Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
/*
 * Marvell Dove PMU support
 */
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/irqdomain.h>
#include <linux/of.h>
#include <linux/of_irq.h>
#include <linux/of_address.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/reset.h>
#include <linux/reset-controller.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/soc/dove/pmu.h>
#include <linux/spinlock.h>

#define NR_PMU_IRQS		7

#define PMC_SW_RST		0x30
#define PMC_IRQ_CAUSE		0x50
#define PMC_IRQ_MASK		0x54

#define PMU_PWR			0x10
#define PMU_ISO			0x58

struct pmu_data {
	spinlock_t lock;
	struct device_node *of_node;
	void __iomem *pmc_base;
	void __iomem *pmu_base;
	struct irq_chip_generic *irq_gc;
	struct irq_domain *irq_domain;
#ifdef CONFIG_RESET_CONTROLLER
	struct reset_controller_dev reset;
#endif
};

/*
 * The PMU contains a register to reset various subsystems within the
 * SoC.  Export this as a reset controller.
 */
#ifdef CONFIG_RESET_CONTROLLER
#define rcdev_to_pmu(rcdev) container_of(rcdev, struct pmu_data, reset)

static int pmu_reset_reset(struct reset_controller_dev *rc, unsigned long id)
{
	struct pmu_data *pmu = rcdev_to_pmu(rc);
	unsigned long flags;
	u32 val;

	spin_lock_irqsave(&pmu->lock, flags);
	val = readl_relaxed(pmu->pmc_base + PMC_SW_RST);
	writel_relaxed(val & ~BIT(id), pmu->pmc_base + PMC_SW_RST);
	writel_relaxed(val | BIT(id), pmu->pmc_base + PMC_SW_RST);
	spin_unlock_irqrestore(&pmu->lock, flags);

	return 0;
}

static int pmu_reset_assert(struct reset_controller_dev *rc, unsigned long id)
{
	struct pmu_data *pmu = rcdev_to_pmu(rc);
	unsigned long flags;
	u32 val = ~BIT(id);

	spin_lock_irqsave(&pmu->lock, flags);
	val &= readl_relaxed(pmu->pmc_base + PMC_SW_RST);
	writel_relaxed(val, pmu->pmc_base + PMC_SW_RST);
	spin_unlock_irqrestore(&pmu->lock, flags);

	return 0;
}

static int pmu_reset_deassert(struct reset_controller_dev *rc, unsigned long id)
{
	struct pmu_data *pmu = rcdev_to_pmu(rc);
	unsigned long flags;
	u32 val = BIT(id);

	spin_lock_irqsave(&pmu->lock, flags);
	val |= readl_relaxed(pmu->pmc_base + PMC_SW_RST);
	writel_relaxed(val, pmu->pmc_base + PMC_SW_RST);
	spin_unlock_irqrestore(&pmu->lock, flags);

	return 0;
}

static struct reset_control_ops pmu_reset_ops = {
	.reset = pmu_reset_reset,
	.assert = pmu_reset_assert,
	.deassert = pmu_reset_deassert,
};

static struct reset_controller_dev pmu_reset __initdata = {
	.ops = &pmu_reset_ops,
	.owner = THIS_MODULE,
	.nr_resets = 32,
};

static void __init pmu_reset_init(struct pmu_data *pmu)
{
	int ret;

	pmu->reset = pmu_reset;
	pmu->reset.of_node = pmu->of_node;

	ret = reset_controller_register(&pmu->reset);
	if (ret)
		pr_err("pmu: %s failed: %d\n", "reset_controller_register", ret);
}
#else
static void __init pmu_reset_init(struct pmu_data *pmu)
{
}
#endif

struct pmu_domain {
	struct pmu_data *pmu;
	u32 pwr_mask;
	u32 rst_mask;
	u32 iso_mask;
	struct generic_pm_domain base;
};

#define to_pmu_domain(dom) container_of(dom, struct pmu_domain, base)

/*
 * This deals with the "old" Marvell sequence of bringing a power domain
 * down/up, which is: apply power, release reset, disable isolators.
 *
 * Later devices apparantly use a different sequence: power up, disable
 * isolators, assert repair signal, enable SRMA clock, enable AXI clock,
 * enable module clock, deassert reset.
 *
 * Note: reading the assembly, it seems that the IO accessors have an
 * unfortunate side-effect - they cause memory already read into registers
 * for the if () to be re-read for the bit-set or bit-clear operation.
 * The code is written to avoid this.
 */
static int pmu_domain_power_off(struct generic_pm_domain *domain)
{
	struct pmu_domain *pmu_dom = to_pmu_domain(domain);
	struct pmu_data *pmu = pmu_dom->pmu;
	unsigned long flags;
	unsigned int val;
	void __iomem *pmu_base = pmu->pmu_base;
	void __iomem *pmc_base = pmu->pmc_base;

	spin_lock_irqsave(&pmu->lock, flags);

	/* Enable isolators */
	if (pmu_dom->iso_mask) {
		val = ~pmu_dom->iso_mask;
		val &= readl_relaxed(pmu_base + PMU_ISO);
		writel_relaxed(val, pmu_base + PMU_ISO);
	}

