Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
/*
 * Broadcom Starfighter 2 DSA switch CFP support
 *
 * Copyright (C) 2016, Broadcom
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 */

#include <linux/list.h>
#include <linux/ethtool.h>
#include <linux/if_ether.h>
#include <linux/in.h>
#include <linux/netdevice.h>
#include <net/dsa.h>
#include <linux/bitmap.h>

#include "bcm_sf2.h"
#include "bcm_sf2_regs.h"

struct cfp_udf_layout {
	u8 slices[UDF_NUM_SLICES];
	u32 mask_value;

};

/* UDF slices layout for a TCPv4/UDPv4 specification */
static const struct cfp_udf_layout udf_tcpip4_layout = {
	.slices = {
		/* End of L2, byte offset 12, src IP[0:15] */
		CFG_UDF_EOL2 | 6,
		/* End of L2, byte offset 14, src IP[16:31] */
		CFG_UDF_EOL2 | 7,
		/* End of L2, byte offset 16, dst IP[0:15] */
		CFG_UDF_EOL2 | 8,
		/* End of L2, byte offset 18, dst IP[16:31] */
		CFG_UDF_EOL2 | 9,
		/* End of L3, byte offset 0, src port */
		CFG_UDF_EOL3 | 0,
		/* End of L3, byte offset 2, dst port */
		CFG_UDF_EOL3 | 1,
		0, 0, 0
	},
	.mask_value = L3_FRAMING_MASK | IPPROTO_MASK | IP_FRAG,
};

static inline unsigned int bcm_sf2_get_num_udf_slices(const u8 *layout)
{
	unsigned int i, count = 0;

	for (i = 0; i < UDF_NUM_SLICES; i++) {
		if (layout[i] != 0)
			count++;
	}

	return count;
}

static void bcm_sf2_cfp_udf_set(struct bcm_sf2_priv *priv,
				unsigned int slice_num,
				const u8 *layout)
{
	u32 offset = CORE_UDF_0_A_0_8_PORT_0 + slice_num * UDF_SLICE_OFFSET;
	unsigned int i;

	for (i = 0; i < UDF_NUM_SLICES; i++)
		core_writel(priv, layout[i], offset + i * 4);
}

static int bcm_sf2_cfp_op(struct bcm_sf2_priv *priv, unsigned int op)
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = core_readl(priv, CORE_CFP_ACC);
	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
	reg |= OP_STR_DONE | op;
	core_writel(priv, reg, CORE_CFP_ACC);

	do {
		reg = core_readl(priv, CORE_CFP_ACC);
		if (!(reg & OP_STR_DONE))
			break;

		cpu_relax();
	} while (timeout--);

	if (!timeout)
		return -ETIMEDOUT;

	return 0;
}

static inline void bcm_sf2_cfp_rule_addr_set(struct bcm_sf2_priv *priv,
					     unsigned int addr)
{
	u32 reg;

	WARN_ON(addr >= priv->num_cfp_rules);

	reg = core_readl(priv, CORE_CFP_ACC);
	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
	reg |= addr << XCESS_ADDR_SHIFT;
	core_writel(priv, reg, CORE_CFP_ACC);
}

static inline unsigned int bcm_sf2_cfp_rule_size(struct bcm_sf2_priv *priv)
{
	/* Entry #0 is reserved */
	return priv->num_cfp_rules - 1;
}

static int bcm_sf2_cfp_rule_set(struct dsa_switch *ds, int port,
				struct ethtool_rx_flow_spec *fs)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	struct ethtool_tcpip4_spec *v4_spec;
	const struct cfp_udf_layout *layout;
	unsigned int slice_num, rule_index;
	unsigned int queue_num, port_num;
	u8 ip_proto, ip_frag;
	u8 num_udf;
	u32 reg;
	int ret;

	/* Check for unsupported extensions */
	if ((fs->flow_type & FLOW_EXT) &&
	    (fs->m_ext.vlan_etype || fs->m_ext.data[1]))
		return -EINVAL;

	if (fs->location != RX_CLS_LOC_ANY &&
	    test_bit(fs->location, priv->cfp.used))
		return -EBUSY;

	if (fs->location != RX_CLS_LOC_ANY &&
	    fs->location > bcm_sf2_cfp_rule_size(priv))
		return -EINVAL;

	ip_frag = be32_to_cpu(fs->m_ext.data[0]);

