Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 | // SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2012 Fusion-io All rights reserved. * Copyright (C) 2012 Intel Corp. All rights reserved. */ #include <linux/sched.h> #include <linux/bio.h> #include <linux/slab.h> #include <linux/blkdev.h> #include <linux/raid/pq.h> #include <linux/hash.h> #include <linux/list_sort.h> #include <linux/raid/xor.h> #include <linux/mm.h> #include "messages.h" #include "misc.h" #include "ctree.h" #include "disk-io.h" #include "volumes.h" #include "raid56.h" #include "async-thread.h" #include "file-item.h" #include "btrfs_inode.h" /* set when additional merges to this rbio are not allowed */ #define RBIO_RMW_LOCKED_BIT 1 /* * set when this rbio is sitting in the hash, but it is just a cache * of past RMW */ #define RBIO_CACHE_BIT 2 /* * set when it is safe to trust the stripe_pages for caching */ #define RBIO_CACHE_READY_BIT 3 #define RBIO_CACHE_SIZE 1024 #define BTRFS_STRIPE_HASH_TABLE_BITS 11 /* Used by the raid56 code to lock stripes for read/modify/write */ struct btrfs_stripe_hash { struct list_head hash_list; spinlock_t lock; }; /* Used by the raid56 code to lock stripes for read/modify/write */ struct btrfs_stripe_hash_table { struct list_head stripe_cache; spinlock_t cache_lock; int cache_size; struct btrfs_stripe_hash table[]; }; /* * A bvec like structure to present a sector inside a page. * * Unlike bvec we don't need bvlen, as it's fixed to sectorsize. */ struct sector_ptr { struct page *page; unsigned int pgoff:24; unsigned int uptodate:8; }; static void rmw_rbio_work(struct work_struct *work); static void rmw_rbio_work_locked(struct work_struct *work); static void index_rbio_pages(struct btrfs_raid_bio *rbio); static int alloc_rbio_pages(struct btrfs_raid_bio *rbio); static int finish_parity_scrub(struct btrfs_raid_bio *rbio); static void scrub_rbio_work_locked(struct work_struct *work); static void free_raid_bio_pointers(struct btrfs_raid_bio *rbio) { bitmap_free(rbio->error_bitmap); kfree(rbio->stripe_pages); kfree(rbio->bio_sectors); kfree(rbio->stripe_sectors); kfree(rbio->finish_pointers); } static void free_raid_bio(struct btrfs_raid_bio *rbio) { int i; if (!refcount_dec_and_test(&rbio->refs)) return; WARN_ON(!list_empty(&rbio->stripe_cache)); WARN_ON(!list_empty(&rbio->hash_list)); WARN_ON(!bio_list_empty(&rbio->bio_list)); for (i = 0; i < rbio->nr_pages; i++) { if (rbio->stripe_pages[i]) { __free_page(rbio->stripe_pages[i]); rbio->stripe_pages[i] = NULL; } } btrfs_put_bioc(rbio->bioc); free_raid_bio_pointers(rbio); kfree(rbio); } static void start_async_work(struct btrfs_raid_bio *rbio, work_func_t work_func) { INIT_WORK(&rbio->work, work_func); queue_work(rbio->bioc->fs_info->rmw_workers, &rbio->work); } /* * the stripe hash table is used for locking, and to collect * bios in hopes of making a full stripe */ int btrfs_alloc_stripe_hash_table(struct btrfs_fs_info *info) { struct btrfs_stripe_hash_table *table; struct btrfs_stripe_hash_table *x; struct btrfs_stripe_hash *cur; struct btrfs_stripe_hash *h; int num_entries = 1 << BTRFS_STRIPE_HASH_TABLE_BITS; int i; if (info->stripe_hash_table) return 0; /* * The table is large, starting with order 4 and can go as high as * order 7 in case lock debugging is turned on. * * Try harder to allocate and fallback to vmalloc to lower the chance * of a failing mount. */ table = kvzalloc(struct_size(table, table, num_entries), GFP_KERNEL); if (!table) return -ENOMEM; spin_lock_init(&table->cache_lock); INIT_LIST_HEAD(&table->stripe_cache); h = table->table; for (i = 0; i < num_entries; i++) { cur = h + i; INIT_LIST_HEAD(&cur->hash_list); spin_lock_init(&cur->lock); } x = cmpxchg(&info->stripe_hash_table, NULL, table); kvfree(x); return 0; } /* * caching an rbio means to copy anything from the * bio_sectors array into the stripe_pages array. We * use the page uptodate bit in the stripe cache array * to indicate if it has valid data * * once the caching is done, we set the cache ready * bit. */ static void cache_rbio_pages(struct btrfs_raid_bio *rbio) { int i; int ret; ret = alloc_rbio_pages(rbio); if (ret) return; for (i = 0; i < rbio->nr_sectors; i++) { /* Some range not covered by bio (partial write), skip it */ if (!rbio->bio_sectors[i].page) { /* * Even if the sector is not covered by bio, if it is * a data sector it should still be uptodate as it is * read from disk. */ if (i < rbio->nr_data * rbio->stripe_nsectors) ASSERT(rbio->stripe_sectors[i].uptodate); continue; } ASSERT(rbio->stripe_sectors[i].page); memcpy_page(rbio->stripe_sectors[i].page, rbio->stripe_sectors[i].pgoff, rbio->bio_sectors[i].page, rbio->bio_sectors[i].pgoff, rbio->bioc->fs_info->sectorsize); rbio->stripe_sectors[i].uptodate = 1; } set_bit(RBIO_CACHE_READY_BIT, &rbio->flags); } /* * we hash on the first logical address of the stripe */ static int rbio_bucket(struct btrfs_raid_bio *rbio) { u64 num = rbio->bioc->full_stripe_logical; /* * we shift down quite a bit. We're using byte * addressing, and most of the lower bits are zeros. * This tends to upset hash_64, and it consistently * returns just one or two different values. * * shifting off the lower bits fixes things. */ return hash_64(num >> 16, BTRFS_STRIPE_HASH_TABLE_BITS); } static bool full_page_sectors_uptodate(struct btrfs_raid_bio *rbio, unsigned int page_nr) { const u32 sectorsize = rbio->bioc->fs_info->sectorsize; const u32 sectors_per_page = PAGE_SIZE / sectorsize; int i; ASSERT(page_nr < rbio->nr_pages); for (i = sectors_per_page * page_nr; i < sectors_per_page * page_nr + sectors_per_page; i++) { if (!rbio->stripe_sectors[i].uptodate) return false; } return true; } /* * Update the stripe_sectors[] array to use correct page and pgoff * * Should be called every time any page pointer in stripes_pages[] got modified. */ static void index_stripe_sectors(struct btrfs_raid_bio *rbio) { const u32 sectorsize = rbio->bioc->fs_info->sectorsize; u32 offset; int i; for (i = 0, offset = 0; i < rbio->nr_sectors; i++, offset += sectorsize) { int page_index = offset >> PAGE_SHIFT; ASSERT(page_index < rbio->nr_pages); rbio->stripe_sectors[i].page = rbio->stripe_pages[page_index]; rbio->stripe_sectors[i].pgoff = offset_in_page(offset); } } static void steal_rbio_page(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest, int page_nr) { const u32 sectorsize = src->bioc->fs_info->sectorsize; const u32 sectors_per_page = PAGE_SIZE / sectorsize; int i; if (dest->stripe_pages[page_nr]) __free_page(dest->stripe_pages[page_nr]); dest->stripe_pages[page_nr] = src->stripe_pages[page_nr]; src->stripe_pages[page_nr] = NULL; /* Also update the sector->uptodate bits. */ for (i = sectors_per_page * page_nr; i < sectors_per_page * page_nr + sectors_per_page; i++) dest->stripe_sectors[i].uptodate = true; } static bool is_data_stripe_page(struct btrfs_raid_bio *rbio, int page_nr) { const int sector_nr = (page_nr << PAGE_SHIFT) >> rbio->bioc->fs_info->sectorsize_bits; /* * We have ensured PAGE_SIZE is aligned with sectorsize, thus * we won't have a page which is half data half parity. * * Thus if the first sector of the page belongs to data stripes, then * the full page belongs to data stripes. */ return (sector_nr < rbio->nr_data * rbio->stripe_nsectors); } /* * Stealing an rbio means taking all the uptodate pages from the stripe array * in the source rbio and putting them into the destination rbio. * * This will also update the involved stripe_sectors[] which are referring to * the old pages. */ static void steal_rbio(struct btrfs_raid_bio *src, struct btrfs_raid_bio *dest) { int i; if (!test_bit(RBIO_CACHE_READY_BIT, &src->flags)) return; for (i = 0; i < dest->nr_pages; i++) { struct page *p = src->stripe_pages[i]; /* * We don't need to steal P/Q pages as they will always be * regenerated for RMW or full write anyway. */ if (!is_data_stripe_page(src, i)) continue; /* * If @src already has RBIO_CACHE_READY_BIT, it should have * all data stripe pages present and uptodate. */ ASSERT(p); ASSERT(full_page_sectors_uptodate(src, i)); steal_rbio_page(src, dest, i); } index_stripe_sectors(dest); index_stripe_sectors(src); } /* * merging means we take the bio_list from the victim and * splice it into the destination. The victim should * be discarded afterwards. * * must be called with dest->rbio_list_lock held */ static void merge_rbio(struct btrfs_raid_bio *dest, struct btrfs_raid_bio *victim) { bio_list_merge(&dest->bio_list, &victim->bio_list); dest->bio_list_bytes += victim->bio_list_bytes; /* Also inherit the bitmaps from @victim. */ bitmap_or(&dest->dbitmap, &victim->dbitmap, &dest->dbitmap, dest->stripe_nsectors); bio_list_init(&victim->bio_list); } /* * used to prune items that are in the cache. The caller * must hold the hash table lock. */ static void __remove_rbio_from_cache(struct btrfs_raid_bio *rbio) { int bucket = rbio_bucket(rbio); struct btrfs_stripe_hash_table *table; struct btrfs_stripe_hash *h; int freeit = 0; /* * check the bit again under the hash table lock. */ if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) return; table = rbio->bioc->fs_info->stripe_hash_table; h = table->table + bucket; /* hold the lock for the bucket because we may be * removing it from the hash table */ spin_lock(&h->lock); /* * hold the lock for the bio list because we need * to make sure the bio list is empty */ spin_lock(&rbio->bio_list_lock); if (test_and_clear_bit(RBIO_CACHE_BIT, &rbio->flags)) { list_del_init(&rbio->stripe_cache); table->cache_size -= 1; freeit = 1; /* if the bio list isn't empty, this rbio is * still involved in an IO. We take it out * of the cache list, and drop the ref that * was held for the list. * * If the bio_list was empty, we also remove * the rbio from the hash_table, and drop * the corresponding ref */ if (bio_list_empty(&rbio->bio_list)) { if (!list_empty(&rbio->hash_list)) { list_del_init(&rbio->hash_list); refcount_dec(&rbio->refs); BUG_ON(!list_empty(&rbio->plug_list)); } } } spin_unlock(&rbio->bio_list_lock); spin_unlock(&h->lock); if (freeit) free_raid_bio(rbio); } /* * prune a given rbio from the cache */ static void remove_rbio_from_cache(struct btrfs_raid_bio *rbio) { struct btrfs_stripe_hash_table *table; if (!test_bit(RBIO_CACHE_BIT, &rbio->flags)) return; table = rbio->bioc->fs_info->stripe_hash_table; spin_lock(&table->cache_lock); __remove_rbio_from_cache(rbio); spin_unlock(&table->cache_lock); } /* * remove everything in the cache */ static void btrfs_clear_rbio_cache(struct btrfs_fs_info *info) { struct btrfs_stripe_hash_table *table; struct btrfs_raid_bio *rbio; table = info->stripe_hash_table; spin_lock(&table->cache_lock); while (!list_empty(&table->stripe_cache)) { rbio = list_entry(table->stripe_cache.next, struct btrfs_raid_bio, stripe_cache); __remove_rbio_from_cache(rbio); } spin_unlock(&table->cache_lock); } /* * remove