Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 | /* * Core driver for the High Speed UART DMA * * Copyright (C) 2015 Intel Corporation * Author: Andy Shevchenko <andriy.shevchenko@linux.intel.com> * * Partially based on the bits found in drivers/tty/serial/mfd.c. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /* * DMA channel allocation: * 1. Even number chans are used for DMA Read (UART TX), odd chans for DMA * Write (UART RX). * 2. 0/1 channel are assigned to port 0, 2/3 chan to port 1, 4/5 chan to * port 3, and so on. */ #include <linux/delay.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/init.h> #include <linux/module.h> #include <linux/slab.h> #include "hsu.h" #define HSU_DMA_BUSWIDTHS \ BIT(DMA_SLAVE_BUSWIDTH_UNDEFINED) | \ BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \ BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_4_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_8_BYTES) | \ BIT(DMA_SLAVE_BUSWIDTH_16_BYTES) static inline void hsu_chan_disable(struct hsu_dma_chan *hsuc) { hsu_chan_writel(hsuc, HSU_CH_CR, 0); } static inline void hsu_chan_enable(struct hsu_dma_chan *hsuc) { u32 cr = HSU_CH_CR_CHA; if (hsuc->direction == DMA_MEM_TO_DEV) cr &= ~HSU_CH_CR_CHD; else if (hsuc->direction == DMA_DEV_TO_MEM) cr |= HSU_CH_CR_CHD; hsu_chan_writel(hsuc, HSU_CH_CR, cr); } static void hsu_dma_chan_start(struct hsu_dma_chan *hsuc) { struct dma_slave_config *config = &hsuc->config; struct hsu_dma_desc *desc = hsuc->desc; u32 bsr = 0, mtsr = 0; /* to shut the compiler up */ u32 dcr = HSU_CH_DCR_CHSOE | HSU_CH_DCR_CHEI; unsigned int i, count; if (hsuc->direction == DMA_MEM_TO_DEV) { bsr = config->dst_maxburst; mtsr = config->src_addr_width; } else if (hsuc->direction == DMA_DEV_TO_MEM) { bsr = config->src_maxburst; mtsr = config->dst_addr_width; } hsu_chan_disable(hsuc); hsu_chan_writel(hsuc, HSU_CH_DCR, 0); hsu_chan_writel(hsuc, HSU_CH_BSR, bsr); hsu_chan_writel(hsuc, HSU_CH_MTSR, mtsr); /* Set descriptors */ count = desc->nents - desc->active; for (i = 0; i < count && i < HSU_DMA_CHAN_NR_DESC; i++) { hsu_chan_writel(hsuc, HSU_CH_DxSAR(i), desc->sg[i].addr); hsu_chan_writel(hsuc, HSU_CH_DxTSR(i), desc->sg[i].len); /* Prepare value for DCR */ dcr |= HSU_CH_DCR_DESCA(i); dcr |= HSU_CH_DCR_CHTOI(i); /* timeout bit, see HSU Errata 1 */ desc->active++; } /* Only for the last descriptor in the chain */ dcr |= HSU_CH_DCR_CHSOD(count - 1); dcr |= HSU_CH_DCR_CHDI(count - 1); hsu_chan_writel(hsuc, HSU_CH_DCR, dcr); hsu_chan_enable(hsuc); } static void hsu_dma_stop_channel(struct hsu_dma_chan *hsuc) { hsu_chan_disable(hsuc); hsu_chan_writel(hsuc, HSU_CH_DCR, 0); } static void hsu_dma_start_channel(struct hsu_dma_chan *hsuc) { hsu_dma_chan_start(hsuc); } static void hsu_dma_start_transfer(struct hsu_dma_chan *hsuc) { struct virt_dma_desc *vdesc; /* Get the next descriptor */ vdesc = vchan_next_desc(&hsuc->vchan); if (!vdesc) { hsuc->desc = NULL; return; } list_del(&vdesc->node); hsuc->desc = to_hsu_dma_desc(vdesc); /* Start the channel with a new descriptor */ hsu_dma_start_channel(hsuc); } /* * hsu_dma_get_status() - get DMA channel status * @chip: HSUART DMA chip * @nr: DMA channel number * @status: pointer for DMA Channel Status Register value * * Description: * The function reads and clears the DMA Channel Status Register, checks * if it was a timeout interrupt and returns a corresponding value. * * Caller should provide a valid pointer for the DMA Channel Status * Register value that will be returned in @status. * * Return: * 1 for DMA timeout status, 0 for other DMA status, or error code for * invalid parameters or no interrupt pending. */ int hsu_dma_get_status(struct hsu_dma_chip *chip, unsigned short nr, u32 *status) { struct hsu_dma_chan *hsuc; unsigned long flags; u32 sr; /* Sanity check */ if (nr >= chip->hsu->nr_channels) return -EINVAL; hsuc = &chip->hsu->chan[nr]; /* * No matter what situation, need read clear the IRQ status * There is a bug, see Errata 5, HSD 2900918 */ spin_lock_irqsave(&hsuc->vchan.lock, flags); sr = hsu_chan_readl(hsuc, HSU_CH_SR); spin_unlock_irqrestore(&hsuc->vchan.lock, flags); /* Check if any interrupt is pending */ sr &= ~(HSU_CH_SR_DESCE_ANY | HSU_CH_SR_CDESC_ANY); if (!sr) return -EIO; /* Timeout IRQ, need wait some time, see Errata 2 */ if (sr & HSU_CH_SR_DESCTO_ANY) udelay(2); /* * At this point, at least one of Descriptor Time Out, Channel Error * or Descriptor Done bits must be set. Clear the Descriptor Time Out * bits and if sr is still non-zero, it must be channel error or * descriptor done which are higher priority than timeout and handled * in hsu_dma_do_irq(). Else, it must be a timeout. */ sr &= ~HSU_CH_SR_DESCTO_ANY; *status = sr; return sr ? 0 : 1; } EXPORT_SYMBOL_GPL(hsu_dma_get_status); /* * hsu_dma_do_irq() - DMA interrupt handler * @chip: HSUART DMA chip * @nr: DMA channel number * @status: Channel Status Register value * * Description: * This function handles Channel Error and Descriptor Done interrupts. * This function should be called after determining that the DMA interrupt * is not a normal timeout interrupt, ie. hsu_dma_get_status() returned 0. * * Return: * 0 for invalid channel number, 1 otherwise. */ int hsu_dma_do_irq(struct hsu_dma_chip *chip, unsigned short nr, u32 status) { struct hsu_dma_chan *hsuc; struct hsu_dma_desc *desc; unsigned long flags; /* Sanity check */ if (nr >= chip->hsu->nr_channels) return 0; hsuc = &chip->hsu->chan[nr]; spin_lock_irqsave(&hsuc->vchan.lock, flags); desc = hsuc->desc; if (desc) { if (status & HSU_CH_SR_CHE) { desc->status = DMA_ERROR; } else if (desc->active < desc->nents) { hsu_dma_start_channel(hsuc); } else { vchan_cookie_complete(&desc->vdesc); desc->status = DMA_COMPLETE; hsu_dma_start_transfer(hsuc); } } spin_unlock_irqrestore(&hsuc->vchan.lock, flags); return 1; } EXPORT_SYMBOL_GPL(hsu_dma_do_irq); static struct hsu_dma_desc *hsu_dma_alloc_desc(unsigned int nents) { struct hsu_dma_desc *desc; desc = kzalloc(sizeof(*desc), GFP_NOWAIT); if (!desc) return NULL; desc->sg = kcalloc(nents, sizeof(*desc->sg), GFP_NOWAIT); if (!desc->sg) { kfree(desc); return NULL; } return desc; } static void hsu_dma_desc_free(struct virt_dma_desc *vdesc) { struct hsu_dma_desc *desc = to_hsu_dma_desc(vdesc); kfree(desc->sg); kfree(desc); } static struct dma_async_tx_descriptor *hsu_dma_prep_slave_sg( struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); struct hsu_dma_desc *desc; struct scatterlist *sg; unsigned int i; desc = hsu_dma_alloc_desc(sg_len); if (!desc) return NULL; for_each_sg(sgl, sg, sg_len, i) { desc->sg[i].addr = sg_dma_address(sg); desc->sg[i].len = sg_dma_len(sg); desc->length += sg_dma_len(sg); } desc->nents = sg_len; desc->direction = direction; /* desc->active = 0 by kzalloc */ desc->status = DMA_IN_PROGRESS; return vchan_tx_prep(&hsuc->vchan, &desc->vdesc, flags); } static void hsu_dma_issue_pending(struct dma_chan *chan) { struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&hsuc->vchan.lock, flags); if (vchan_issue_pending(&hsuc->vchan) && !hsuc->desc) hsu_dma_start_transfer(hsuc); spin_unlock_irqrestore(&hsuc->vchan.lock, flags); } static size_t hsu_dma_active_desc_size(struct hsu_dma_chan *hsuc) { struct hsu_dma_desc *desc = hsuc->desc; size_t bytes = 0; int i; for (i = desc->active; i < desc->nents; i++) bytes += desc->sg[i].len; i = HSU_DMA_CHAN_NR_DESC - 1; do { bytes += hsu_chan_readl(hsuc, HSU_CH_DxTSR(i)); } while (--i >= 0); return bytes; } static enum dma_status hsu_dma_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *state) { struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); struct virt_dma_desc *vdesc; enum dma_status status; size_t bytes; unsigned long flags; status = dma_cookie_status(chan, cookie, state); if (status == DMA_COMPLETE) return status; spin_lock_irqsave(&hsuc->vchan.lock, flags); vdesc = vchan_find_desc(&hsuc->vchan, cookie); if (hsuc->desc && cookie == hsuc->desc->vdesc.tx.cookie) { bytes = hsu_dma_active_desc_size(hsuc); dma_set_residue(state, bytes); status = hsuc->desc->status; } else if (vdesc) { bytes = to_hsu_dma_desc(vdesc)->length; dma_set_residue(state, bytes); } spin_unlock_irqrestore(&hsuc->vchan.lock, flags); return status; } static int hsu_dma_slave_config(struct dma_chan *chan, struct dma_slave_config *config) { struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); /* Check if chan will be configured for slave transfers */ if (!is_slave_direction(config->direction)) return -EINVAL; memcpy(&hsuc->config, config, sizeof(hsuc->config)); return 0; } static int hsu_dma_pause(struct dma_chan *chan) { struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&hsuc->vchan.lock, flags); if (hsuc->desc && hsuc->desc->status == DMA_IN_PROGRESS) { hsu_chan_disable(hsuc); hsuc->desc->status = DMA_PAUSED; } spin_unlock_irqrestore(&hsuc->vchan.lock, flags); return 0; } static int hsu_dma_resume(struct dma_chan *chan) { struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); unsigned long flags; spin_lock_irqsave(&hsuc->vchan.lock, flags); if (hsuc->desc && hsuc->desc->status == DMA_PAUSED) { hsuc->desc->status = DMA_IN_PROGRESS; hsu_chan_enable(hsuc); } spin_unlock_irqrestore(&hsuc->vchan.lock, flags); return 0; } static int hsu_dma_terminate_all(struct dma_chan *chan) { struct hsu_dma_chan *hsuc = to_hsu_dma_chan(chan); unsigned long flags; LIST_HEAD(head); spin_lock_irqsave(&hsuc->vchan.lock, flags); hsu_dma_stop_channel(hsuc); if (hsuc->desc) { hsu_dma_desc_free(&hsuc->desc->vdesc); hsuc->desc = NULL; } vchan_get_all_descriptors(&hsuc->vchan, &head); spin_unlock_irqrestore(&hsuc->vchan.lock, flags); vchan_dma_desc_free_list(&hsuc->vchan, &head); return 0; } static void hsu_dma_free_chan_resources(struct dma_chan *chan) { vchan_free_chan_resources(to_virt_chan(chan)); } int hsu_dma_probe(struct hsu_dma_chip *chip) { struct hsu_dma *hsu; void __iomem *addr = chip->regs + chip->offset; unsigned short i; int ret; hsu = devm_kzalloc(chip->dev, sizeof(*hsu), GFP_KERNEL); if (!hsu) return -ENOMEM; chip->hsu = hsu; /* Calculate nr_channels from the IO space length */ hsu->nr_channels = (chip->length - chip->offset) / HSU_DMA_CHAN_LENGTH; hsu->chan = devm_kcalloc(chip->dev, hsu->nr_channels, sizeof(*hsu->chan), GFP_KERNEL); if (!hsu->chan) return -ENOMEM; INIT_LIST_HEAD(&hsu->dma.channels); for (i = 0; i < hsu->nr_channels; i++) { struct hsu_dma_chan *hsuc = &hsu->chan[i]; hsuc->vchan.desc_free = hsu_dma_desc_free; vchan_init(&hsuc->vchan, &hsu->dma); hsuc->direction = (i & 0x1) ? DMA_DEV_TO_MEM : DMA_MEM_TO_DEV; hsuc->reg = addr + i * HSU_DMA_CHAN_LENGTH; } dma_cap_set(DMA_SLAVE, hsu->dma.cap_mask); dma_cap_set(DMA_PRIVATE, hsu->dma.cap_mask); hsu->dma.device_free_chan_resources = hsu_dma_free_chan_resources; hsu->dma.device_prep_slave_sg = hsu_dma_prep_slave_sg; hsu->dma.device_issue_pending = hsu_dma_issue_pending; hsu->dma.device_tx_status = hsu_dma_tx_status; hsu->dma.device_config = hsu_dma_slave_config; hsu->dma.device_pause = hsu_dma_pause; hsu->dma.device_resume = hsu_dma_resume; hsu->dma.device_terminate_all = hsu_dma_terminate_all; hsu->dma.src_addr_widths = HSU_DMA_BUSWIDTHS; hsu->dma.dst_addr_widths = HSU_DMA_BUSWIDTHS; hsu->dma.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV); hsu->dma.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST; hsu->dma.dev = chip->dev; dma_set_max_seg_size(hsu->dma.dev, HSU_CH_DxTSR_MASK); ret = dma_async_device_register(&hsu->dma); if (ret) return ret; dev_info(chip->dev, "Found HSU DMA, %d channels\n", hsu->nr_channels); return 0; } EXPORT_SYMBOL_GPL(hsu_dma_probe); int hsu_dma_remove(struct hsu_dma_chip *chip) { struct hsu_dma *hsu = chip->hsu; unsigned short i; dma_async_device_unregister(&hsu->dma); for (i = 0; i < hsu->nr_channels; i++) { struct hsu_dma_chan *hsuc = &hsu->chan[i]; tasklet_kill(&hsuc->vchan.task); } return 0; } EXPORT_SYMBOL_GPL(hsu_dma_remove); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("High Speed UART DMA core driver"); MODULE_AUTHOR("Andy Shevchenko <andriy.shevchenko@linux.intel.com>"); |