	/* We do not support discarding packets, check that the
	 * destination port is enabled and that we are within the
	 * number of ports supported by the switch
	 */
	port_num = fs->ring_cookie / 8;

	if (fs->ring_cookie == RX_CLS_FLOW_DISC ||
	    !(BIT(port_num) & ds->enabled_port_mask) ||
	    port_num >= priv->hw_params.num_ports)
		return -EINVAL;

	switch (fs->flow_type & ~FLOW_EXT) {
	case TCP_V4_FLOW:
		ip_proto = IPPROTO_TCP;
		v4_spec = &fs->h_u.tcp_ip4_spec;
		break;
	case UDP_V4_FLOW:
		ip_proto = IPPROTO_UDP;
		v4_spec = &fs->h_u.udp_ip4_spec;
		break;
	default:
		return -EINVAL;
	}

	/* We only use one UDF slice for now */
	slice_num = 1;
	layout = &udf_tcpip4_layout;
	num_udf = bcm_sf2_get_num_udf_slices(layout->slices);

	/* Apply the UDF layout for this filter */
	bcm_sf2_cfp_udf_set(priv, slice_num, layout->slices);

	/* Apply to all packets received through this port */
	core_writel(priv, BIT(port), CORE_CFP_DATA_PORT(7));

	/* S-Tag status		[31:30]
	 * C-Tag status		[29:28]
	 * L2 framing		[27:26]
	 * L3 framing		[25:24]
	 * IP ToS		[23:16]
	 * IP proto		[15:08]
	 * IP Fragm		[7]
	 * Non 1st frag		[6]
	 * IP Authen		[5]
	 * TTL range		[4:3]
	 * PPPoE session	[2]
	 * Reserved		[1]
	 * UDF_Valid[8]		[0]
	 */
	core_writel(priv, v4_spec->tos << 16 | ip_proto << 8 | ip_frag << 7,
		    CORE_CFP_DATA_PORT(6));

	/* UDF_Valid[7:0]	[31:24]
	 * S-Tag		[23:8]
	 * C-Tag		[7:0]
	 */
	core_writel(priv, GENMASK(num_udf - 1, 0) << 24, CORE_CFP_DATA_PORT(5));

	/* C-Tag		[31:24]
	 * UDF_n_A8		[23:8]
	 * UDF_n_A7		[7:0]
	 */
	core_writel(priv, 0, CORE_CFP_DATA_PORT(4));

	/* UDF_n_A7		[31:24]
	 * UDF_n_A6		[23:8]
	 * UDF_n_A5		[7:0]
	 */
	core_writel(priv, be16_to_cpu(v4_spec->pdst) >> 8,
		    CORE_CFP_DATA_PORT(3));

	/* UDF_n_A5		[31:24]
	 * UDF_n_A4		[23:8]
	 * UDF_n_A3		[7:0]
	 */
	reg = (be16_to_cpu(v4_spec->pdst) & 0xff) << 24 |
	      (u32)be16_to_cpu(v4_spec->psrc) << 8 |
	      (be32_to_cpu(v4_spec->ip4dst) & 0x0000ff00) >> 8;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(2));

	/* UDF_n_A3		[31:24]
	 * UDF_n_A2		[23:8]
	 * UDF_n_A1		[7:0]
	 */
	reg = (u32)(be32_to_cpu(v4_spec->ip4dst) & 0xff) << 24 |
	      (u32)(be32_to_cpu(v4_spec->ip4dst) >> 16) << 8 |
	      (be32_to_cpu(v4_spec->ip4src) & 0x0000ff00) >> 8;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(1));

	/* UDF_n_A1		[31:24]
	 * UDF_n_A0		[23:8]
	 * Reserved		[7:4]
	 * Slice ID		[3:2]
	 * Slice valid		[1:0]
	 */
	reg = (u32)(be32_to_cpu(v4_spec->ip4src) & 0xff) << 24 |
	      (u32)(be32_to_cpu(v4_spec->ip4src) >> 16) << 8 |
	      SLICE_NUM(slice_num) | SLICE_VALID;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));

	/* Source port map match */
	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(7));

	/* Mask with the specific layout for IPv4 packets */
	core_writel(priv, layout->mask_value, CORE_CFP_MASK_PORT(6));