	/* Reset unit */
	if (pmu_dom->rst_mask) {
		val = ~pmu_dom->rst_mask;
		val &= readl_relaxed(pmc_base + PMC_SW_RST);
		writel_relaxed(val, pmc_base + PMC_SW_RST);
	}

	/* Power down */
	val = readl_relaxed(pmu_base + PMU_PWR) | pmu_dom->pwr_mask;
	writel_relaxed(val, pmu_base + PMU_PWR);

	spin_unlock_irqrestore(&pmu->lock, flags);

	return 0;
}

static int pmu_domain_power_on(struct generic_pm_domain *domain)
{
	struct pmu_domain *pmu_dom = to_pmu_domain(domain);
	struct pmu_data *pmu = pmu_dom->pmu;
	unsigned long flags;
	unsigned int val;
	void __iomem *pmu_base = pmu->pmu_base;
	void __iomem *pmc_base = pmu->pmc_base;

	spin_lock_irqsave(&pmu->lock, flags);

	/* Power on */
	val = ~pmu_dom->pwr_mask & readl_relaxed(pmu_base + PMU_PWR);
	writel_relaxed(val, pmu_base + PMU_PWR);

	/* Release reset */
	if (pmu_dom->rst_mask) {
		val = pmu_dom->rst_mask;
		val |= readl_relaxed(pmc_base + PMC_SW_RST);
		writel_relaxed(val, pmc_base + PMC_SW_RST);
	}

	/* Disable isolators */
	if (pmu_dom->iso_mask) {
		val = pmu_dom->iso_mask;
		val |= readl_relaxed(pmu_base + PMU_ISO);
		writel_relaxed(val, pmu_base + PMU_ISO);
	}

	spin_unlock_irqrestore(&pmu->lock, flags);

	return 0;
}

static void __pmu_domain_register(struct pmu_domain *domain,
	struct device_node *np)
{
	unsigned int val = readl_relaxed(domain->pmu->pmu_base + PMU_PWR);

	domain->base.power_off = pmu_domain_power_off;
	domain->base.power_on = pmu_domain_power_on;

	pm_genpd_init(&domain->base, NULL, !(val & domain->pwr_mask));

	if (np)
		of_genpd_add_provider_simple(np, &domain->base);
}

/* PMU IRQ controller */
static void pmu_irq_handler(struct irq_desc *desc)
{
	struct pmu_data *pmu = irq_desc_get_handler_data(desc);
	struct irq_chip_generic *gc = pmu->irq_gc;
	struct irq_domain *domain = pmu->irq_domain;
	void __iomem *base = gc->reg_base;
	u32 stat = readl_relaxed(base + PMC_IRQ_CAUSE) & gc->mask_cache;
	u32 done = ~0;

	if (stat == 0) {
		handle_bad_irq(desc);
		return;
	}

	while (stat) {
		u32 hwirq = fls(stat) - 1;

		stat &= ~(1 << hwirq);
		done &= ~(1 << hwirq);

		generic_handle_irq(irq_find_mapping(domain, hwirq));
	}

	/*
	 * The PMU mask register is not RW0C: it is RW.  This means that
	 * the bits take whatever value is written to them; if you write
	 * a '1', you will set the interrupt.
	 *
	 * Unfortunately this means there is NO race free way to clear
	 * these interrupts.
	 *
	 * So, let's structure the code so that the window is as small as
	 * possible.
	 */
	irq_gc_lock(gc);
	done &= readl_relaxed(base + PMC_IRQ_CAUSE);
	writel_relaxed(done, base + PMC_IRQ_CAUSE);
	irq_gc_unlock(gc);
}

static int __init dove_init_pmu_irq(struct pmu_data *pmu, int irq)
{
	const char *name = "pmu_irq";
	struct irq_chip_generic *gc;
	struct irq_domain *domain;
	int ret;

	/* mask and clear all interrupts */
	writel(0, pmu->pmc_base + PMC_IRQ_MASK);
	writel(0, pmu->pmc_base + PMC_IRQ_CAUSE);

	domain = irq_domain_add_linear(pmu->of_node, NR_PMU_IRQS,
				       &irq_generic_chip_ops, NULL);
	if (!domain) {
		pr_err("%s: unable to add irq domain\n", name);
		return -ENOMEM;
	}

	ret = irq_alloc_domain_generic_chips(domain, NR_PMU_IRQS, 1, name,
					     handle_level_irq,
					     IRQ_NOREQUEST | IRQ_NOPROBE, 0,
					     IRQ_GC_INIT_MASK_CACHE);
	if (ret) {
		pr_err("%s: unable to alloc irq domain gc: %d\n", name, ret);
		irq_domain_remove(domain);
		return ret;
	}

	gc = irq_get_domain_generic_chip(domain, 0);
	gc->reg_base = pmu->pmc_base;
	gc->chip_types[0].regs.mask = PMC_IRQ_MASK;
	gc->chip_types[0].chip.irq_mask = irq_gc_mask_clr_bit;
	gc->chip_types[0].chip.irq_unmask = irq_gc_mask_set_bit;

	pmu->irq_domain = domain;
	pmu->irq_gc = gc;

	irq_set_handler_data(irq, pmu);
	irq_set_chained_handler(irq, pmu_irq_handler);

	return 0;
}

int __init dove_init_pmu_legacy(const struct dove_pmu_initdata *initdata)
{
	const struct dove_pmu_domain_initdata *domain_initdata;
	struct pmu_data *pmu;
	int ret;

