCP; break; case UDP_V6_FLOW: ip_proto = IPPROTO_UDP; break; default: return -EINVAL; } ip_frag = !!(be32_to_cpu(fs->h_ext.data[0]) & 1); /* Extract VLAN TCI */ if (fs->flow_type & FLOW_EXT) { vlan_tci = fs->h_ext.vlan_tci; vlan_m_tci = fs->m_ext.vlan_tci; } layout = &udf_tcpip6_layout; slice_num = bcm_sf2_get_slice_number(layout, 0); if (slice_num == UDF_NUM_SLICES) return -EINVAL; num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); /* Negotiate two indexes, one for the second half which we are chained * from, which is what we will return to user-space, and a second one * which is used to store its first half. That first half does not * allow any choice of placement, so it just needs to find the next * available bit. We return the second half as fs->location because * that helps with the rule lookup later on since the second half is * chained from its first half, we can easily identify IPv6 CFP rules * by looking whether they carry a CHAIN_ID. * * We also want the second half to have a lower rule_index than its * first half because the HW search is by incrementing addresses. */ if (fs->location == RX_CLS_LOC_ANY) rule_index[1] = find_first_zero_bit(priv->cfp.used, priv->num_cfp_rules); else rule_index[1] = fs->location; if (rule_index[1] > bcm_sf2_cfp_rule_size(priv)) return -ENOSPC; /* Flag it as used (cleared on error path) such that we can immediately * obtain a second one to chain from. */ set_bit(rule_index[1], priv->cfp.used); rule_index[0] = find_first_zero_bit(priv->cfp.used, priv->num_cfp_rules); if (rule_index[0] > bcm_sf2_cfp_rule_size(priv)) { ret = -ENOSPC; goto out_err; } input.fs = fs; flow = ethtool_rx_flow_rule_create(&input); if (IS_ERR(flow)) { ret = PTR_ERR(flow); goto out_err; } flow_rule_match_ipv6_addrs(flow->rule, &ipv6); flow_rule_match_ports(flow->rule, &ports); /* Apply the UDF layout for this filter */ bcm_sf2_cfp_udf_set(priv, layout, slice_num); /* Apply to all packets received through this port */ core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7)); /* Source port map match */ core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7)); /* S-Tag status [31:30] * C-Tag status [29:28] * L2 framing [27:26] * L3 framing [25:24] * IP ToS [23:16] * IP proto [15:08] * IP Fragm [7] * Non 1st frag [6] * IP Authen [5] * TTL range [4:3] * PPPoE session [2] * Reserved [1] * UDF_Valid[8] [0] */ reg = 1 << L3_FRAMING_SHIFT | ip_proto << IPPROTO_SHIFT | ip_frag << IP_FRAG_SHIFT | udf_upper_bits(num_udf); core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); /* Mask with the specific layout for IPv6 packets including * UDF_Valid[8] */ reg = layout->udfs[slice_num].mask_value | udf_upper_bits(num_udf); core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); /* Slice the IPv6 source address and port */ bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->src.in6_u.u6_addr32, ports.key->src, vlan_tci, slice_num, udf_lower_bits(num_udf), false); bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->src.in6_u.u6_addr32, ports.mask->src, vlan_m_tci, SLICE_NUM_MASK, udf_lower_bits(num_udf), true); /* Insert into TCAM now because we need to insert a second rule */ bcm_sf2_cfp_rule_addr_set(priv, rule_index[0]); ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); if (ret) { pr_err("TCAM entry at addr %d failed\n", rule_index[0]); goto out_err_flow_rule; } /* Insert