Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
/*
 * Core driver for the High Speed UART DMA
 *
 * Copyright (C) 2015 Intel Corporation
 * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com>
 *
 * Partially based on the bits found in drivers/tty/serial/mfd.c.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */

/*
 * DMA channel allocation:
 * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA
 *    Write (UART RX).
 * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to
 *    port 3, and so on.
 */

#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>

#include "hsu.h"

#define HSU_DMA_BUSWIDTHS				\
	BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED)	|	\
	BIT(DMA_SLAVE_BUSWIDTH_1_BYTE)		|	\
	BIT(DMA_SLAVE_BUSWIDTH_2_BYTES)		|	\
	BIT(DMA_SLAVE_BUSWIDTH_3_BYTES)		|	\
	BIT(DMA_SLAVE_BUSWIDTH_4_BYTES)		|	\
	BIT(DMA_SLAVE_BUSWIDTH_8_BYTES)		|	\
	BIT(DMA_SLAVE_BUSWIDTH_16_BYTES)

static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc)
{
	hsu_chan_writel(hsuc, HSU_CH_CR, 0);
}

static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc)
{
	u32 cr = HSU_CH_CR_CHA;

	if (hsuc->direction == DMA_MEM_TO_DEV)
		cr &= ~HSU_CH_CR_CHD;
	else if (hsuc->direction == DMA_DEV_TO_MEM)
		cr |= HSU_CH_CR_CHD;

	hsu_chan_writel(hsuc, HSU_CH_CR, cr);
}

static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc)
{
	struct dma_slave_config *config = &hsuc->config;
	struct hsu_dma_desc *desc = hsuc->desc;
	u32 bsr = 0, mtsr = 0;	/* to shut the compiler up */
	u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI;
	unsigned int i, count;

	if (hsuc->direction == DMA_MEM_TO_DEV) {
		bsr = config->dst_maxburst;
		mtsr = config->src_addr_width;
	} else if (hsuc->direction == DMA_DEV_TO_MEM) {
		bsr = config->src_maxburst;
		mtsr = config->dst_addr_width;
	}

	hsu_chan_disable(hsuc);

	hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
	hsu_chan_writel(hsuc, HSU_CH_BSR, bsr);
	hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr);

	/* Set descriptors */
	count = desc->nents - desc->active;
	for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) {
		hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr);
		hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len);

		/* Prepare value for DCR */
		dcr |= HSU_CH_DCR_DESCA(i);
		dcr |= HSU_CH_DCR_CHTOI(i);	/* timeout bit, see HSU Errata 1 */

		desc->active++;
	}
	/* Only for the last descriptor in the chain */
	dcr |= HSU_CH_DCR_CHSOD(count - 1);
	dcr |= HSU_CH_DCR_CHDI(count - 1);

	hsu_chan_writel(hsuc, HSU_CH_DCR, dcr);

	hsu_chan_enable(hsuc);
}

static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc)
{
	hsu_chan_disable(hsuc);
	hsu_chan_writel(hsuc, HSU_CH_DCR, 0);
}

static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc)
{
	hsu_dma_chan_start(hsuc);
}

static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc)
{
	struct virt_dma_desc *vdesc;

	/* Get the next descriptor */
	vdesc = vchan_next_desc(&hsuc->vchan);
	if (!vdesc) {
		hsuc->desc = NULL;
		return;
	}

	list_del(&vdesc->node);
	hsuc->desc = to_hsu_dma_desc(vdesc);

	/* Start the channel with a new descriptor */
	hsu_dma_start_channel(hsuc);
}

/*
 *      hsu_dma_get_status() - get DMA channel status
 *      @chip: HSUART DMA chip
 *      @nr: DMA channel number
 *      @status: pointer for DMA Channel Status Register value
 *
 *      Description:
 *      The function reads and clears the DMA Channel Status Register, checks
 *      if it was a timeout interrupt and returns a corresponding value.
 *
 *      Caller should provide a valid pointer for the DMA Channel Status
 *      Register value that will be returned in @status.
 *
 *      Return:
 *      1 for DMA timeout status, 0 for other DMA status, or error code for
 *      invalid parameters or no interrupt pending.
 */
int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr,
		       u32 *status)
{
	struct hsu_dma_chan *hsuc;
	unsigned long flags;
	u32 sr;

	/* Sanity check */
	if (nr >= chip->hsu->nr_channels)
		return -EINVAL;

	hsuc = &chip->hsu->chan[nr];

