Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 | /* * Copyright (C) 2012 Fusion-io All rights reserved. * Copyright (C) 2012 Intel Corp. All rights reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public * License v2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public * License along with this program; if not, write to the * Free Software Foundation, Inc., 59 Temple Place - Suite 330, * Boston, MA 021110-1307, USA. */ #include <linux/sched.h> #include <linux/wait.h> #include <linux/bio.h> #include <linux/slab.h> #include <linux/buffer_head.h> #include <linux/blkdev.h> #include <linux/random.h> #include <linux/iocontext.h> #include <linux/capability.h> #include <linux/ratelimit.h> #include <linux/kthread.h> #include <linux/raid/pq.h> #include <linux/hash.h> #include <linux/list_sort.h> #include <linux/raid/xor.h> #include <linux/vmalloc.h> #include <asm/div64.h> #include "ctree.h" #include "extent_map.h" #include "disk-io.h" #include "transaction.h" #include "print-tree.h" #include "volumes.h" #include "raid56.h" #include "async-thread.h" #include "check-integrity.h" #include "rcu-string.h" /* set when additional merges to this rbio are not allowed */ #define RBIO_RMW_LOCKED_BIT 1 /* * set when this rbio is sitting in the hash, but it is just a cache * of past RMW */ #define RBIO_CACHE_BIT 2 /* * set when it is safe to trust the stripe_pages for caching */ #define RBIO_CACHE_READY_BIT 3 #define RBIO_CACHE_SIZE 1024 enum btrfs_rbio_ops { BTRFS_RBIO_WRITE, BTRFS_RBIO_READ_REBUILD, BTRFS_RBIO_PARITY_SCRUB, BTRFS_RBIO_REBUILD_MISSING, }; struct btrfs_raid_bio { struct btrfs_fs_info *fs_info; struct btrfs_bio *bbio; /* while we're doing rmw on a stripe * we put it into a hash table so we can * lock the stripe and merge more rbios * into it. */ struct list_head hash_list; /* * LRU list for the stripe cache */ struct list_head stripe_cache; /* * for scheduling work in the helper threads */ struct btrfs_work work; /* * bio list and bio_list_lock are used * to add more bios into the stripe * in hopes of avoiding the full rmw */ struct bio_list bio_list; spinlock_t bio_list_lock; /* also protected by the bio_list_lock, the * plug list is used by the plugging code * to collect partial bios while plugged. The * stripe locking code also uses it to hand off * the stripe lock to the next pending IO */ struct list_head plug_list; /* * flags that tell us if it is safe to * merge with this bio */ unsigned long flags; /* size of each individual stripe on disk */ int stripe_len; /* number of data stripes (no p/q) */ int nr_data; int real_stripes; int stripe_npages; /* * set if we're doing a parity rebuild * for a read from higher up, which is handled * differently from a parity rebuild as part of * rmw */ enum btrfs_rbio_ops operation; /* first bad stripe */ int faila; /* second bad stripe (for raid6 use) */ int failb; int scrubp; /* * number of pages needed to represent the full * stripe */ int nr_pages; /* * size of all the bios in the bio_list. This * helps us decide if the rbio maps to a full * stripe or not */ int bio_list_bytes; int generic_bio_cnt; atomic_t refs; atomic_t stripes_pending; atomic_t error; /* * these are two arrays of pointers. We allocate the * rbio big enough to hold them both and setup their * locations when the rbio is allocated */ /* pointers to pages that we allocated for * reading/writing stripes directly from the disk (including P/Q) */ struct page **stripe_pages; /* * pointers to the pages in the bio_list. Stored * here for faster lookup */ struct page **bio_pages; /* * bitmap to record which horizontal stripe has data */ unsigned long *dbitmap; }; static int __raid56_parity_recover(struct btrfs_raid_bio *rbio); static noinline void finish_rmw(struct btrfs_raid_bio *rbio); static void rmw_work(struct btrfs_work *work); static void read_rebuild_work(struct btrfs_work *work); static void async_rmw_stripe(struct btrfs_raid_bio *rbio); static void async_read_rebuild(struct btrfs_raid_bio *rbio); static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio); static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed); static void __free_raid_bio(struct btrfs_raid_bio *rbio); static void index_rbio_pages(struct btrfs_raid_bio *rbio); static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check); static void async_scrub_parity(struct btrfs_raid_bio *rbio); /* * the stripe hash table is used for locking, and to collect * bios in hopes of making a full stripe */ int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) { struct btrfs_stripe_hash_table *table; struct btrfs_stripe_hash_table *x; struct btrfs_stripe_hash *cur; struct btrfs_stripe_hash *h; int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; int i; int table_size; if (info->stripe_hash_table) return 0; /* * The table is large, starting with order 4 and can go as high as * order 7 in case lock debugging is turned on. * * Try harder to allocate and fallback to vmalloc to lower the chance * of a failing mount. */ table_size = sizeof(*table) + sizeof(*h) * num_entries; table = kzalloc(table_size, GFP_KERNEL | __GFP_NOWARN | __GFP_REPEAT); if (!table) { table = vzalloc(table_size); if (!table) return -ENOMEM; } spin_lock_init(&table->cache_lock); INIT_LIST_HEAD(&table->stripe_cache); h = table->table; for (i = 0; i < num_entries; i++) { cur = h + i; INIT_LIST_HEAD(&cur->hash_list); spin_lock_init(&cur->lock); init_waitqueue_head(&cur->wait); } x = cmpxchg(&info->stripe_hash_table, NULL, table); if (x) kvfree(x); return 0; } /* * caching an rbio means to copy anything from the * bio_pages array into the stripe_pages array. We * use the page uptodate bit in the stripe cache array * to indicate if it has valid data * * once the caching is done, we set the cache ready * bit. */ static void cache_rbio_pages(struct btrfs_raid_bio *rbio) { int i; char *s; char *d; int ret; ret = alloc_rbio_pages(rbio); if (ret) return; for (i = 0; i < rbio->nr_pages; i++) { if (!rbio->bio_pages[i]) continue; s = kmap(rbio->bio_pages[i]); d = kmap(rbio->stripe_pages[i]); memcpy(d, s, PAGE_SIZE); kunmap(rbio->bio_pages[i]); kunmap(rbio->stripe_pages[i]); SetPageUptodate(rbio->stripe_pages[i]); } set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); } /* * we hash on the first logical address of the stripe */ static int rbio_bucket(struct btrfs_raid_bio *rbio) { u64 num = rbio->bbio->raid_map[0]; /* * we shift down quite a bit. We're using byte * addressing, and most of the lower bits are zeros. * This tends to upset hash_64, and it consistently * returns just one or two different values. * * shifting off the lower bits fixes things. */ return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); } /* * stealing an rbio means taking all the uptodate pages from the stripe * array in the source rbio and putting them into the destination rbio */ static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) { int i; struct page *s; struct page *d; if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) return; for (i = 0; i < dest->nr_pages; i++) { s = src->stripe_pages[i]; if (!s || !PageUptodate(s)) { continue; } d = dest->stripe_pages[i]; if (d) __free_page(d); dest->stripe_pages[i] = s; src->stripe_pages[i] = NULL; } } /* * merging means we take the bio_list from the victim and * splice it into the destination. The victim should * be discarded afterwards. * * must be called with dest->rbio_list_lock held */ static void merge_rbio(struct btrfs_raid_bio *dest, struct btrfs_raid_bio *victim) { bio_list_merge(&dest->bio_list, &victim->bio_list); dest->bio_list_bytes += victim->bio_list_bytes; dest->generic_bio_cnt += victim->generic_bio_cnt; bio_list_init(&victim->bio_list); } /* * used to prune items that are in the cache. The caller * must hold the hash table