into Action and policer RAMs now */ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[0], port, port_num, queue_num, false); if (ret) goto out_err_flow_rule; /* Now deal with the second slice to chain this rule */ slice_num = bcm_sf2_get_slice_number(layout, slice_num + 1); if (slice_num == UDF_NUM_SLICES) { ret = -EINVAL; goto out_err_flow_rule; } num_udf = bcm_sf2_get_num_udf_slices(layout->udfs[slice_num].slices); /* Apply the UDF layout for this filter */ bcm_sf2_cfp_udf_set(priv, layout, slice_num); /* Chained rule, source port match is coming from the rule we are * chained from. */ core_writel(priv, 0, CORE_CFP_DATA_PORT(7)); core_writel(priv, 0, CORE_CFP_MASK_PORT(7)); /* * CHAIN ID [31:24] chain to previous slice * Reserved [23:20] * UDF_Valid[11:8] [19:16] * UDF_Valid[7:0] [15:8] * UDF_n_D11 [7:0] */ reg = rule_index[0] << 24 | udf_upper_bits(num_udf) << 16 | udf_lower_bits(num_udf) << 8; core_writel(priv, reg, CORE_CFP_DATA_PORT(6)); /* Mask all except chain ID, UDF Valid[8] and UDF Valid[7:0] */ reg = XCESS_ADDR_MASK << 24 | udf_upper_bits(num_udf) << 16 | udf_lower_bits(num_udf) << 8; core_writel(priv, reg, CORE_CFP_MASK_PORT(6)); bcm_sf2_cfp_slice_ipv6(priv, ipv6.key->dst.in6_u.u6_addr32, ports.key->dst, 0, slice_num, 0, false); bcm_sf2_cfp_slice_ipv6(priv, ipv6.mask->dst.in6_u.u6_addr32, ports.key->dst, 0, SLICE_NUM_MASK, 0, true); /* Insert into TCAM now */ bcm_sf2_cfp_rule_addr_set(priv, rule_index[1]); ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); if (ret) { pr_err("TCAM entry at addr %d failed\n", rule_index[1]); goto out_err_flow_rule; } /* Insert into Action and policer RAMs now, set chain ID to * the one we are chained to */ ret = bcm_sf2_cfp_act_pol_set(priv, rule_index[1], port, port_num, queue_num, true); if (ret) goto out_err_flow_rule; /* Turn on CFP for this rule now */ reg = core_readl(priv, CORE_CFP_CTL_REG); reg |= BIT(port); core_writel(priv, reg, CORE_CFP_CTL_REG); /* Flag the second half rule as being used now, return it as the * location, and flag it as unique while dumping rules */ set_bit(rule_index[0], priv->cfp.used); set_bit(rule_index[1], priv->cfp.unique); fs->location = rule_index[1]; return ret; out_err_flow_rule: ethtool_rx_flow_rule_destroy(flow); out_err: clear_bit(rule_index[1], priv->cfp.used); return ret; } static int bcm_sf2_cfp_rule_insert(struct dsa_switch *ds, int port, struct ethtool_rx_flow_spec *fs) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); s8 cpu_port = dsa_to_port(ds, port)->cpu_dp->index; __u64 ring_cookie = fs->ring_cookie; struct switchdev_obj_port_vlan vlan; unsigned int queue_num, port_num; u16 vid; int ret; /* This rule is a Wake-on-LAN filter and we must specifically * target the CPU port in order for it to be working. */ if (ring_cookie == RX_CLS_FLOW_WAKE) ring_cookie = cpu_port * SF2_NUM_EGRESS_QUEUES; /* We do not support discarding packets, check that the * destination port is enabled and that we are within the * number of ports supported by the switch */ port_num = ring_cookie / SF2_NUM_EGRESS_QUEUES; if (ring_cookie == RX_CLS_FLOW_DISC || !