	/*
	 * No matter what situation, need read clear the IRQ status
	 * There is a bug, see Errata 5, HSD 2900918
	 */
	spin_lock_irqsave(&hsuc->vchan.lock, flags);
	sr = hsu_chan_readl(hsuc, HSU_CH_SR);
	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);

	/* Check if any interrupt is pending */
	sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY);
	if (!sr)
		return -EIO;

	/* Timeout IRQ, need wait some time, see Errata 2 */
	if (sr & HSU_CH_SR_DESCTO_ANY)
		udelay(2);

	/*
	 * At this point, at least one of Descriptor Time Out, Channel Error
	 * or Descriptor Done bits must be set. Clear the Descriptor Time Out
	 * bits and if sr is still non-zero, it must be channel error or
	 * descriptor done which are higher priority than timeout and handled
	 * in hsu_dma_do_irq(). Else, it must be a timeout.
	 */
	sr &= ~HSU_CH_SR_DESCTO_ANY;

	*status = sr;

	return sr ? 0 : 1;
}
EXPORT_SYMBOL_GPL(hsu_dma_get_status);

/*
 *      hsu_dma_do_irq() - DMA interrupt handler
 *      @chip: HSUART DMA chip
 *      @nr: DMA channel number
 *      @status: Channel Status Register value
 *
 *      Description:
 *      This function handles Channel Error and Descriptor Done interrupts.
 *      This function should be called after determining that the DMA interrupt
 *      is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0.
 *
 *      Return:
 *      0 for invalid channel number, 1 otherwise.
 */
int hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr, u32 status)
{
	struct hsu_dma_chan *hsuc;
	struct hsu_dma_desc *desc;
	unsigned long flags;

	/* Sanity check */
	if (nr >= chip->hsu->nr_channels)
		return 0;

	hsuc = &chip->hsu->chan[nr];

	spin_lock_irqsave(&hsuc->vchan.lock, flags);
	desc = hsuc->desc;
	if (desc) {
		if (status & HSU_CH_SR_CHE) {
			desc->status = DMA_ERROR;
		} else if (desc->active < desc->nents) {
			hsu_dma_start_channel(hsuc);
		} else {
			vchan_cookie_complete(&desc->vdesc);
			desc->status = DMA_COMPLETE;
			hsu_dma_start_transfer(hsuc);
		}
	}
	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);

	return 1;
}
EXPORT_SYMBOL_GPL(hsu_dma_do_irq);

static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents)
{
	struct hsu_dma_desc *desc;

	desc = kzalloc(sizeof(*desc), GFP_NOWAIT);
	if (!desc)
		return NULL;

	desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT);
	if (!desc->sg) {
		kfree(desc);
		return NULL;
	}

	return desc;
}

static void hsu_dma_desc_free(struct virt_dma_desc *vdesc)
{
	struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc);

	kfree(desc->sg);
	kfree(desc);
}

static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg(
		struct dma_chan *chan, struct scatterlist *sgl,
		unsigned int sg_len, enum dma_transfer_direction direction,
		unsigned long flags, void *context)
{
	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
	struct hsu_dma_desc *desc;
	struct scatterlist *sg;
	unsigned int i;

	desc = hsu_dma_alloc_desc(sg_len);
	if (!desc)
		return NULL;

	for_each_sg(sgl, sg, sg_len, i) {
		desc->sg[i].addr = sg_dma_address(sg);
		desc->sg[i].len = sg_dma_len(sg);

		desc->length += sg_dma_len(sg);
	}

	desc->nents = sg_len;
	desc->direction = direction;
	/* desc->active = 0 by kzalloc */
	desc->status = DMA_IN_PROGRESS;

	return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags);
}

static void hsu_dma_issue_pending(struct dma_chan *chan)
{
	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&hsuc->vchan.lock, flags);
	if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc)
		hsu_dma_start_transfer(hsuc);
	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
}

static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc)
{
	struct hsu_dma_desc *desc = hsuc->desc;
	size_t bytes = 0;
	int i;

	for (i = desc->active; i < desc->nents; i++)
		bytes += desc->sg[i].len;

	i = HSU_DMA_CHAN_NR_DESC - 1;
	do {
		bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i));
	} while (--i >= 0);

	return bytes;
}

static enum dma_status hsu_dma_tx_status(struct dma_chan *chan,
	dma_cookie_t cookie, struct dma_tx_state *state)
{
	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
	struct virt_dma_desc *vdesc;
	enum dma_status status;
	size_t bytes;
	unsigned long flags;

	status = dma_cookie_status(chan, cookie, state);
	if (status == DMA_COMPLETE)
		return status;