lock. */ static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) { int bucket = rbio_bucket(rbio); struct btrfs_stripe_hash_table *table; struct btrfs_stripe_hash *h; int freeit = 0; /* * check the bit again under the hash table lock. */ if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) return; table = rbio->fs_info->stripe_hash_table; h = table->table + bucket; /* hold the lock for the bucket because we may be * removing it from the hash table */ spin_lock(&h->lock); /* * hold the lock for the bio list because we need * to make sure the bio list is empty */ spin_lock(&rbio->bio_list_lock); if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { list_del_init(&rbio->stripe_cache); table->cache_size -= 1; freeit = 1; /* if the bio list isn't empty, this rbio is * still involved in an IO. We take it out * of the cache list, and drop the ref that * was held for the list. * * If the bio_list was empty, we also remove * the rbio from the hash_table, and drop * the corresponding ref */ if (bio_list_empty(&rbio->bio_list)) { if (!list_empty(&rbio->hash_list)) { list_del_init(&rbio->hash_list); atomic_dec(&rbio->refs); BUG_ON(!list_empty(&rbio->plug_list)); } } } spin_unlock(&rbio->bio_list_lock); spin_unlock(&h->lock); if (freeit) __free_raid_bio(rbio); } /* * prune a given rbio from the cache */ static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) { struct btrfs_stripe_hash_table *table; unsigned long flags; if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) return; table = rbio->fs_info->stripe_hash_table; spin_lock_irqsave(&table->cache_lock, flags); __remove_rbio_from_cache(rbio); spin_unlock_irqrestore(&table->cache_lock, flags); } /* * remove everything in the cache */ static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) { struct btrfs_stripe_hash_table *table; unsigned long flags; struct btrfs_raid_bio *rbio; table = info->stripe_hash_table; spin_lock_irqsave(&table->cache_lock, flags); while (!list_empty(&table->stripe_cache)) { rbio = list_entry(table->stripe_cache.next, struct btrfs_raid_bio, stripe_cache); __remove_rbio_from_cache(rbio); } spin_unlock_irqrestore(&table->cache_lock, flags); } /* * remove all cached entries and free the hash table * used by unmount */ void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) { if (!info->stripe_hash_table) return; btrfs_clear_rbio_cache(info); kvfree(info->stripe_hash_table); info->stripe_hash_table = NULL; } /* * insert an rbio into the stripe cache. It * must have already been prepared by calling * cache_rbio_pages * * If this rbio was already cached, it gets * moved to the front of the lru. * * If the size of the rbio cache is too big, we * prune an item. */ static void cache_rbio(struct btrfs_raid_bio *rbio) { struct btrfs_stripe_hash_table *table; unsigned long flags; if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) return; table = rbio->fs_info->stripe_hash_table; spin_lock_irqsave(&table->cache_lock, flags); spin_lock(&rbio->bio_list_lock); /* bump our ref if we were not in the list before */ if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) atomic_inc(&rbio->refs); if (!list_empty(&rbio->stripe_cache)){ list_move(&rbio->stripe_cache, &table->stripe_cache); } else { list_add(&rbio->stripe_cache, &table->stripe_cache); table->cache_size += 1; } spin_unlock(&rbio->bio_list_lock); if (table->cache_size > RBIO_CACHE_SIZE) { struct btrfs_raid_bio *found; found = list_entry(table->stripe_cache.prev, struct btrfs_raid_bio, stripe_cache); if (found != rbio) __remove_rbio_from_cache(found); } spin_unlock_irqrestore(&table->cache_lock, flags); } /* * helper function to run the xor_blocks api. It is only * able to do MAX_XOR_BLOCKS at a time, so we need to * loop through. */ static void run_xor(void **pages, int src_cnt, ssize_t len) { int src_off = 0; int xor_src_cnt = 0; void *dest = pages[src_cnt]; while(src_cnt > 0) { xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); xor_blocks(xor_src_cnt, len, dest, pages + src_off); src_cnt -= xor_src_cnt; src_off += xor_src_cnt; } } /* * returns true if the bio list inside this rbio * covers an entire stripe (no rmw required). * Must be called with the bio list lock held, or * at a time when you know it is impossible to add * new bios into the list */ static int __rbio_is_full(struct btrfs_raid_bio *rbio) { unsigned long size = rbio->bio_list_bytes; int ret = 1; if (size != rbio->nr_data * rbio->stripe_len) ret = 0; BUG_ON(size > rbio->nr_data * rbio->stripe_len); return ret; } static int rbio_is_full(struct btrfs_raid_bio *rbio) { unsigned long flags; int ret; spin_lock_irqsave(&rbio->bio_list_lock, flags); ret = __rbio_is_full(rbio); spin_unlock_irqrestore(&rbio->bio_list_lock, flags); return ret; } /* * returns 1 if it is safe to merge two rbios together. * The merging is safe if the two rbios correspond to * the same stripe and if they are both going in the same * direction (read vs write), and if neither one is * locked for final IO * * The caller is responsible for locking such that * rmw_locked is safe to test */ static int rbio_can_merge(struct btrfs_raid_bio *last, struct btrfs_raid_bio *cur) { if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) return 0; /* * we can't merge with cached rbios, since the * idea is that when we merge the destination * rbio is going to run our IO for us. We can * steal from cached rbios though, other functions * handle that. */ if (test_bit(RBIO_CACHE_BIT, &last->flags) || test_bit(RBIO_CACHE_BIT, &cur->flags)) return 0; if (last->bbio->raid_map[0] != cur->bbio->raid_map[0]) return 0; /* we can't merge with different operations */ if (last->operation != cur->operation) return 0; /* * We've need read the full stripe from the drive. * check and repair the parity and write the new results. * * We're not allowed to add any new bios to the * bio list here, anyone else that wants to * change this stripe needs to do their own rmw. */ if (last->operation == BTRFS_RBIO_PARITY_SCRUB || cur->operation == BTRFS_RBIO_PARITY_SCRUB) return 0; if (last->operation == BTRFS_RBIO_REBUILD_MISSING || cur->operation == BTRFS_RBIO_REBUILD_MISSING) return 0; return 1; } static int rbio_stripe_page_index(struct btrfs_raid_bio *rbio, int stripe, int index) { return stripe * rbio->stripe_npages + index; } /* * these are just the pages from the rbio array, not from anything * the FS sent down to us */ static struct page *rbio_stripe_page(struct btrfs_raid_bio *rbio, int stripe, int index) { return rbio->stripe_pages[rbio_stripe_page_index(rbio, stripe, index)]; } /* * helper to index into the pstripe */ static struct page *rbio_pstripe_page(struct btrfs_raid_bio *rbio, int index) { return rbio_stripe_page(rbio, rbio->nr_data, index); } /* * helper to index into the qstripe, returns null * if there is no qstripe */ static struct page *rbio_qstripe_page(struct btrfs_raid_bio *rbio, int index) { if (rbio->nr_data + 1 == rbio->real_stripes) return NULL; return rbio_stripe_page(rbio, rbio->nr_data + 1, index); } /* * The first stripe in the table for a logical address * has the lock. rbios are added in one of three ways: * * 1) Nobody has the stripe locked yet. The rbio is given * the lock and 0 is returned. The caller must start the IO * themselves. * * 2) Someone has the stripe locked, but we're able to merge * with the lock owner. The rbio is freed and the IO will * start automatically along with the existing rbio. 1 is returned. * * 3) Someone has the stripe locked, but we're not able to merge. * The rbio is added to the lock owner's plug list, or merged into * an rbio already on the plug list. When the lock owner unlocks, * the next rbio on the list is run and the IO is started automatically. * 1 is returned * * If we return 0, the caller still owns the rbio and must continue with * IO submission. If we return 1, the caller must assume the rbio has * already been freed. */ static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) { int bucket = rbio_bucket(rbio); struct btrfs_stripe_hash *h = rbio->fs_info->stripe_hash_table->table + bucket; struct btrfs_raid_bio *cur; struct btrfs_raid_bio *pending; unsigned long flags; DEFINE_WAIT(wait); struct btrfs_raid_bio *freeit = NULL; struct btrfs_raid_bio *cache_drop = NULL; int ret = 0; int walk = 0; spin_lock_irqsave(&h->lock, flags); list_for_each_entry(cur, &h->hash_list, hash_list) { walk++; if (cur->bbio->raid_map[0] == rbio->bbio->raid_map[0]) { spin_lock(&cur->bio_list_lock); /* can we steal this cached rbio's pages? */ if (bio_list_empty(&cur->bio_list) && list_empty(&cur->plug_list) && test_bit(RBIO_CACHE_BIT, &cur->flags) && !