(dsa_is_user_port(ds, port_num) || dsa_is_cpu_port(ds, port_num)) || port_num >= priv->hw_params.num_ports) return -EINVAL; /* If the rule is matching a particular VLAN, make sure that we honor * the matching and have it tagged or untagged on the destination port, * we do this on egress with a VLAN entry. The egress tagging attribute * is expected to be provided in h_ext.data[1] bit 0. A 1 means untagged, * a 0 means tagged. */ if (fs->flow_type & FLOW_EXT) { /* We cannot support matching multiple VLAN IDs yet */ if ((be16_to_cpu(fs->m_ext.vlan_tci) & VLAN_VID_MASK) != VLAN_VID_MASK) return -EINVAL; vid = be16_to_cpu(fs->h_ext.vlan_tci) & VLAN_VID_MASK; vlan.vid_begin = vid; vlan.vid_end = vid; if (cpu_to_be32(fs->h_ext.data[1]) & 1) vlan.flags = BRIDGE_VLAN_INFO_UNTAGGED; else vlan.flags = 0; ret = ds->ops->port_vlan_prepare(ds, port_num, &vlan); if (ret) return ret; ds->ops->port_vlan_add(ds, port_num, &vlan); } /* * We have a small oddity where Port 6 just does not have a * valid bit here (so we substract by one). */ queue_num = ring_cookie % SF2_NUM_EGRESS_QUEUES; if (port_num >= 7) port_num -= 1; switch (fs->flow_type & ~FLOW_EXT) { case TCP_V4_FLOW: case UDP_V4_FLOW: ret = bcm_sf2_cfp_ipv4_rule_set(priv, port, port_num, queue_num, fs); break; case TCP_V6_FLOW: case UDP_V6_FLOW: ret = bcm_sf2_cfp_ipv6_rule_set(priv, port, port_num, queue_num, fs); break; default: ret = -EINVAL; break; } return ret; } static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port, struct ethtool_rx_flow_spec *fs) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); struct cfp_rule *rule = NULL; int ret = -EINVAL; /* Check for unsupported extensions */ if (fs->flow_type & FLOW_MAC_EXT) return -EINVAL; if (fs->location != RX_CLS_LOC_ANY && fs->location > bcm_sf2_cfp_rule_size(priv)) return -EINVAL; if ((fs->flow_type & FLOW_EXT) && !(ds->ops->port_vlan_prepare || ds->ops->port_vlan_add || ds->ops->port_vlan_del)) return -EOPNOTSUPP; if (fs->location != RX_CLS_LOC_ANY && test_bit(fs->location, priv->cfp.used)) return -EBUSY; ret = bcm_sf2_cfp_rule_cmp(priv, port, fs); if (ret == 0) return -EEXIST; rule = kzalloc(sizeof(*rule), GFP_KERNEL); if (!rule) return -ENOMEM; ret = bcm_sf2_cfp_rule_insert(ds, port, fs); if (ret) { kfree(rule); return ret; } rule->port = port; memcpy(&rule->fs, fs, sizeof(*fs)); list_add_tail(&rule->next, &priv->cfp.rules_list); return ret; } static int bcm_sf2_cfp_rule_del_one(struct bcm_sf2_priv *priv, int port, u32 loc, u32 *next_loc) { int ret; u32 reg; /* Indicate which rule we want to read */ bcm_sf2_cfp_rule_addr_set(priv, loc); ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL); if (ret) return ret; /* Check if this is possibly an IPv6 rule that would * indicate we need to delete its companion rule * as well */ reg = core_readl(priv, CORE_CFP_DATA_PORT(6)); if (next_loc) *next_loc = (reg >> 24) & CHAIN_ID_MASK; /* Clear its valid bits */ reg = core_readl(priv, CORE_CFP_DATA_PORT(0)); reg &= ~SLICE_VALID; core_writel(priv, reg, CORE_CFP_DATA_PORT(0)); /* Write back this entry into the TCAM now */ ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL); if (ret) return ret; clear_bit(loc, priv->cfp.used); clear_bit(loc, priv->cfp.unique); return 0; } static int bcm_sf2_cfp_rule_remove(struct bcm_sf2_priv *priv, int port, u32 loc) { u32 next_loc = 0; int ret; ret = bcm_sf2_cfp_rule_del_one(priv, port, loc, &next_loc); if (ret) return ret; /* If this was an IPv6 rule, delete is companion rule too */ if (next_loc) ret = bcm_sf2_cfp_rule_del_one(priv, port, next_loc, NULL); return ret; } static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port, u32 