	spin_lock_irqsave(&hsuc->vchan.lock, flags);
	vdesc = vchan_find_desc(&hsuc->vchan, cookie);
	if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) {
		bytes = hsu_dma_active_desc_size(hsuc);
		dma_set_residue(state, bytes);
		status = hsuc->desc->status;
	} else if (vdesc) {
		bytes = to_hsu_dma_desc(vdesc)->length;
		dma_set_residue(state, bytes);
	}
	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);

	return status;
}

static int hsu_dma_slave_config(struct dma_chan *chan,
				struct dma_slave_config *config)
{
	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);

	memcpy(&hsuc->config, config, sizeof(hsuc->config));

	return 0;
}

static int hsu_dma_pause(struct dma_chan *chan)
{
	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&hsuc->vchan.lock, flags);
	if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) {
		hsu_chan_disable(hsuc);
		hsuc->desc->status = DMA_PAUSED;
	}
	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);

	return 0;
}

static int hsu_dma_resume(struct dma_chan *chan)
{
	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
	unsigned long flags;

	spin_lock_irqsave(&hsuc->vchan.lock, flags);
	if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) {
		hsuc->desc->status = DMA_IN_PROGRESS;
		hsu_chan_enable(hsuc);
	}
	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);

	return 0;
}

static int hsu_dma_terminate_all(struct dma_chan *chan)
{
	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);
	unsigned long flags;
	LIST_HEAD(head);

	spin_lock_irqsave(&hsuc->vchan.lock, flags);

	hsu_dma_stop_channel(hsuc);
	if (hsuc->desc) {
		hsu_dma_desc_free(&hsuc->desc->vdesc);
		hsuc->desc = NULL;
	}

	vchan_get_all_descriptors(&hsuc->vchan, &head);
	spin_unlock_irqrestore(&hsuc->vchan.lock, flags);
	vchan_dma_desc_free_list(&hsuc->vchan, &head);

	return 0;
}

static void hsu_dma_free_chan_resources(struct dma_chan *chan)
{
	vchan_free_chan_resources(to_virt_chan(chan));
}

static void hsu_dma_synchronize(struct dma_chan *chan)
{
	struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan);

	vchan_synchronize(&hsuc->vchan);
}

int hsu_dma_probe(struct hsu_dma_chip *chip)
{
	struct hsu_dma *hsu;
	void __iomem *addr = chip->regs + chip->offset;
	unsigned short i;
	int ret;

	hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL);
	if (!hsu)
		return -ENOMEM;

	chip->hsu = hsu;

	/* Calculate nr_channels from the IO space length */
	hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH;

	hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels,
				 sizeof(*hsu->chan), GFP_KERNEL);
	if (!hsu->chan)
		return -ENOMEM;

	INIT_LIST_HEAD(&hsu->dma.channels);
	for (i = 0; i < hsu->nr_channels; i++) {
		struct hsu_dma_chan *hsuc = &hsu->chan[i];

		hsuc->vchan.desc_free = hsu_dma_desc_free;
		vchan_init(&hsuc->vchan, &hsu->dma);

		hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV;
		hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH;
	}

	dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask);
	dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask);

	hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources;

	hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg;

	hsu->dma.device_issue_pending = hsu_dma_issue_pending;
	hsu->dma.device_tx_status = hsu_dma_tx_status;

	hsu->dma.device_config = hsu_dma_slave_config;
	hsu->dma.device_pause = hsu_dma_pause;
	hsu->dma.device_resume = hsu_dma_resume;
	hsu->dma.device_terminate_all = hsu_dma_terminate_all;
	hsu->dma.device_synchronize = hsu_dma_synchronize;

	hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS;
	hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS;
	hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
	hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;

	hsu->dma.dev = chip->dev;

	dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK);

	ret = dma_async_device_register(&hsu->dma);
	if (ret)
		return ret;

	dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels);
	return 0;
}
EXPORT_SYMBOL_GPL(hsu_dma_probe);

int hsu_dma_remove(struct hsu_dma_chip *chip)
{
	struct hsu_dma *hsu = chip->hsu;
	unsigned short i;

	dma_async_device_unregister(&hsu->dma);

	for (i = 0; i < hsu->nr_channels; i++) {
		struct hsu_dma_chan *hsuc = &hsu->chan[i];

		tasklet_kill(&hsuc->vchan.task);
	}

	return 0;
}
EXPORT_SYMBOL_GPL(hsu_dma_remove);

MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("High Speed UART DMA core driver");
MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>");