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { list_del_init(&cur->hash_list); atomic_dec(&cur->refs); steal_rbio(cur, rbio); cache_drop = cur; spin_unlock(&cur->bio_list_lock); goto lockit; } /* can we merge into the lock owner? */ if (rbio_can_merge(cur, rbio)) { merge_rbio(cur, rbio); spin_unlock(&cur->bio_list_lock); freeit = rbio; ret = 1; goto out; } /* * we couldn't merge with the running * rbio, see if we can merge with the * pending ones. We don't have to * check for rmw_locked because there * is no way they are inside finish_rmw * right now */ list_for_each_entry(pending, &cur->plug_list, plug_list) { if (rbio_can_merge(pending, rbio)) { merge_rbio(pending, rbio); spin_unlock(&cur->bio_list_lock); freeit = rbio; ret = 1; goto out; } } /* no merging, put us on the tail of the plug list, * our rbio will be started with the currently * running rbio unlocks */ list_add_tail(&rbio->plug_list, &cur->plug_list); spin_unlock(&cur->bio_list_lock); ret = 1; goto out; } } lockit: atomic_inc(&rbio->refs); list_add(&rbio->hash_list, &h->hash_list); out: spin_unlock_irqrestore(&h->lock, flags); if (cache_drop) remove_rbio_from_cache(cache_drop); if (freeit) __free_raid_bio(freeit); return ret; } /* * called as rmw or parity rebuild is completed. If the plug list has more * rbios waiting for this stripe, the next one on the list will be started */ static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) { int bucket; struct btrfs_stripe_hash *h; unsigned long flags; int keep_cache = 0; bucket = rbio_bucket(rbio); h = rbio->fs_info->stripe_hash_table->table + bucket; if (list_empty(&rbio->plug_list)) cache_rbio(rbio); spin_lock_irqsave(&h->lock, flags); spin_lock(&rbio->bio_list_lock); if (!list_empty(&rbio->hash_list)) { /* * if we're still cached and there is no other IO * to perform, just leave this rbio here for others * to steal from later */ if (list_empty(&rbio->plug_list) && test_bit(RBIO_CACHE_BIT, &rbio->flags)) { keep_cache = 1; clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); BUG_ON(!bio_list_empty(&rbio->bio_list)); goto done; } list_del_init(&rbio->hash_list); atomic_dec(&rbio->refs); /* * we use the plug list to hold all the rbios * waiting for the chance to lock this stripe. * hand the lock over to one of them. */ if (!list_empty(&rbio->plug_list)) { struct btrfs_raid_bio *next; struct list_head *head = rbio->plug_list.next; next = list_entry(head, struct btrfs_raid_bio, plug_list); list_del_init(&rbio->plug_list); list_add(&next->hash_list, &h->hash_list); atomic_inc(&next->refs); spin_unlock(&rbio->bio_list_lock); spin_unlock_irqrestore(&h->lock, flags); if (next->operation == BTRFS_RBIO_READ_REBUILD) async_read_rebuild(next); else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { steal_rbio(rbio, next); async_read_rebuild(next); } else if (next->operation == BTRFS_RBIO_WRITE) { steal_rbio(rbio, next); async_rmw_stripe(next); } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { steal_rbio(rbio, next); async_scrub_parity(next); } goto done_nolock; /* * The barrier for this waitqueue_active is not needed, * we're protected by h->lock and can't miss a wakeup. */ } else if (waitqueue_active(&h->wait)) { spin_unlock(&rbio->bio_list_lock); spin_unlock_irqrestore(&h->lock, flags); wake_up(&h->wait); goto done_nolock; } } done: spin_unlock(&rbio->bio_list_lock); spin_unlock_irqrestore(&h->lock, flags); done_nolock: if (!keep_cache) remove_rbio_from_cache(rbio); } static void __free_raid_bio(struct btrfs_raid_bio *rbio) { int i; WARN_ON(atomic_read(&rbio->refs) < 0); if (!atomic_dec_and_test(&rbio->refs)) return; WARN_ON(!list_empty(&rbio->stripe_cache)); WARN_ON(!list_empty(&rbio->hash_list)); WARN_ON(!bio_list_empty(&rbio->bio_list)); for (i = 0; i < rbio->nr_pages; i++) { if (rbio->stripe_pages[i]) { __free_page(rbio->stripe_pages[i]); rbio->stripe_pages[i] = NULL; } } btrfs_put_bbio(rbio->bbio); kfree(rbio); } static void free_raid_bio(struct btrfs_raid_bio *rbio) { unlock_stripe(rbio); __free_raid_bio(rbio); } /* * this frees the rbio and runs through all the bios in the * bio_list and calls end_io on them */ static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, int err) { struct bio *cur = bio_list_get(&rbio->bio_list); struct bio *next; if (rbio->generic_bio_cnt) btrfs_bio_counter_sub(rbio->fs_info, rbio->generic_bio_cnt); free_raid_bio(rbio); while (cur) { next = cur->bi_next; cur->bi_next = NULL; cur->bi_error = err; bio_endio(cur); cur = next; } } /* * end io function used by finish_rmw. When we finally * get here, we've written a full stripe */ static void raid_write_end_io(struct bio *bio) { struct btrfs_raid_bio *rbio = bio->bi_private; int err = bio->bi_error; int max_errors; if (err) fail_bio_stripe(rbio, bio); bio_put(bio); if (!atomic_dec_and_test(&rbio->stripes_pending)) return; err = 0; /* OK, we have read all the stripes we need to. */ max_errors = (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) ? 0 : rbio->bbio->max_errors; if (atomic_read(&rbio->error) > max_errors) err = -EIO; rbio_orig_end_io(rbio, err); } /* * the read/modify/write code wants to use the original bio for * any pages it included, and then use the rbio for everything * else. This function decides if a given index (stripe number) * and page number in that stripe fall inside the original bio * or the rbio. * * if you set bio_list_only, you'll get a NULL back for any ranges * that are outside the bio_list * * This doesn't take any refs on anything, you get a bare page pointer * and the caller must bump refs as required. * * You must call index_rbio_pages once before you can trust * the answers from this function. */ static struct page *page_in_rbio(struct btrfs_raid_bio *rbio, int index, int pagenr, int bio_list_only) { int chunk_page; struct page *p = NULL; chunk_page = index * (rbio->stripe_len >> PAGE_SHIFT) + pagenr; spin_lock_irq(&rbio->bio_list_lock); p = rbio->bio_pages[chunk_page]; spin_unlock_irq(&rbio->bio_list_lock); if (p || bio_list_only) return p; return rbio->stripe_pages[chunk_page]; } /* * number of pages we need for the entire stripe across all the * drives */ static unsigned long rbio_nr_pages(unsigned long stripe_len, int nr_stripes) { return DIV_ROUND_UP(stripe_len, PAGE_SIZE) * nr_stripes; } /* * allocation and initial setup for the btrfs_raid_bio. Not * this does not allocate any pages for rbio->pages. */ static struct btrfs_raid_bio *alloc_rbio(struct btrfs_root *root, struct btrfs_bio *bbio, u64 stripe_len) { struct btrfs_raid_bio *rbio; int nr_data = 0; int real_stripes = bbio->num_stripes - bbio->num_tgtdevs; int num_pages = rbio_nr_pages(stripe_len, real_stripes); int stripe_npages = DIV_ROUND_UP(stripe_len, PAGE_SIZE); void *p; rbio = kzalloc(sizeof(*rbio) + num_pages * sizeof(struct page *) * 2 + DIV_ROUND_UP(stripe_npages, BITS_PER_LONG) * sizeof(long), GFP_NOFS); if (!rbio) return