loc) { struct cfp_rule *rule; int ret; if (loc > bcm_sf2_cfp_rule_size(priv)) return -EINVAL; /* Refuse deleting unused rules, and those that are not unique since * that could leave IPv6 rules with one of the chained rule in the * table. */ if (!test_bit(loc, priv->cfp.unique) || loc == 0) return -EINVAL; rule = bcm_sf2_cfp_rule_find(priv, port, loc); if (!rule) return -EINVAL; ret = bcm_sf2_cfp_rule_remove(priv, port, loc); list_del(&rule->next); kfree(rule); return ret; } static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow) { unsigned int i; for (i = 0; i < sizeof(flow->m_u); i++) flow->m_u.hdata[i] ^= 0xff; flow->m_ext.vlan_etype ^= cpu_to_be16(~0); flow->m_ext.vlan_tci ^= cpu_to_be16(~0); flow->m_ext.data[0] ^= cpu_to_be32(~0); flow->m_ext.data[1] ^= cpu_to_be32(~0); } static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port, struct ethtool_rxnfc *nfc) { struct cfp_rule *rule; rule = bcm_sf2_cfp_rule_find(priv, port, nfc->fs.location); if (!rule) return -EINVAL; memcpy(&nfc->fs, &rule->fs, sizeof(rule->fs)); bcm_sf2_invert_masks(&nfc->fs); /* Put the TCAM size here */ nfc->data = bcm_sf2_cfp_rule_size(priv); return 0; } /* We implement the search doing a TCAM search operation */ static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv, int port, struct ethtool_rxnfc *nfc, u32 *rule_locs) { unsigned int index = 1, rules_cnt = 0; for_each_set_bit_from(index, priv->cfp.unique, priv->num_cfp_rules) { rule_locs[rules_cnt] = index; rules_cnt++; } /* Put the TCAM size here */ nfc->data = bcm_sf2_cfp_rule_size(priv); nfc->rule_cnt = rules_cnt; return 0; } int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port, struct ethtool_rxnfc *nfc, u32 *rule_locs) { struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master; struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); int ret = 0; mutex_lock(&priv->cfp.lock); switch (nfc->cmd) { case ETHTOOL_GRXCLSRLCNT: /* Subtract the default, unusable rule */ nfc->rule_cnt = bitmap_weight(priv->cfp.unique, priv->num_cfp_rules) - 1; /* We support specifying rule locations */ nfc->data |= RX_CLS_LOC_SPECIAL; break; case ETHTOOL_GRXCLSRULE: ret = bcm_sf2_cfp_rule_get(priv, port, nfc); break; case ETHTOOL_GRXCLSRLALL: ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs); break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&priv->cfp.lock); if (ret) return ret; /* Pass up the commands to the attached master network device */ if (p->ethtool_ops->get_rxnfc) { ret = p->ethtool_ops->get_rxnfc(p, nfc, rule_locs); if (ret == -EOPNOTSUPP) ret = 0; } return ret; } int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port, struct ethtool_rxnfc *nfc) { struct net_device *p = dsa_to_port(ds, port)->cpu_dp->master; struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); int ret = 0; mutex_lock(&priv->cfp.lock); switch (nfc->cmd) { case ETHTOOL_SRXCLSRLINS: ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs); break; case ETHTOOL_SRXCLSRLDEL: ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); break; default: ret = -EOPNOTSUPP; break; } mutex_unlock(&priv->cfp.lock); if (ret) return ret; /* Pass up the commands to the attached master network device. * This can fail, so rollback the operation if we need to. */ if (p->ethtool_ops->set_rxnfc) { ret = p->ethtool_ops->set_rxnfc(p, nfc); if (ret && ret != -EOPNOTSUPP) { mutex_lock(&priv->cfp.lock); bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location); mutex_unlock(&priv->cfp.lock); } else { ret = 0; } } return ret; } int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv) { unsigned int timeout = 1000; u32 reg; reg = core_readl(priv, CORE_CFP_ACC); reg |= TCAM_RESET; core_writel(priv, reg, CORE_CFP_ACC); do { reg = core_readl(priv, CORE_CFP_ACC); if (!