	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
	if (!pmu)
		return -ENOMEM;

	spin_lock_init(&pmu->lock);
	pmu->pmc_base = initdata->pmc_base;
	pmu->pmu_base = initdata->pmu_base;

	pmu_reset_init(pmu);
	for (domain_initdata = initdata->domains; domain_initdata->name;
	     domain_initdata++) {
		struct pmu_domain *domain;

		domain = kzalloc(sizeof(*domain), GFP_KERNEL);
		if (domain) {
			domain->pmu = pmu;
			domain->pwr_mask = domain_initdata->pwr_mask;
			domain->rst_mask = domain_initdata->rst_mask;
			domain->iso_mask = domain_initdata->iso_mask;
			domain->base.name = domain_initdata->name;

			__pmu_domain_register(domain, NULL);
		}
	}

	ret = dove_init_pmu_irq(pmu, initdata->irq);
	if (ret)
		pr_err("dove_init_pmu_irq() failed: %d\n", ret);

	if (pmu->irq_domain)
		irq_domain_associate_many(pmu->irq_domain,
					  initdata->irq_domain_start,
					  0, NR_PMU_IRQS);

	return 0;
}

/*
 * pmu: power-manager@d0000 {
 *	compatible = "marvell,dove-pmu";
 *	reg = <0xd0000 0x8000> <0xd8000 0x8000>;
 *	interrupts = <33>;
 *	interrupt-controller;
 *	#reset-cells = 1;
 *	vpu_domain: vpu-domain {
 *		#power-domain-cells = <0>;
 *		marvell,pmu_pwr_mask = <0x00000008>;
 *		marvell,pmu_iso_mask = <0x00000001>;
 *		resets = <&pmu 16>;
 *	};
 *	gpu_domain: gpu-domain {
 *		#power-domain-cells = <0>;
 *		marvell,pmu_pwr_mask = <0x00000004>;
 *		marvell,pmu_iso_mask = <0x00000002>;
 *		resets = <&pmu 18>;
 *	};
 * };
 */
int __init dove_init_pmu(void)
{
	struct device_node *np_pmu, *domains_node, *np;
	struct pmu_data *pmu;
	int ret, parent_irq;

	/* Lookup the PMU node */
	np_pmu = of_find_compatible_node(NULL, NULL, "marvell,dove-pmu");
	if (!np_pmu)
		return 0;

	domains_node = of_get_child_by_name(np_pmu, "domains");
	if (!domains_node) {
		pr_err("%s: failed to find domains sub-node\n", np_pmu->name);
		return 0;
	}

	pmu = kzalloc(sizeof(*pmu), GFP_KERNEL);
	if (!pmu)
		return -ENOMEM;

	spin_lock_init(&pmu->lock);
	pmu->of_node = np_pmu;
	pmu->pmc_base = of_iomap(pmu->of_node, 0);
	pmu->pmu_base = of_iomap(pmu->of_node, 1);
	if (!pmu->pmc_base || !pmu->pmu_base) {
		pr_err("%s: failed to map PMU\n", np_pmu->name);
		iounmap(pmu->pmu_base);
		iounmap(pmu->pmc_base);
		kfree(pmu);
		return -ENOMEM;
	}

	pmu_reset_init(pmu);

	for_each_available_child_of_node(domains_node, np) {
		struct of_phandle_args args;
		struct pmu_domain *domain;

		domain = kzalloc(sizeof(*domain), GFP_KERNEL);
		if (!domain)
			break;

		domain->pmu = pmu;
		domain->base.name = kstrdup(np->name, GFP_KERNEL);
		if (!domain->base.name) {
			kfree(domain);
			break;
		}

		of_property_read_u32(np, "marvell,pmu_pwr_mask",
				     &domain->pwr_mask);
		of_property_read_u32(np, "marvell,pmu_iso_mask",
				     &domain->iso_mask);

		/*
		 * We parse the reset controller property directly here
		 * to ensure that we can operate when the reset controller
		 * support is not configured into the kernel.
		 */
		ret = of_parse_phandle_with_args(np, "resets", "#reset-cells",
						 0, &args);
		if (ret == 0) {
			if (args.np == pmu->of_node)
				domain->rst_mask = BIT(args.args[0]);
			of_node_put(args.np);
		}

		__pmu_domain_register(domain, np);
	}

	/* Loss of the interrupt controller is not a fatal error. */
	parent_irq = irq_of_parse_and_map(pmu->of_node, 0);
	if (!parent_irq) {
		pr_err("%s: no interrupt specified\n", np_pmu->name);
	} else {
		ret = dove_init_pmu_irq(pmu, parent_irq);
		if (ret)
			pr_err("dove_init_pmu_irq() failed: %d\n", ret);
	}

	return 0;
}