ERR_PTR(-ENOMEM); bio_list_init(&rbio->bio_list); INIT_LIST_HEAD(&rbio->plug_list); spin_lock_init(&rbio->bio_list_lock); INIT_LIST_HEAD(&rbio->stripe_cache); INIT_LIST_HEAD(&rbio->hash_list); rbio->bbio = bbio; rbio->fs_info = root->fs_info; rbio->stripe_len = stripe_len; rbio->nr_pages = num_pages; rbio->real_stripes = real_stripes; rbio->stripe_npages = stripe_npages; rbio->faila = -1; rbio->failb = -1; atomic_set(&rbio->refs, 1); atomic_set(&rbio->error, 0); atomic_set(&rbio->stripes_pending, 0); /* * the stripe_pages and bio_pages array point to the extra * memory we allocated past the end of the rbio */ p = rbio + 1; rbio->stripe_pages = p; rbio->bio_pages = p + sizeof(struct page *) * num_pages; rbio->dbitmap = p + sizeof(struct page *) * num_pages * 2; if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5) nr_data = real_stripes - 1; else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) nr_data = real_stripes - 2; else BUG(); rbio->nr_data = nr_data; return rbio; } /* allocate pages for all the stripes in the bio, including parity */ static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) { int i; struct page *page; for (i = 0; i < rbio->nr_pages; i++) { if (rbio->stripe_pages[i]) continue; page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); if (!page) return -ENOMEM; rbio->stripe_pages[i] = page; } return 0; } /* only allocate pages for p/q stripes */ static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) { int i; struct page *page; i = rbio_stripe_page_index(rbio, rbio->nr_data, 0); for (; i < rbio->nr_pages; i++) { if (rbio->stripe_pages[i]) continue; page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); if (!page) return -ENOMEM; rbio->stripe_pages[i] = page; } return 0; } /* * add a single page from a specific stripe into our list of bios for IO * this will try to merge into existing bios if possible, and returns * zero if all went well. */ static int rbio_add_io_page(struct btrfs_raid_bio *rbio, struct bio_list *bio_list, struct page *page, int stripe_nr, unsigned long page_index, unsigned long bio_max_len) { struct bio *last = bio_list->tail; u64 last_end = 0; int ret; struct bio *bio; struct btrfs_bio_stripe *stripe; u64 disk_start; stripe = &rbio->bbio->stripes[stripe_nr]; disk_start = stripe->physical + (page_index << PAGE_SHIFT); /* if the device is missing, just fail this stripe */ if (!stripe->dev->bdev) return fail_rbio_index(rbio, stripe_nr); /* see if we can add this page onto our existing bio */ if (last) { last_end = (u64)last->bi_iter.bi_sector << 9; last_end += last->bi_iter.bi_size; /* * we can't merge these if they are from different * devices or if they are not contiguous */ if (last_end == disk_start && stripe->dev->bdev && !last->bi_error && last->bi_bdev == stripe->dev->bdev) { ret = bio_add_page(last, page, PAGE_SIZE, 0); if (ret == PAGE_SIZE) return 0; } } /* put a new bio on the list */ bio = btrfs_io_bio_alloc(GFP_NOFS, bio_max_len >> PAGE_SHIFT?:1); if (!bio) return -ENOMEM; bio->bi_iter.bi_size = 0; bio->bi_bdev = stripe->dev->bdev; bio->bi_iter.bi_sector = disk_start >> 9; bio_add_page(bio, page, PAGE_SIZE, 0); bio_list_add(bio_list, bio); return 0; } /* * while we're doing the read/modify/write cycle, we could * have errors in reading pages off the disk. This checks * for errors and if we're not able to read the page it'll * trigger parity reconstruction. The rmw will be finished * after we've reconstructed the failed stripes */ static void validate_rbio_for_rmw(struct btrfs_raid_bio *rbio) { if (rbio->faila >= 0 || rbio->failb >= 0) { BUG_ON(rbio->faila == rbio->real_stripes - 1); __raid56_parity_recover(rbio); } else { finish_rmw(rbio); } } /* * helper function to walk our bio list and populate the bio_pages array with * the result. This seems expensive, but it is faster than constantly * searching through the bio list as we setup the IO in finish_rmw or stripe * reconstruction. * * This must be called before you trust the answers from page_in_rbio */ static void index_rbio_pages(struct btrfs_raid_bio *rbio) { struct bio *bio; u64 start; unsigned long stripe_offset; unsigned long page_index; struct page *p; int i; spin_lock_irq(&rbio->bio_list_lock); bio_list_for_each(bio, &rbio->bio_list) { start = (u64)bio->bi_iter.bi_sector << 9; stripe_offset = start - rbio->bbio->raid_map[0]; page_index = stripe_offset >> PAGE_SHIFT; for (i = 0; i < bio->bi_vcnt; i++) { p = bio->bi_io_vec[i].bv_page; rbio->bio_pages[page_index + i] = p; } } spin_unlock_irq(&rbio->bio_list_lock); } /* * this is called from one of two situations. We either * have a full stripe from the higher layers, or we've read all * the missing bits off disk. * * This will calculate the parity and then send down any * changed blocks. */ static noinline void finish_rmw(struct btrfs_raid_bio *rbio) { struct btrfs_bio *bbio = rbio->bbio; void *pointers[rbio->real_stripes]; int nr_data = rbio->nr_data; int stripe; int pagenr; int p_stripe = -1; int q_stripe = -1; struct bio_list bio_list; struct bio *bio; int ret; bio_list_init(&bio_list); if (rbio->real_stripes - rbio->nr_data == 1) { p_stripe = rbio->real_stripes - 1; } else if (rbio->real_stripes - rbio->nr_data == 2) { p_stripe = rbio->real_stripes - 2; q_stripe = rbio->real_stripes - 1; } else { BUG(); } /* at this point we either have a full stripe, * or we've read the full stripe from the drive. * recalculate the parity and write the new results. * * We're not allowed to add any new bios to the * bio list here, anyone else that wants to * change this stripe needs to do their own rmw. */ spin_lock_irq(&rbio->bio_list_lock); set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); spin_unlock_irq(&rbio->bio_list_lock); atomic_set(&rbio->error, 0); /* * now that we've set rmw_locked, run through the * bio list one last time and map the page pointers * * We don't cache full rbios because we're assuming * the higher layers are unlikely to use this area of * the disk again soon. If they do use it again, * hopefully they will send another full bio. */ index_rbio_pages(rbio); if (!rbio_is_full(rbio)) cache_rbio_pages(rbio); else clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { struct page *p; /* first collect one page from each data stripe */ for (stripe = 0; stripe < nr_data; stripe++) { p = page_in_rbio(rbio, stripe, pagenr, 0); pointers[stripe] = kmap(p); } /* then add the parity stripe */ p = rbio_pstripe_page(rbio, pagenr); SetPageUptodate(p); pointers[stripe++] = kmap(p); if (q_stripe != -1) { /* * raid6, add the qstripe and call the * library function to fill in our p/q */ p = rbio_qstripe_page(rbio, pagenr); SetPageUptodate(p); pointers[stripe++] = kmap(p); raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, pointers); } else { /* raid5 */ memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); } for (stripe = 0; stripe < rbio->real_stripes; stripe++) kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); } /* * time to start writing. Make bios for everything from the * higher layers (the bio_list in our rbio) and our p/q. Ignore * everything else. */ for (stripe = 0; stripe < rbio->real_stripes; stripe++) { for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { struct page *page; if (stripe < rbio->nr_data) { page = page_in_rbio(rbio, stripe, pagenr, 1); if (!page) continue; } else { page = rbio_stripe_page(rbio, stripe, pagenr); } ret = rbio_add_io_page(rbio, &bio_list, page, stripe, pagenr, rbio->stripe_len); if (ret) goto cleanup; } } if (likely(!bbio->num_tgtdevs)) goto write_data; for (stripe = 0; stripe < rbio->real_stripes; stripe++) { if (!bbio->tgtdev_map[stripe]) continue; for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { struct page *page; if (stripe < rbio->nr_data) { page = page_in_rbio(rbio, stripe, pagenr, 1); if (!page) continue; } else { page = rbio_stripe_page(rbio, stripe, pagenr); } ret = rbio_add_io_page(rbio, &bio_list, page, rbio->bbio->tgtdev_map[stripe], pagenr, rbio->stripe_len); if (ret) goto cleanup; } } write_data: atomic_set(&rbio->stripes_pending, bio_list_size(&bio_list)); BUG_ON(atomic_read(&rbio->stripes_pending) == 0); while (1) { bio = bio_list_pop(&bio_list); if (!bio) break; bio->bi_private = rbio; bio->bi_end_io = raid_write_end_io; bio_set_op_attrs(bio, REQ_OP_WRITE, 0); submit_bio(bio); } return; cleanup: rbio_orig_end_io(rbio, -EIO); } /* * helper to find the stripe number for a given bio. Used to figure out which * stripe has failed. This expects the bio to correspond to a physical disk, * so it looks up based on physical sector numbers. */ static int find_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio) { u64 physical = bio->bi_iter.bi_sector; u64 stripe_start; int i; struct btrfs_bio_stripe *stripe; physical <<= 9; for (i = 0; i < rbio->bbio->num_stripes; i++) { stripe = &rbio->bbio->stripes[i]; stripe_start = stripe->physical; if (physical >= stripe_start && physical < stripe_start + rbio->stripe_len && bio->bi_bdev == stripe->dev->bdev) { return i; } } return -1; } /* * helper to find the stripe number for a given * bio (before mapping). Used to figure out which stripe has * failed. This looks up based on logical block numbers. */ static int find_logical_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio) { u64 logical = bio->bi_iter.bi_sector; u64 stripe_start; int i; logical <<= 9; for (i = 0; i < rbio->nr_data; i++) { stripe_start = rbio->bbio->raid_map[i]; if (logical >= stripe_start && logical < stripe_start + rbio->stripe_len) { return i; } } return -1; } /* * returns -EIO if we had too many failures */ static int fail_rbio_index(struct btrfs_raid_bio *rbio, int failed) { unsigned long flags; int ret = 0; spin_lock_irqsave(&rbio->bio_list_lock, flags); /* we already know this stripe is bad, move on */ if (rbio->faila == failed || rbio->failb == failed) goto out; if (rbio->faila == -1) { /* first failure on this rbio */ rbio->faila = failed; atomic_inc(&rbio->error); } else if (rbio->failb == -1) { /* second failure on this rbio */ rbio->failb = failed; atomic_inc(&rbio->error); } else { ret = -EIO; } out: spin_unlock_irqrestore(&rbio->bio_list_lock, flags); return ret; } /* * helper to fail a stripe based on a physical disk * bio. */ static int fail_bio_stripe(struct btrfs_raid_bio *rbio, struct bio *bio) { int failed = find_bio_stripe(rbio, bio); if (failed < 0) return -EIO; return fail_rbio_index(rbio, failed); } /* * this sets each page in the bio uptodate. It should only be used on private * rbio pages, nothing that comes in from the higher layers */ static void set_bio_pages_uptodate(struct bio *bio) { int i; struct page *p; for (i = 0; i < bio->bi_vcnt; i++) { p = bio->bi_io_vec[i].bv_page; SetPageUptodate(p); } } /* * end io for the read phase of the rmw cycle. All the bios here are physical * stripe bios we've read from the disk so we can recalculate the parity of the * stripe. * * This will usually kick off finish_rmw once all the bios are read in, but it * may trigger parity reconstruction if we had any errors along the way */ static void raid_rmw_end_io(struct bio *bio) { struct btrfs_raid_bio *rbio = bio->bi_private; if (bio->bi_error) fail_bio_stripe(rbio, bio); else set_bio_pages_uptodate(bio); bio_put(bio); if (!atomic_dec_and_test(&rbio->stripes_pending)) return; if (atomic_read(&rbio->error) > rbio->bbio->max_errors) goto cleanup; /* * this will normally call finish_rmw to start our write * but if there are any failed stripes we'll reconstruct * from parity first */ validate_rbio_for_rmw(rbio); return; cleanup: rbio_orig_end_io(rbio, -EIO); } static void async_rmw_stripe(struct btrfs_raid_bio *rbio) { btrfs_init_work(&rbio->work, btrfs_rmw_helper, rmw_work, NULL, NULL); btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); } static void async_read_rebuild(struct btrfs_raid_bio *rbio) { btrfs_init_work(&rbio->work, btrfs_rmw_helper, read_rebuild_work, NULL, NULL); btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); } /* * the stripe must be locked by the caller. It will * unlock after all the writes are done */ static int raid56_rmw_stripe(struct btrfs_raid_bio *rbio) { int bios_to_read = 0; struct bio_list bio_list; int ret; int pagenr; int stripe; struct bio *bio; bio_list_init(&bio_list); ret = alloc_rbio_pages(rbio); if (ret) goto cleanup; index_rbio_pages(rbio); atomic_set(&rbio->error, 0); /* * build a list of bios to read all the missing parts of this * stripe */ for (stripe = 0; stripe < rbio->nr_data; stripe++) { for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { struct page *page; /* * we want to find all the pages missing from * the rbio and read them from the disk. If * page_in_rbio finds a page in the bio list * we don't need to read it off the stripe. */ page = page_in_rbio(rbio, stripe, pagenr, 1); if (page) continue; page = rbio_stripe_page(rbio, stripe, pagenr); /* * the bio cache may have handed us an uptodate * page. If so, be happy and use it */ if (PageUptodate(page)) continue; ret = rbio_add_io_page(rbio, &bio_list, page, stripe, pagenr, rbio->stripe_len); if (ret) goto cleanup; } } bios_to_read = bio_list_size(&bio_list); if (!bios_to_read) { /* * this can happen if others have merged with * us, it means there is nothing left to read. * But if there are missing devices it may not be * safe to do the full stripe write yet. */ goto finish; } /* * the bbio may be freed once we submit the last bio. Make sure * not to touch it after that */ atomic_set(&rbio->stripes_pending, bios_to_read); while (1) { bio = bio_list_pop(&bio_list); if (!bio) break; bio->bi_private = rbio; bio->bi_end_io = raid_rmw_end_io; bio_set_op_attrs(bio, REQ_OP_READ, 0); btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); submit_bio(bio); } /* the actual write will happen once the reads are done */ return 0; cleanup: rbio_orig_end_io(rbio, -EIO); return -EIO; finish: validate_rbio_for_rmw(rbio); return 0; } /* * if the upper layers pass in a full stripe, we thank them by only allocating * enough pages to hold the parity, and sending it all down quickly. */ static int full_stripe_write(struct btrfs_raid_bio *rbio) { int ret; ret = alloc_rbio_parity_pages(rbio); if (ret) { __free_raid_bio(rbio); return ret; } ret = lock_stripe_add(rbio); if (ret == 0) finish_rmw(rbio); return 0; } /* * partial stripe writes get handed over to async helpers. * We're really hoping to merge a few more writes into this * rbio before calculating new parity */ static int partial_stripe_write(struct btrfs_raid_bio *rbio) { int ret; ret = lock_stripe_add(rbio); if (ret == 0) async_rmw_stripe(rbio); return 0; } /* * sometimes while we were reading from the drive to * recalculate parity, enough new bios come into create * a full stripe. So we do a check here to see if we can * go directly to finish_rmw */ static int __raid56_parity_write(struct btrfs_raid_bio *rbio) { /* head off into rmw land if we don't have a full stripe */ if (!rbio_is_full(rbio)) return partial_stripe_write(rbio); return full_stripe_write(rbio); } /* * We use plugging call backs to collect full stripes. * Any time we get a partial stripe write while plugged * we collect it into a list. When the unplug comes down, * we sort the list by logical block number and merge * everything we can into the same rbios */ struct btrfs_plug_cb { struct blk_plug_cb cb; struct btrfs_fs_info *info; struct list_head rbio_list; struct btrfs_work work; }; /* * rbios on the plug list are sorted for easier merging. */ static int plug_cmp(void *priv, struct list_head *a, struct list_head *b) { struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, plug_list); struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, plug_list); u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; if (a_sector < b_sector) return -1; if (a_sector > b_sector) return 1; return 0; } static void run_plug(struct btrfs_plug_cb *plug) { struct btrfs_raid_bio *cur; struct btrfs_raid_bio *last = NULL; /* * sort our plug list then try to merge * everything we can in hopes of creating full * stripes. */ list_sort(NULL, &plug->rbio_list, plug_cmp); while (!list_empty(&plug->rbio_list)) { cur = list_entry(plug->rbio_list.next, struct btrfs_raid_bio, plug_list); list_del_init(&cur->plug_list); if (rbio_is_full(cur)) { /* we have a full stripe, send it down */ full_stripe_write(cur); continue; } if (last) { if (rbio_can_merge(last, cur)) { merge_rbio(last, cur); __free_raid_bio(cur); continue; } __raid56_parity_write(last); } last = cur; } if (last) { __raid56_parity_write(last); } kfree(plug); } /* * if the unplug comes from schedule, we have to push the * work off to a helper thread */ static void unplug_work(struct btrfs_work *work) { struct btrfs_plug_cb *plug; plug = container_of(work, struct btrfs_plug_cb, work); run_plug(plug); } static void btrfs_raid_unplug(struct blk_plug_cb *cb, bool from_schedule) { struct btrfs_plug_cb *plug; plug = container_of(cb, struct btrfs_plug_cb, cb); if (from_schedule) { btrfs_init_work(&plug->work, btrfs_rmw_helper, unplug_work, NULL, NULL); btrfs_queue_work(plug->info->rmw_workers, &plug->work); return; } run_plug(plug); } /* * our main entry point for writes from the rest of the FS. */ int raid56_parity_write(struct btrfs_root *root, struct bio *bio, struct btrfs_bio *bbio, u64 stripe_len) { struct btrfs_raid_bio *rbio; struct btrfs_plug_cb *plug = NULL; struct blk_plug_cb *cb; int ret; rbio = alloc_rbio(root, bbio, stripe_len); if (IS_ERR(rbio)) { btrfs_put_bbio(bbio); return PTR_ERR(rbio); } bio_list_add(&rbio->bio_list, bio); rbio->bio_list_bytes = bio->bi_iter.bi_size; rbio->operation = BTRFS_RBIO_WRITE; btrfs_bio_counter_inc_noblocked(root->fs_info); rbio->generic_bio_cnt = 1; /* * don't plug on full rbios, just get them out the door * as quickly as we can */ if (rbio_is_full(rbio)) { ret = full_stripe_write(rbio); if (ret) btrfs_bio_counter_dec(root->fs_info); return ret; } cb = blk_check_plugged(btrfs_raid_unplug, root->fs_info, sizeof(*plug)); if (cb) { plug = container_of(cb, struct btrfs_plug_cb, cb); if (!plug->info) { plug->info = root->fs_info; INIT_LIST_HEAD(&plug->rbio_list); } list_add_tail(&rbio->plug_list, &plug->rbio_list); ret = 0; } else { ret = __raid56_parity_write(rbio); if (ret) btrfs_bio_counter_dec(root->fs_info); } return ret; } /* * all parity reconstruction happens here. We've read in everything * we can find from the drives and this does the heavy lifting of * sorting the good from the bad. */ static void __raid_recover_end_io(struct btrfs_raid_bio *rbio) { int pagenr, stripe; void **pointers; int faila = -1, failb = -1; struct page *page; int err; int i; pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); if (!pointers) { err = -ENOMEM; goto cleanup_io; } faila = rbio->faila; failb = rbio->failb; if (rbio->operation == BTRFS_RBIO_READ_REBUILD || rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { spin_lock_irq(&rbio->bio_list_lock); set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); spin_unlock_irq(&rbio->bio_list_lock); } index_rbio_pages(rbio); for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { /* * Now we just use bitmap to mark the horizontal stripes in * which we have data when doing parity scrub. */ if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && !test_bit(pagenr, rbio->dbitmap)) continue; /* setup our array of pointers with pages * from each stripe */ for (stripe = 0; stripe < rbio->real_stripes; stripe++) { /* * if we're rebuilding a read, we have to use * pages from the bio list */ if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && (stripe == faila || stripe == failb)) { page = page_in_rbio(rbio, stripe, pagenr, 0); } else { page = rbio_stripe_page(rbio, stripe, pagenr); } pointers[stripe] = kmap(page); } /* all raid6 handling here */ if (rbio->bbio->map_type & BTRFS_BLOCK_GROUP_RAID6) { /* * single failure, rebuild from parity raid5 * style */ if (failb < 0) { if (faila == rbio->nr_data) { /* * Just the P stripe has failed, without * a bad data or Q stripe. * TODO, we should redo the xor here. */ err = -EIO; goto cleanup; } /* * a single failure in raid6 is rebuilt * in the pstripe code below */ goto pstripe; } /* make sure our ps and qs are in order */ if (faila > failb) { int tmp = failb; failb = faila; faila = tmp; } /* if the q stripe is failed, do a pstripe reconstruction * from the xors. * If both the q stripe and the P stripe are failed, we're * here due to a crc mismatch and we can't give them the * data they want */ if (rbio->bbio->raid_map[failb] == RAID6_Q_STRIPE) { if (rbio->bbio->raid_map[faila] == RAID5_P_STRIPE) { err = -EIO; goto cleanup; } /* * otherwise we have one bad data stripe and * a good P stripe. raid5! */ goto pstripe; } if (rbio->bbio->raid_map[failb] == RAID5_P_STRIPE) { raid6_datap_recov(rbio->real_stripes, PAGE_SIZE, faila, pointers); } else { raid6_2data_recov(rbio->real_stripes, PAGE_SIZE, faila, failb, pointers); } } else { void *p; /* rebuild from P stripe here (raid5 or raid6) */ BUG_ON(failb != -1); pstripe: /* Copy parity block into failed block to start with */ memcpy(pointers[faila], pointers[rbio->nr_data], PAGE_SIZE); /* rearrange the pointer array */ p = pointers[faila]; for (stripe = faila; stripe < rbio->nr_data - 1; stripe++) pointers[stripe] = pointers[stripe + 1]; pointers[rbio->nr_data - 1] = p; /* xor in the rest */ run_xor(pointers, rbio->nr_data - 1, PAGE_SIZE); } /* if we're doing this rebuild as part of an rmw, go through * and set all of our private rbio pages in the * failed stripes as uptodate. This way finish_rmw will * know they can be trusted. If this was a read reconstruction, * other endio functions will fiddle the uptodate bits */ if (rbio->operation == BTRFS_RBIO_WRITE) { for (i = 0; i < rbio->stripe_npages; i++) { if (faila != -1) { page = rbio_stripe_page(rbio, faila, i); SetPageUptodate(page); } if (failb != -1) { page = rbio_stripe_page(rbio, failb, i); SetPageUptodate(page); } } } for (stripe = 0; stripe < rbio->real_stripes; stripe++) { /* * if we're rebuilding a read, we have to use * pages from the bio list */ if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || rbio->operation == BTRFS_RBIO_REBUILD_MISSING) && (stripe == faila || stripe == failb)) { page = page_in_rbio(rbio, stripe, pagenr, 0); } else { page = rbio_stripe_page(rbio, stripe, pagenr); } kunmap(page); } } err = 0; cleanup: kfree(pointers); cleanup_io: if (rbio->operation == BTRFS_RBIO_READ_REBUILD) { if (err == 0) cache_rbio_pages(rbio); else clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); rbio_orig_end_io(rbio, err); } else if (rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { rbio_orig_end_io(rbio, err); } else if (err == 0) { rbio->faila = -1; rbio->failb = -1; if (rbio->operation == BTRFS_RBIO_WRITE) finish_rmw(rbio); else if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB) finish_parity_scrub(rbio, 0); else BUG(); } else { rbio_orig_end_io(rbio, err); } } /* * This is called only for stripes we've read from disk to * reconstruct the parity. */ static void raid_recover_end_io(struct bio *bio) { struct btrfs_raid_bio *rbio = bio->bi_private; /* * we only read stripe pages off the disk, set them * up to date if there were no errors */ if (bio->bi_error) fail_bio_stripe(rbio, bio); else set_bio_pages_uptodate(bio); bio_put(bio); if (!atomic_dec_and_test(&rbio->stripes_pending)) return; if (atomic_read(&rbio->error) > rbio->bbio->max_errors) rbio_orig_end_io(rbio, -EIO); else __raid_recover_end_io(rbio); } /* * reads everything we need off the disk to reconstruct * the parity. endio handlers trigger final reconstruction * when the IO is done. * * This is used both for reads from the higher layers and for * parity construction required to finish a rmw cycle. */ static int __raid56_parity_recover(struct btrfs_raid_bio *rbio) { int bios_to_read = 0; struct bio_list bio_list; int ret; int pagenr; int stripe; struct bio *bio; bio_list_init(&bio_list); ret = alloc_rbio_pages(rbio); if (ret) goto cleanup; atomic_set(&rbio->error, 0); /* * read everything that hasn't failed. Thanks to the * stripe cache, it is possible that some or all of these * pages are going to be uptodate. */ for (stripe = 0; stripe < rbio->real_stripes; stripe++) { if (rbio->faila == stripe || rbio->failb == stripe) { atomic_inc(&rbio->error); continue; } for (pagenr = 0; pagenr < rbio->stripe_npages; pagenr++) { struct page *p; /* * the rmw code may have already read this * page in */ p = rbio_stripe_page(rbio, stripe, pagenr); if (PageUptodate(p)) continue; ret = rbio_add_io_page(rbio, &bio_list, rbio_stripe_page(rbio, stripe, pagenr), stripe, pagenr, rbio->stripe_len); if (ret < 0) goto cleanup; } } bios_to_read = bio_list_size(&bio_list); if (!bios_to_read) { /* * we might have no bios to read just because the pages * were up to date, or we might have no bios to read because * the devices were gone. */ if (atomic_read(&rbio->error) <= rbio->bbio->max_errors) { __raid_recover_end_io(rbio); goto out; } else { goto cleanup; } } /* * the bbio may be freed once we submit the last bio. Make sure * not to touch it after that */ atomic_set(&rbio->stripes_pending, bios_to_read); while (1) { bio = bio_list_pop(&bio_list); if (!bio) break; bio->bi_private = rbio; bio->bi_end_io = raid_recover_end_io; bio_set_op_attrs(bio, REQ_OP_READ, 0); btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); submit_bio(bio); } out: return 0; cleanup: if (rbio->operation == BTRFS_RBIO_READ_REBUILD || rbio->operation == BTRFS_RBIO_REBUILD_MISSING) rbio_orig_end_io(rbio, -EIO); return -EIO; } /* * the main entry point for reads from the higher layers. This * is really only called when the normal read path had a failure, * so we assume the bio they send down corresponds to a failed part * of the drive. */ int raid56_parity_recover(struct btrfs_root *root, struct bio *bio, struct btrfs_bio *bbio, u64 stripe_len, int mirror_num, int generic_io) { struct btrfs_raid_bio *rbio; int ret; rbio = alloc_rbio(root, bbio, stripe_len); if (IS_ERR(rbio)) { if (generic_io) btrfs_put_bbio(bbio); return PTR_ERR(rbio); } rbio->operation = BTRFS_RBIO_READ_REBUILD; bio_list_add(&rbio->bio_list, bio); rbio->bio_list_bytes = bio->bi_iter.bi_size; rbio->faila = find_logical_bio_stripe(rbio, bio); if (rbio->faila == -1) { BUG(); if (generic_io) btrfs_put_bbio(bbio); kfree(rbio); return -EIO; } if (generic_io) { btrfs_bio_counter_inc_noblocked(root->fs_info); rbio->generic_bio_cnt = 1; } else { btrfs_get_bbio(bbio); } /* * reconstruct from the q stripe if they are * asking for mirror 3 */ if (mirror_num == 3) rbio->failb = rbio->real_stripes - 2; ret = lock_stripe_add(rbio); /* * __raid56_parity_recover will end the bio with * any errors it hits. We don't want to return * its error value up the stack because our caller * will end up calling bio_endio with any nonzero * return */ if (ret == 0) __raid56_parity_recover(rbio); /* * our rbio has been added to the list of * rbios that will be handled after the * currently lock owner is done */ return 0; } static void rmw_work(struct btrfs_work *work) { struct btrfs_raid_bio *rbio; rbio = container_of(work, struct btrfs_raid_bio, work); raid56_rmw_stripe(rbio); } static void read_rebuild_work(struct btrfs_work *work) { struct btrfs_raid_bio *rbio; rbio = container_of(work, struct btrfs_raid_bio, work); __raid56_parity_recover(rbio); } /* * The following code is used to scrub/replace the parity stripe * * Note: We need make sure all the pages that add into the scrub/replace * raid bio are correct and not be changed during the scrub/replace. That * is those pages just hold metadata or file data with checksum. */ struct btrfs_raid_bio * raid56_parity_alloc_scrub_rbio(struct btrfs_root *root, struct bio *bio, struct btrfs_bio *bbio, u64 stripe_len, struct btrfs_device *scrub_dev, unsigned long *dbitmap, int stripe_nsectors) { struct btrfs_raid_bio *rbio; int i; rbio = alloc_rbio(root, bbio, stripe_len); if (IS_ERR(rbio)) return NULL; bio_list_add(&rbio->bio_list, bio); /* * This is a special bio which is used to hold the completion handler * and make the scrub rbio is similar to the other types */ ASSERT(!bio->bi_iter.bi_size); rbio->operation = BTRFS_RBIO_PARITY_SCRUB; for (i = 0; i < rbio->real_stripes; i++) { if (bbio->stripes[i].dev == scrub_dev) { rbio->scrubp = i; break; } } /* Now we just support the sectorsize equals to page size */ ASSERT(root->sectorsize == PAGE_SIZE); ASSERT(rbio->stripe_npages == stripe_nsectors); bitmap_copy(rbio->dbitmap, dbitmap, stripe_nsectors); return rbio; } /* Used for both parity scrub and missing. */ void raid56_add_scrub_pages(struct btrfs_raid_bio *rbio, struct page *page, u64 logical) { int stripe_offset; int index; ASSERT(logical >= rbio->bbio->raid_map[0]); ASSERT(logical + PAGE_SIZE <= rbio->bbio->raid_map[0] + rbio->stripe_len * rbio->nr_data); stripe_offset = (int)(logical - rbio->bbio->raid_map[0]); index = stripe_offset >> PAGE_SHIFT; rbio->bio_pages[index] = page; } /* * We just scrub the parity that we have correct data on the same horizontal, * so we needn't allocate all pages for all the stripes. */ static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) { int i; int bit; int index; struct page *page; for_each_set_bit(bit, rbio->dbitmap, rbio->stripe_npages) { for (i = 0; i < rbio->real_stripes; i++) { index = i * rbio->stripe_npages + bit; if (rbio->stripe_pages[index]) continue; page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); if (!page) return -ENOMEM; rbio->stripe_pages[index] = page; } } return 0; } static noinline void finish_parity_scrub(struct btrfs_raid_bio *rbio, int need_check) { struct btrfs_bio *bbio = rbio->bbio; void *pointers[rbio->real_stripes]; DECLARE_BITMAP(pbitmap, rbio->stripe_npages); int nr_data = rbio->nr_data; int stripe; int pagenr; int p_stripe = -1; int q_stripe = -1; struct page *p_page = NULL; struct page *q_page = NULL; struct bio_list bio_list; struct bio *bio; int is_replace = 0; int ret; bio_list_init(&bio_list); if (rbio->real_stripes - rbio->nr_data == 1) { p_stripe = rbio->real_stripes - 1; } else if (rbio->real_stripes - rbio->nr_data == 2) { p_stripe = rbio->real_stripes - 2; q_stripe = rbio->real_stripes - 1; } else { BUG(); } if (bbio->num_tgtdevs && bbio->tgtdev_map[rbio->scrubp]) { is_replace = 1; bitmap_copy(pbitmap, rbio->dbitmap, rbio->stripe_npages); } /* * Because the higher layers(scrubber) are unlikely to * use this area of the disk again soon, so don't cache * it. */ clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); if (!need_check) goto writeback; p_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); if (!p_page) goto cleanup; SetPageUptodate(p_page); if (q_stripe != -1) { q_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM); if (!q_page) { __free_page(p_page); goto cleanup; } SetPageUptodate(q_page); } atomic_set(&rbio->error, 0); for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { struct page *p; void *parity; /* first collect one page from each data stripe */ for (stripe = 0; stripe < nr_data; stripe++) { p = page_in_rbio(rbio, stripe, pagenr, 0); pointers[stripe] = kmap(p); } /* then add the parity stripe */ pointers[stripe++] = kmap(p_page); if (q_stripe != -1) { /* * raid6, add the qstripe and call the * library function to fill in our p/q */ pointers[stripe++] = kmap(q_page); raid6_call.gen_syndrome(rbio->real_stripes, PAGE_SIZE, pointers); } else { /* raid5 */ memcpy(pointers[nr_data], pointers[0], PAGE_SIZE); run_xor(pointers + 1, nr_data - 1, PAGE_SIZE); } /* Check scrubbing parity and repair it */ p = rbio_stripe_page(rbio, rbio->scrubp, pagenr); parity = kmap(p); if (memcmp(parity, pointers[rbio->scrubp], PAGE_SIZE)) memcpy(parity, pointers[rbio->scrubp], PAGE_SIZE); else /* Parity is right, needn't writeback */ bitmap_clear(rbio->dbitmap, pagenr, 1); kunmap(p); for (stripe = 0; stripe < rbio->real_stripes; stripe++) kunmap(page_in_rbio(rbio, stripe, pagenr, 0)); } __free_page(p_page); if (q_page) __free_page(q_page); writeback: /* * time to start writing. Make bios for everything from the * higher layers (the bio_list in our rbio) and our p/q. Ignore * everything else. */ for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { struct page *page; page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); ret = rbio_add_io_page(rbio, &bio_list, page, rbio->scrubp, pagenr, rbio->stripe_len); if (ret) goto cleanup; } if (!is_replace) goto submit_write; for_each_set_bit(pagenr, pbitmap, rbio->stripe_npages) { struct page *page; page = rbio_stripe_page(rbio, rbio->scrubp, pagenr); ret = rbio_add_io_page(rbio, &bio_list, page, bbio->tgtdev_map[rbio->scrubp], pagenr, rbio->stripe_len); if (ret) goto cleanup; } submit_write: nr_data = bio_list_size(&bio_list); if (!nr_data) { /* Every parity is right */ rbio_orig_end_io(rbio, 0); return; } atomic_set(&rbio->stripes_pending, nr_data); while (1) { bio = bio_list_pop(&bio_list); if (!bio) break; bio->bi_private = rbio; bio->bi_end_io = raid_write_end_io; bio_set_op_attrs(bio, REQ_OP_WRITE, 0); submit_bio(bio); } return; cleanup: rbio_orig_end_io(rbio, -EIO); } static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) { if (stripe >= 0 && stripe < rbio->nr_data) return 1; return 0; } /* * While we're doing the parity check and repair, we could have errors * in reading pages off the disk. This checks for errors and if we're * not able to read the page it'll trigger parity reconstruction. The * parity scrub will be finished after we've reconstructed the failed * stripes */ static void validate_rbio_for_parity_scrub(struct btrfs_raid_bio *rbio) { if (atomic_read(&rbio->error) > rbio->bbio->max_errors) goto cleanup; if (rbio->faila >= 0 || rbio->failb >= 0) { int dfail = 0, failp = -1; if (is_data_stripe(rbio, rbio->faila)) dfail++; else if (is_parity_stripe(rbio->faila)) failp = rbio->faila; if (is_data_stripe(rbio, rbio->failb)) dfail++; else if (is_parity_stripe(rbio->failb)) failp = rbio->failb; /* * Because we can not use a scrubbing parity to repair * the data, so the capability of the repair is declined. * (In the case of RAID5, we can not repair anything) */ if (dfail > rbio->bbio->max_errors - 1) goto cleanup; /* * If all data is good, only parity is correctly, just * repair the parity. */ if (dfail == 0) { finish_parity_scrub(rbio, 0); return; } /* * Here means we got one corrupted data stripe and one * corrupted parity on RAID6, if the corrupted parity * is scrubbing parity, luckily, use the other one to repair * the data, or we can not repair the data stripe. */ if (failp != rbio->scrubp) goto cleanup; __raid_recover_end_io(rbio); } else { finish_parity_scrub(rbio, 1); } return; cleanup: rbio_orig_end_io(rbio, -EIO); } /* * end io for the read phase of the rmw cycle. All the bios here are physical * stripe bios we've read from the disk so we can recalculate the parity of the * stripe. * * This will usually kick off finish_rmw once all the bios are read in, but it * may trigger parity reconstruction if we had any errors along the way */ static void raid56_parity_scrub_end_io(struct bio *bio) { struct btrfs_raid_bio *rbio = bio->bi_private; if (bio->bi_error) fail_bio_stripe(rbio, bio); else set_bio_pages_uptodate(bio); bio_put(bio); if (!atomic_dec_and_test(&rbio->stripes_pending)) return; /* * this will normally call finish_rmw to start our write * but if there are any failed stripes we'll reconstruct * from parity first */ validate_rbio_for_parity_scrub(rbio); } static void raid56_parity_scrub_stripe(struct btrfs_raid_bio *rbio) { int bios_to_read = 0; struct bio_list bio_list; int ret; int pagenr; int stripe; struct bio *bio; ret = alloc_rbio_essential_pages(rbio); if (ret) goto cleanup; bio_list_init(&bio_list); atomic_set(&rbio->error, 0); /* * build a list of bios to read all the missing parts of this * stripe */ for (stripe = 0; stripe < rbio->real_stripes; stripe++) { for_each_set_bit(pagenr, rbio->dbitmap, rbio->stripe_npages) { struct page *page; /* * we want to find all the pages missing from * the rbio and read them from the disk. If * page_in_rbio finds a page in the bio list * we don't need to read it off the stripe. */ page = page_in_rbio(rbio, stripe, pagenr, 1); if (page) continue; page = rbio_stripe_page(rbio, stripe, pagenr); /* * the bio cache may have handed us an uptodate * page. If so, be happy and use it */ if (PageUptodate(page)) continue; ret = rbio_add_io_page(rbio, &bio_list, page, stripe, pagenr, rbio->stripe_len); if (ret) goto cleanup; } } bios_to_read = bio_list_size(&bio_list); if (!bios_to_read) { /* * this can happen if others have merged with * us, it means there is nothing left to read. * But if there are missing devices it may not be * safe to do the full stripe write yet. */ goto finish; } /* * the bbio may be freed once we submit the last bio. Make sure * not to touch it after that */ atomic_set(&rbio->stripes_pending, bios_to_read); while (1) { bio = bio_list_pop(&bio_list); if (!bio) break; bio->bi_private = rbio; bio->bi_end_io = raid56_parity_scrub_end_io; bio_set_op_attrs(bio, REQ_OP_READ, 0); btrfs_bio_wq_end_io(rbio->fs_info, bio, BTRFS_WQ_ENDIO_RAID56); submit_bio(bio); } /* the actual write will happen once the reads are done */ return; cleanup: rbio_orig_end_io(rbio, -EIO); return; finish: validate_rbio_for_parity_scrub(rbio); } static void scrub_parity_work(struct btrfs_work *work) { struct btrfs_raid_bio *rbio; rbio = container_of(work, struct btrfs_raid_bio, work); raid56_parity_scrub_stripe(rbio); } static void async_scrub_parity(struct btrfs_raid_bio *rbio) { btrfs_init_work(&rbio->work, btrfs_rmw_helper, scrub_parity_work, NULL, NULL); btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); } void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) { if (!lock_stripe_add(rbio)) async_scrub_parity(rbio); } /* The following code is used for dev replace of a missing RAID 5/6 device. */ struct btrfs_raid_bio * raid56_alloc_missing_rbio(struct btrfs_root *root, struct bio *bio, struct btrfs_bio *bbio, u64 length) { struct btrfs_raid_bio *rbio; rbio = alloc_rbio(root, bbio, length); if (IS_ERR(rbio)) return NULL; rbio->operation = BTRFS_RBIO_REBUILD_MISSING; bio_list_add(&rbio->bio_list, bio); /* * This is a special bio which is used to hold the completion handler * and make the scrub rbio is similar to the other types */ ASSERT(!bio->bi_iter.bi_size); rbio->faila = find_logical_bio_stripe(rbio, bio); if (rbio->faila == -1) { BUG(); kfree(rbio); return NULL; } return rbio; } static void missing_raid56_work(struct btrfs_work *work) { struct btrfs_raid_bio *rbio; rbio = container_of(work, struct btrfs_raid_bio, work); __raid56_parity_recover(rbio); } static void async_missing_raid56(struct btrfs_raid_bio *rbio) { btrfs_init_work(&rbio->work, btrfs_rmw_helper, missing_raid56_work, NULL, NULL); btrfs_queue_work(rbio->fs_info->rmw_workers, &rbio->work); } void raid56_submit_missing_rbio(struct btrfs_raid_bio *rbio) { if (!lock_stripe_add(rbio)) async_missing_raid56(rbio); } |