	/* Mask all but valid UDFs */
	core_writel(priv, GENMASK(num_udf - 1, 0) << 24, CORE_CFP_MASK_PORT(5));

	/* Mask all */
	core_writel(priv, 0, CORE_CFP_MASK_PORT(4));

	/* All other UDFs should be matched with the filter */
	core_writel(priv, 0xff, CORE_CFP_MASK_PORT(3));
	core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(2));
	core_writel(priv, 0xffffffff, CORE_CFP_MASK_PORT(1));
	core_writel(priv, 0xffffff0f, CORE_CFP_MASK_PORT(0));

	/* Locate the first rule available */
	if (fs->location == RX_CLS_LOC_ANY)
		rule_index = find_first_zero_bit(priv->cfp.used,
						 bcm_sf2_cfp_rule_size(priv));
	else
		rule_index = fs->location;

	/* Insert into TCAM now */
	bcm_sf2_cfp_rule_addr_set(priv, rule_index);

	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
	if (ret) {
		pr_err("TCAM entry at addr %d failed\n", rule_index);
		return ret;
	}

	/* Replace ARL derived destination with DST_MAP derived, define
	 * which port and queue this should be forwarded to.
	 *
	 * We have a small oddity where Port 6 just does not have a
	 * valid bit here (so we subtract by one).
	 */
	queue_num = fs->ring_cookie % 8;
	if (port_num >= 7)
		port_num -= 1;

	reg = CHANGE_FWRD_MAP_IB_REP_ARL | BIT(port_num + DST_MAP_IB_SHIFT) |
		CHANGE_TC | queue_num << NEW_TC_SHIFT;

	core_writel(priv, reg, CORE_ACT_POL_DATA0);

	/* Set classification ID that needs to be put in Broadcom tag */
	core_writel(priv, rule_index << CHAIN_ID_SHIFT,
		    CORE_ACT_POL_DATA1);

	core_writel(priv, 0, CORE_ACT_POL_DATA2);

	/* Configure policer RAM now */
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | ACT_POL_RAM);
	if (ret) {
		pr_err("Policer entry at %d failed\n", rule_index);
		return ret;
	}

	/* Disable the policer */
	core_writel(priv, POLICER_MODE_DISABLE, CORE_RATE_METER0);

	/* Now the rate meter */
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | RATE_METER_RAM);
	if (ret) {
		pr_err("Meter entry at %d failed\n", rule_index);
		return ret;
	}

	/* Turn on CFP for this rule now */
	reg = core_readl(priv, CORE_CFP_CTL_REG);
	reg |= BIT(port);
	core_writel(priv, reg, CORE_CFP_CTL_REG);

	/* Flag the rule as being used and return it */
	set_bit(rule_index, priv->cfp.used);
	fs->location = rule_index;

	return 0;
}

static int bcm_sf2_cfp_rule_del(struct bcm_sf2_priv *priv, int port,
				u32 loc)
{
	int ret;
	u32 reg;

	/* Refuse deletion of unused rules, and the default reserved rule */
	if (!test_bit(loc, priv->cfp.used) || loc == 0)
		return -EINVAL;

	/* Indicate which rule we want to read */
	bcm_sf2_cfp_rule_addr_set(priv, loc);

	ret =  bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
	if (ret)
		return ret;

	/* Clear its valid bits */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));
	reg &= ~SLICE_VALID;
	core_writel(priv, reg, CORE_CFP_DATA_PORT(0));

	/* Write back this entry into the TCAM now */
	ret = bcm_sf2_cfp_op(priv, OP_SEL_WRITE | TCAM_SEL);
	if (ret)
		return ret;

	clear_bit(loc, priv->cfp.used);

	return 0;
}

static void bcm_sf2_invert_masks(struct ethtool_rx_flow_spec *flow)
{
	unsigned int i;

	for (i = 0; i < sizeof(flow->m_u); i++)
		flow->m_u.hdata[i] ^= 0xff;

	flow->m_ext.vlan_etype ^= cpu_to_be16(~0);
	flow->m_ext.vlan_tci ^= cpu_to_be16(~0);
	flow->m_ext.data[0] ^= cpu_to_be32(~0);
	flow->m_ext.data[1] ^= cpu_to_be32(~0);
}

static int bcm_sf2_cfp_rule_get(struct bcm_sf2_priv *priv, int port,
				struct ethtool_rxnfc *nfc, bool search)
{
	struct ethtool_tcpip4_spec *v4_spec;
	unsigned int queue_num;
	u16 src_dst_port;
	u32 reg, ipv4;
	int ret;

	if (!search) {
		bcm_sf2_cfp_rule_addr_set(priv, nfc->fs.location);

		ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | ACT_POL_RAM);
		if (ret)
			return ret;

		reg = core_readl(priv, CORE_ACT_POL_DATA0);

		ret = bcm_sf2_cfp_op(priv, OP_SEL_READ | TCAM_SEL);
		if (ret)
			return ret;
	} else {
		reg = core_readl(priv, CORE_ACT_POL_DATA0);
	}

	/* Extract the destination port */
	nfc->fs.ring_cookie = fls((reg >> DST_MAP_IB_SHIFT) &
				  DST_MAP_IB_MASK) - 1;

	/* There is no Port 6, so we compensate for that here */
	if (nfc->fs.ring_cookie >= 6)
		nfc->fs.ring_cookie++;
	nfc->fs.ring_cookie *= 8;

	/* Extract the destination queue */
	queue_num = (reg >> NEW_TC_SHIFT) & NEW_TC_MASK;
	nfc->fs.ring_cookie += queue_num;

	/* Extract the IP protocol */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(6));
	switch ((reg & IPPROTO_MASK) >> IPPROTO_SHIFT) {
	case IPPROTO_TCP:
		nfc->fs.flow_type = TCP_V4_FLOW;
		v4_spec = &nfc->fs.h_u.tcp_ip4_spec;
		break;
	case IPPROTO_UDP:
		nfc->fs.flow_type = UDP_V4_FLOW;
		v4_spec = &nfc->fs.h_u.udp_ip4_spec;
		break;
	default:
		/* Clear to exit the search process */
		if (search)
			core_readl(priv, CORE_CFP_DATA_PORT(7));
		return -EINVAL;
	}

	v4_spec->tos = (reg >> 16) & IPPROTO_MASK;
	nfc->fs.m_ext.data[0] = cpu_to_be32((reg >> 7) & 1);

	reg = core_readl(priv, CORE_CFP_DATA_PORT(3));
	/* src port [15:8] */
	src_dst_port = reg << 8;

	reg = core_readl(priv, CORE_CFP_DATA_PORT(2));
	/* src port [7:0] */
	src_dst_port |= (reg >> 24);

	v4_spec->pdst = cpu_to_be16(src_dst_port);
	nfc->fs.m_u.tcp_ip4_spec.pdst = cpu_to_be16(~0);
	v4_spec->psrc = cpu_to_be16((u16)(reg >> 8));
	nfc->fs.m_u.tcp_ip4_spec.psrc = cpu_to_be16(~0);

	/* IPv4 dst [15:8] */
	ipv4 = (reg & 0xff) << 8;
	reg = core_readl(priv, CORE_CFP_DATA_PORT(1));
	/* IPv4 dst [31:16] */
	ipv4 |= ((reg >> 8) & 0xffff) << 16;
	/* IPv4 dst [7:0] */
	ipv4 |= (reg >> 24) & 0xff;
	v4_spec->ip4dst = cpu_to_be32(ipv4);
	nfc->fs.m_u.tcp_ip4_spec.ip4dst = cpu_to_be32(~0);

	/* IPv4 src [15:8] */
	ipv4 = (reg & 0xff) << 8;
	reg = core_readl(priv, CORE_CFP_DATA_PORT(0));

	if (!(reg & SLICE_VALID))
		return -EINVAL;

	/* IPv4 src [7:0] */
	ipv4 |= (reg >> 24) & 0xff;
	/* IPv4 src [31:16] */
	ipv4 |= ((reg >> 8) & 0xffff) << 16;
	v4_spec->ip4src = cpu_to_be32(ipv4);
	nfc->fs.m_u.tcp_ip4_spec.ip4src = cpu_to_be32(~0);

	/* Read last to avoid next entry clobbering the results during search
	 * operations
	 */
	reg = core_readl(priv, CORE_CFP_DATA_PORT(7));
	if (!(reg & 1 << port))
		return -EINVAL;

	bcm_sf2_invert_masks(&nfc->fs);