(reg & TCAM_RESET)) break; cpu_relax(); } while (timeout--); if (!timeout) return -ETIMEDOUT; return 0; } void bcm_sf2_cfp_exit(struct dsa_switch *ds) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); struct cfp_rule *rule, *n; if (list_empty(&priv->cfp.rules_list)) return; list_for_each_entry_safe_reverse(rule, n, &priv->cfp.rules_list, next) bcm_sf2_cfp_rule_del(priv, rule->port, rule->fs.location); } int bcm_sf2_cfp_resume(struct dsa_switch *ds) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); struct cfp_rule *rule; int ret = 0; u32 reg; if (list_empty(&priv->cfp.rules_list)) return ret; reg = core_readl(priv, CORE_CFP_CTL_REG); reg &= ~CFP_EN_MAP_MASK; core_writel(priv, reg, CORE_CFP_CTL_REG); ret = bcm_sf2_cfp_rst(priv); if (ret) return ret; list_for_each_entry(rule, &priv->cfp.rules_list, next) { ret = bcm_sf2_cfp_rule_remove(priv, rule->port, rule->fs.location); if (ret) { dev_err(ds->dev, "failed to remove rule\n"); return ret; } ret = bcm_sf2_cfp_rule_insert(ds, rule->port, &rule->fs); if (ret) { dev_err(ds->dev, "failed to restore rule\n"); return ret; } } return ret; } static const struct bcm_sf2_cfp_stat { unsigned int offset; unsigned int ram_loc; const char *name; } bcm_sf2_cfp_stats[] = { { .offset = CORE_STAT_GREEN_CNTR, .ram_loc = GREEN_STAT_RAM, .name = "Green" }, { .offset = CORE_STAT_YELLOW_CNTR, .ram_loc = YELLOW_STAT_RAM, .name = "Yellow" }, { .offset = CORE_STAT_RED_CNTR, .ram_loc = RED_STAT_RAM, .name = "Red" }, }; void bcm_sf2_cfp_get_strings(struct dsa_switch *ds, int port, u32 stringset, uint8_t *data) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats); char buf[ETH_GSTRING_LEN]; unsigned int i, j, iter; if (stringset != ETH_SS_STATS) return; for (i = 1; i < priv->num_cfp_rules; i++) { for (j = 0; j < s; j++) { snprintf(buf, sizeof(buf), "CFP%03d_%sCntr", i, bcm_sf2_cfp_stats[j].name); iter = (i - 1) * s + j; strlcpy(data + iter * ETH_GSTRING_LEN, buf, ETH_GSTRING_LEN); } } } void bcm_sf2_cfp_get_ethtool_stats(struct dsa_switch *ds, int port, uint64_t *data) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); unsigned int s = ARRAY_SIZE(bcm_sf2_cfp_stats); const struct bcm_sf2_cfp_stat *stat; unsigned int i, j, iter; struct cfp_rule *rule; int ret; mutex_lock(&priv->cfp.lock); for (i = 1; i < priv->num_cfp_rules; i++) { rule = bcm_sf2_cfp_rule_find(priv, port, i); if (!rule) continue; for (j = 0; j < s; j++) { stat = &bcm_sf2_cfp_stats[j]; bcm_sf2_cfp_rule_addr_set(priv, i); ret = bcm_sf2_cfp_op(priv, stat->ram_loc | OP_SEL_READ); if (ret) continue; iter = (i - 1) * s + j; data[iter] = core_readl(priv, stat->offset); } } mutex_unlock(&priv->cfp.lock); } int bcm_sf2_cfp_get_sset_count(struct dsa_switch *ds, int port, int sset) { struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds); if (sset != ETH_SS_STATS) return 0; /* 3 counters per CFP rules */ return (priv->num_cfp_rules - 1) * ARRAY_SIZE(bcm_sf2_cfp_stats); } |