	/* Put the TCAM size here */
	nfc->data = bcm_sf2_cfp_rule_size(priv);

	return 0;
}

/* We implement the search doing a TCAM search operation */
static int bcm_sf2_cfp_rule_get_all(struct bcm_sf2_priv *priv,
				    int port, struct ethtool_rxnfc *nfc,
				    u32 *rule_locs)
{
	unsigned int index = 1, rules_cnt = 0;
	int ret;
	u32 reg;

	/* Do not poll on OP_STR_DONE to be self-clearing for search
	 * operations, we cannot use bcm_sf2_cfp_op here because it completes
	 * on clearing OP_STR_DONE which won't clear until the entire search
	 * operation is over.
	 */
	reg = core_readl(priv, CORE_CFP_ACC);
	reg &= ~(XCESS_ADDR_MASK << XCESS_ADDR_SHIFT);
	reg |= index << XCESS_ADDR_SHIFT;
	reg &= ~(OP_SEL_MASK | RAM_SEL_MASK);
	reg |= OP_SEL_SEARCH | TCAM_SEL | OP_STR_DONE;
	core_writel(priv, reg, CORE_CFP_ACC);

	do {
		/* Wait for results to be ready */
		reg = core_readl(priv, CORE_CFP_ACC);

		/* Extract the address we are searching */
		index = reg >> XCESS_ADDR_SHIFT;
		index &= XCESS_ADDR_MASK;

		/* We have a valid search result, so flag it accordingly */
		if (reg & SEARCH_STS) {
			ret = bcm_sf2_cfp_rule_get(priv, port, nfc, true);
			if (ret)
				continue;

			rule_locs[rules_cnt] = index;
			rules_cnt++;
		}

		/* Search is over break out */
		if (!(reg & OP_STR_DONE))
			break;

	} while (index < priv->num_cfp_rules);

	/* Put the TCAM size here */
	nfc->data = bcm_sf2_cfp_rule_size(priv);
	nfc->rule_cnt = rules_cnt;

	return 0;
}

int bcm_sf2_get_rxnfc(struct dsa_switch *ds, int port,
		      struct ethtool_rxnfc *nfc, u32 *rule_locs)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	int ret = 0;

	mutex_lock(&priv->cfp.lock);

	switch (nfc->cmd) {
	case ETHTOOL_GRXCLSRLCNT:
		/* Subtract the default, unusable rule */
		nfc->rule_cnt = bitmap_weight(priv->cfp.used,
					      priv->num_cfp_rules) - 1;
		/* We support specifying rule locations */
		nfc->data |= RX_CLS_LOC_SPECIAL;
		break;
	case ETHTOOL_GRXCLSRULE:
		ret = bcm_sf2_cfp_rule_get(priv, port, nfc, false);
		break;
	case ETHTOOL_GRXCLSRLALL:
		ret = bcm_sf2_cfp_rule_get_all(priv, port, nfc, rule_locs);
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	mutex_unlock(&priv->cfp.lock);

	return ret;
}

int bcm_sf2_set_rxnfc(struct dsa_switch *ds, int port,
		      struct ethtool_rxnfc *nfc)
{
	struct bcm_sf2_priv *priv = bcm_sf2_to_priv(ds);
	int ret = 0;

	mutex_lock(&priv->cfp.lock);

	switch (nfc->cmd) {
	case ETHTOOL_SRXCLSRLINS:
		ret = bcm_sf2_cfp_rule_set(ds, port, &nfc->fs);
		break;

	case ETHTOOL_SRXCLSRLDEL:
		ret = bcm_sf2_cfp_rule_del(priv, port, nfc->fs.location);
		break;
	default:
		ret = -EOPNOTSUPP;
		break;
	}

	mutex_unlock(&priv->cfp.lock);

	return ret;
}

int bcm_sf2_cfp_rst(struct bcm_sf2_priv *priv)
{
	unsigned int timeout = 1000;
	u32 reg;

	reg = core_readl(priv, CORE_CFP_ACC);
	reg |= TCAM_RESET;
	core_writel(priv, reg, CORE_CFP_ACC);

	do {
		reg = core_readl(priv, CORE_CFP_ACC);
		if (!(reg & TCAM_RESET))
			break;

		cpu_relax();
	} while (timeout--);

	if (!timeout)
		return -ETIMEDOUT;

	return 0;
}