all cached entries and free the hash table * used by unmount */ void btrfs_free_stripe_hash_table(struct btrfs_fs_info *info) { if (!info->stripe_hash_table) return; btrfs_clear_rbio_cache(info); kvfree(info->stripe_hash_table); info->stripe_hash_table = NULL; } /* * insert an rbio into the stripe cache. It * must have already been prepared by calling * cache_rbio_pages * * If this rbio was already cached, it gets * moved to the front of the lru. * * If the size of the rbio cache is too big, we * prune an item. */ static void cache_rbio(struct btrfs_raid_bio *rbio) { struct btrfs_stripe_hash_table *table; if (!test_bit(RBIO_CACHE_READY_BIT, &rbio->flags)) return; table = rbio->bioc->fs_info->stripe_hash_table; spin_lock(&table->cache_lock); spin_lock(&rbio->bio_list_lock); /* bump our ref if we were not in the list before */ if (!test_and_set_bit(RBIO_CACHE_BIT, &rbio->flags)) refcount_inc(&rbio->refs); if (!list_empty(&rbio->stripe_cache)){ list_move(&rbio->stripe_cache, &table->stripe_cache); } else { list_add(&rbio->stripe_cache, &table->stripe_cache); table->cache_size += 1; } spin_unlock(&rbio->bio_list_lock); if (table->cache_size > RBIO_CACHE_SIZE) { struct btrfs_raid_bio *found; found = list_entry(table->stripe_cache.prev, struct btrfs_raid_bio, stripe_cache); if (found != rbio) __remove_rbio_from_cache(found); } spin_unlock(&table->cache_lock); } /* * helper function to run the xor_blocks api. It is only * able to do MAX_XOR_BLOCKS at a time, so we need to * loop through. */ static void run_xor(void **pages, int src_cnt, ssize_t len) { int src_off = 0; int xor_src_cnt = 0; void *dest = pages[src_cnt]; while(src_cnt > 0) { xor_src_cnt = min(src_cnt, MAX_XOR_BLOCKS); xor_blocks(xor_src_cnt, len, dest, pages + src_off); src_cnt -= xor_src_cnt; src_off += xor_src_cnt; } } /* * Returns true if the bio list inside this rbio covers an entire stripe (no * rmw required). */ static int rbio_is_full(struct btrfs_raid_bio *rbio) { unsigned long size = rbio->bio_list_bytes; int ret = 1; spin_lock(&rbio->bio_list_lock); if (size != rbio->nr_data * BTRFS_STRIPE_LEN) ret = 0; BUG_ON(size > rbio->nr_data * BTRFS_STRIPE_LEN); spin_unlock(&rbio->bio_list_lock); return ret; } /* * returns 1 if it is safe to merge two rbios together. * The merging is safe if the two rbios correspond to * the same stripe and if they are both going in the same * direction (read vs write), and if neither one is * locked for final IO * * The caller is responsible for locking such that * rmw_locked is safe to test */ static int rbio_can_merge(struct btrfs_raid_bio *last, struct btrfs_raid_bio *cur) { if (test_bit(RBIO_RMW_LOCKED_BIT, &last->flags) || test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) return 0; /* * we can't merge with cached rbios, since the * idea is that when we merge the destination * rbio is going to run our IO for us. We can * steal from cached rbios though, other functions * handle that. */ if (test_bit(RBIO_CACHE_BIT, &last->flags) || test_bit(RBIO_CACHE_BIT, &cur->flags)) return 0; if (last->bioc->full_stripe_logical != cur->bioc->full_stripe_logical) return 0; /* we can't merge with different operations */ if (last->operation != cur->operation) return 0; /* * We've need read the full stripe from the drive. * check and repair the parity and write the new results. * * We're not allowed to add any new bios to the * bio list here, anyone else that wants to * change this stripe needs to do their own rmw. */ if (last->operation == BTRFS_RBIO_PARITY_SCRUB) return 0; if (last->operation == BTRFS_RBIO_REBUILD_MISSING || last->operation == BTRFS_RBIO_READ_REBUILD) return 0; return 1; } static unsigned int rbio_stripe_sector_index(const struct btrfs_raid_bio *rbio, unsigned int stripe_nr, unsigned int sector_nr) { ASSERT(stripe_nr < rbio->real_stripes); ASSERT(sector_nr < rbio->stripe_nsectors); return stripe_nr * rbio->stripe_nsectors + sector_nr; } /* Return a sector from rbio->stripe_sectors, not from the bio list */ static struct sector_ptr *rbio_stripe_sector(const struct btrfs_raid_bio *rbio, unsigned int stripe_nr, unsigned int sector_nr) { return &rbio->stripe_sectors[rbio_stripe_sector_index(rbio, stripe_nr, sector_nr)]; } /* Grab a sector inside P stripe */ static struct sector_ptr *rbio_pstripe_sector(const struct btrfs_raid_bio *rbio, unsigned int sector_nr) { return rbio_stripe_sector(rbio, rbio->nr_data, sector_nr); } /* Grab a sector inside Q stripe, return NULL if not RAID6 */ static struct sector_ptr *rbio_qstripe_sector(const struct btrfs_raid_bio *rbio, unsigned int sector_nr) { if (rbio->nr_data + 1 == rbio->real_stripes) return NULL; return rbio_stripe_sector(rbio, rbio->nr_data + 1, sector_nr); } /* * The first stripe in the table for a logical address * has the lock. rbios are added in one of three ways: * * 1) Nobody has the stripe locked yet. The rbio is given * the lock and 0 is returned. The caller must start the IO * themselves. * * 2) Someone has the stripe locked, but we're able to merge * with the lock owner. The rbio is freed and the IO will * start automatically along with the existing rbio. 1 is returned. * * 3) Someone has the stripe locked, but we're not able to merge. * The rbio is added to the lock owner's plug list, or merged into * an rbio already on the plug list. When the lock owner unlocks, * the next rbio on the list is run and the IO is started automatically. * 1 is returned * * If we return 0, the caller still owns the rbio and must continue with * IO submission. If we return 1, the caller must assume the rbio has * already been freed. */ static noinline int lock_stripe_add(struct btrfs_raid_bio *rbio) { struct btrfs_stripe_hash *h; struct btrfs_raid_bio *cur; struct btrfs_raid_bio *pending; struct btrfs_raid_bio *freeit = NULL; struct btrfs_raid_bio *cache_drop = NULL; int ret = 0; h = rbio->bioc->fs_info->stripe_hash_table->table + rbio_bucket(rbio); spin_lock(&h->lock); list_for_each_entry(cur, &h->hash_list, hash_list) { if (cur->bioc->full_stripe_logical != rbio->bioc->full_stripe_logical) continue; spin_lock(&cur->bio_list_lock); /* Can we steal this cached rbio's pages? */ if (bio_list_empty(&cur->bio_list) && list_empty(&cur->plug_list) && test_bit(RBIO_CACHE_BIT, &cur->flags) && !test_bit(RBIO_RMW_LOCKED_BIT, &cur->flags)) { list_del_init(&cur->hash_list); refcount_dec(&cur->refs); steal_rbio(cur, rbio); cache_drop = cur; spin_unlock(&cur->bio_list_lock); goto lockit; } /* Can we merge into the lock owner? */ if (rbio_can_merge(cur, rbio)) { merge_rbio(cur, rbio); spin_unlock(&cur->bio_list_lock); freeit = rbio; ret = 1; goto out; } /* * We couldn't merge with the running rbio, see if we can merge * with the pending ones. We don't have to check for rmw_locked * because there is no way they are inside finish_rmw right now */ list_for_each_entry(pending, &cur->plug_list, plug_list) { if (rbio_can_merge(pending, rbio)) { merge_rbio(pending, rbio); spin_unlock(&cur->bio_list_lock); freeit = rbio; ret = 1; goto out; } } /* * No merging, put us on the tail of the plug list, our rbio * will be started with the currently running rbio unlocks */ list_add_tail(&rbio->plug_list, &cur->plug_list); spin_unlock(&cur->bio_list_lock); ret = 1; goto out; } lockit: refcount_inc(&rbio->refs); list_add(&rbio->hash_list, &h->hash_list); out: spin_unlock(&h->lock); if (cache_drop) remove_rbio_from_cache(cache_drop); if (freeit) free_raid_bio(freeit); return ret; } static void recover_rbio_work_locked(struct work_struct *work); /* * called as rmw or parity rebuild is completed. If the plug list has more * rbios waiting for this stripe, the next one on the list will be started */ static noinline void unlock_stripe(struct btrfs_raid_bio *rbio) { int bucket; struct btrfs_stripe_hash *h; int keep_cache = 0; bucket = rbio_bucket(rbio); h = rbio->bioc->fs_info->stripe_hash_table->table + bucket; if (list_empty(&rbio->plug_list)) cache_rbio(rbio); spin_lock(&h->lock); spin_lock(&rbio->bio_list_lock); if (!list_empty(&rbio->hash_list)) { /* * if we're still cached and there is no other IO * to perform, just leave this rbio here for others * to steal from later */ if (list_empty(&rbio->plug_list) && test_bit(RBIO_CACHE_BIT, &rbio->flags)) { keep_cache = 1; clear_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); BUG_ON(!bio_list_empty(&rbio->bio_list)); goto done; } list_del_init(&rbio->hash_list); refcount_dec(&rbio->refs); /* * we use the plug list to hold all the rbios * waiting for the chance to lock this stripe. * hand the lock over to one of them. */ if (!list_empty(&rbio->plug_list)) { struct btrfs_raid_bio *next; struct list_head *head = rbio->plug_list.next; next = list_entry(head, struct btrfs_raid_bio, plug_list); list_del_init(&rbio->plug_list); list_add(&next->hash_list, &h->hash_list); refcount_inc(&next->refs); spin_unlock(&rbio->bio_list_lock); spin_unlock(&h->lock); if (next->operation == BTRFS_RBIO_READ_REBUILD) start_async_work(next, recover_rbio_work_locked); else if (next->operation == BTRFS_RBIO_REBUILD_MISSING) { steal_rbio(rbio, next); start_async_work(next, recover_rbio_work_locked); } else if (next->operation == BTRFS_RBIO_WRITE) { steal_rbio(rbio, next); start_async_work(next, rmw_rbio_work_locked); } else if (next->operation == BTRFS_RBIO_PARITY_SCRUB) { steal_rbio(rbio, next); start_async_work(next, scrub_rbio_work_locked); } goto done_nolock; } } done: spin_unlock(&rbio->bio_list_lock); spin_unlock(&h->lock); done_nolock: if (!keep_cache) remove_rbio_from_cache(rbio); } static void rbio_endio_bio_list(struct bio *cur, blk_status_t err) { struct bio *next; while (cur) { next = cur->bi_next; cur->bi_next = NULL; cur->bi_status = err; bio_endio(cur); cur = next; } } /* * this frees the rbio and runs through all the bios in the * bio_list and calls end_io on them */ static void rbio_orig_end_io(struct btrfs_raid_bio *rbio, blk_status_t err) { struct bio *cur = bio_list_get(&rbio->bio_list); struct bio *extra; kfree(rbio->csum_buf); bitmap_free(rbio->csum_bitmap); rbio->csum_buf = NULL; rbio->csum_bitmap = NULL; /* * Clear the data bitmap, as the rbio may be cached for later usage. * do this before before unlock_stripe() so there will be no new bio * for this bio. */ bitmap_clear(&rbio->dbitmap, 0, rbio->stripe_nsectors); /* * At this moment, rbio->bio_list is empty, however since rbio does not * always have RBIO_RMW_LOCKED_BIT set and rbio is still linked on the * hash list, rbio may be merged with others so that rbio->bio_list * becomes non-empty. * Once unlock_stripe() is done, rbio->bio_list will not be updated any * more and we can call bio_endio() on all queued bios. */ unlock_stripe(rbio); extra = bio_list_get(&rbio->bio_list); free_raid_bio(rbio); rbio_endio_bio_list(cur, err); if (extra) rbio_endio_bio_list(extra, err); } /* * Get a sector pointer specified by its @stripe_nr and @sector_nr. * * @rbio: The raid bio * @stripe_nr: Stripe number, valid range [0, real_stripe) * @sector_nr: Sector number inside the stripe, * valid range [0, stripe_nsectors) * @bio_list_only: Whether to use sectors inside the bio list only. * * The read/modify/write code wants to reuse the original bio page as much * as possible, and only use stripe_sectors as fallback. */ static struct sector_ptr *sector_in_rbio(struct btrfs_raid_bio *rbio, int stripe_nr, int sector_nr, bool bio_list_only) { struct sector_ptr *sector; int index; ASSERT(stripe_nr >= 0 && stripe_nr < rbio->real_stripes); ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); index = stripe_nr * rbio->stripe_nsectors + sector_nr; ASSERT(index >= 0 && index < rbio->nr_sectors); spin_lock(&rbio->bio_list_lock); sector = &rbio->bio_sectors[index]; if (sector->page || bio_list_only) { /* Don't return sector without a valid page pointer */ if (!sector->page) sector = NULL; spin_unlock(&rbio->bio_list_lock); return sector; } spin_unlock(&rbio->bio_list_lock); return &rbio->stripe_sectors[index]; } /* * allocation and initial setup for the btrfs_raid_bio. Not * this does not allocate any pages for rbio->pages. */ static struct btrfs_raid_bio *alloc_rbio(struct btrfs_fs_info *fs_info, struct btrfs_io_context *bioc) { const unsigned int real_stripes = bioc->num_stripes - bioc->replace_nr_stripes; const unsigned int stripe_npages = BTRFS_STRIPE_LEN >> PAGE_SHIFT; const unsigned int num_pages = stripe_npages * real_stripes; const unsigned int stripe_nsectors = BTRFS_STRIPE_LEN >> fs_info->sectorsize_bits; const unsigned int num_sectors = stripe_nsectors * real_stripes; struct btrfs_raid_bio *rbio; /* PAGE_SIZE must also be aligned to sectorsize for subpage support */ ASSERT(IS_ALIGNED(PAGE_SIZE, fs_info->sectorsize)); /* * Our current stripe len should be fixed to 64k thus stripe_nsectors * (at most 16) should be no larger than BITS_PER_LONG. */ ASSERT(stripe_nsectors <= BITS_PER_LONG); rbio = kzalloc(sizeof(*rbio), GFP_NOFS); if (!rbio) return ERR_PTR(-ENOMEM); rbio->stripe_pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS); rbio->bio_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), GFP_NOFS); rbio->stripe_sectors = kcalloc(num_sectors, sizeof(struct sector_ptr), GFP_NOFS); rbio->finish_pointers = kcalloc(real_stripes, sizeof(void *), GFP_NOFS); rbio->error_bitmap = bitmap_zalloc(num_sectors, GFP_NOFS); if (!rbio->stripe_pages || !rbio->bio_sectors || !rbio->stripe_sectors || !rbio->finish_pointers || !rbio->error_bitmap) { free_raid_bio_pointers(rbio); kfree(rbio); return ERR_PTR(-ENOMEM); } bio_list_init(&rbio->bio_list); init_waitqueue_head(&rbio->io_wait); INIT_LIST_HEAD(&rbio->plug_list); spin_lock_init(&rbio->bio_list_lock); INIT_LIST_HEAD(&rbio->stripe_cache); INIT_LIST_HEAD(&rbio->hash_list); btrfs_get_bioc(bioc); rbio->bioc = bioc; rbio->nr_pages = num_pages; rbio->nr_sectors = num_sectors; rbio->real_stripes = real_stripes; rbio->stripe_npages = stripe_npages; rbio->stripe_nsectors = stripe_nsectors; refcount_set(&rbio->refs, 1); atomic_set(&rbio->stripes_pending, 0); ASSERT(btrfs_nr_parity_stripes(bioc->map_type)); rbio->nr_data = real_stripes - btrfs_nr_parity_stripes(bioc->map_type); return rbio; } /* allocate pages for all the stripes in the bio, including parity */ static int alloc_rbio_pages(struct btrfs_raid_bio *rbio) { int ret; ret = btrfs_alloc_page_array(rbio->nr_pages, rbio->stripe_pages); if (ret < 0) return ret; /* Mapping all sectors */ index_stripe_sectors(rbio); return 0; } /* only allocate pages for p/q stripes */ static int alloc_rbio_parity_pages(struct btrfs_raid_bio *rbio) { const int data_pages = rbio->nr_data * rbio->stripe_npages; int ret; ret = btrfs_alloc_page_array(rbio->nr_pages - data_pages, rbio->stripe_pages + data_pages); if (ret < 0) return ret; index_stripe_sectors(rbio); return 0; } /* * Return the total number of errors found in the vertical stripe of @sector_nr. * * @faila and @failb will also be updated to the first and second stripe * number of the errors. */ static int get_rbio_veritical_errors(struct btrfs_raid_bio *rbio, int sector_nr, int *faila, int *failb) { int stripe_nr; int found_errors = 0; if (faila || failb) { /* * Both @faila and @failb should be valid pointers if any of * them is specified. */ ASSERT(faila && failb); *faila = -1; *failb = -1; } for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { int total_sector_nr = stripe_nr * rbio->stripe_nsectors + sector_nr; if (test_bit(total_sector_nr, rbio->error_bitmap)) { found_errors++; if (faila) { /* Update faila and failb. */ if (*faila < 0) *faila = stripe_nr; else if (*failb < 0) *failb = stripe_nr; } } } return found_errors; } /* * Add a single sector @sector into our list of bios for IO. * * Return 0 if everything went well. * Return <0 for error. */ static int rbio_add_io_sector(struct btrfs_raid_bio *rbio, struct bio_list *bio_list, struct sector_ptr *sector, unsigned int stripe_nr, unsigned int sector_nr, enum req_op op) { const u32 sectorsize = rbio->bioc->fs_info->sectorsize; struct bio *last = bio_list->tail; int ret; struct bio *bio; struct btrfs_io_stripe *stripe; u64 disk_start; /* * Note: here stripe_nr has taken device replace into consideration, * thus it can be larger than rbio->real_stripe. * So here we check against bioc->num_stripes, not rbio->real_stripes. */ ASSERT(stripe_nr >= 0 && stripe_nr < rbio->bioc->num_stripes); ASSERT(sector_nr >= 0 && sector_nr < rbio->stripe_nsectors); ASSERT(sector->page); stripe = &rbio->bioc->stripes[stripe_nr]; disk_start = stripe->physical + sector_nr * sectorsize; /* if the device is missing, just fail this stripe */ if (!stripe->dev->bdev) { int found_errors; set_bit(stripe_nr * rbio->stripe_nsectors + sector_nr, rbio->error_bitmap); /* Check if we have reached tolerance early. */ found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL); if (found_errors > rbio->bioc->max_errors) return -EIO; return 0; } /* see if we can add this page onto our existing bio */ if (last) { u64 last_end = last->bi_iter.bi_sector << SECTOR_SHIFT; last_end += last->bi_iter.bi_size; /* * we can't merge these if they are from different * devices or if they are not contiguous */ if (last_end == disk_start && !last->bi_status && last->bi_bdev == stripe->dev->bdev) { ret = bio_add_page(last, sector->page, sectorsize, sector->pgoff); if (ret == sectorsize) return 0; } } /* put a new bio on the list */ bio = bio_alloc(stripe->dev->bdev, max(BTRFS_STRIPE_LEN >> PAGE_SHIFT, 1), op, GFP_NOFS); bio->bi_iter.bi_sector = disk_start >> SECTOR_SHIFT; bio->bi_private = rbio; __bio_add_page(bio, sector->page, sectorsize, sector->pgoff); bio_list_add(bio_list, bio); return 0; } static void index_one_bio(struct btrfs_raid_bio *rbio, struct bio *bio) { const u32 sectorsize = rbio->bioc->fs_info->sectorsize; struct bio_vec bvec; struct bvec_iter iter; u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - rbio->bioc->full_stripe_logical; bio_for_each_segment(bvec, bio, iter) { u32 bvec_offset; for (bvec_offset = 0; bvec_offset < bvec.bv_len; bvec_offset += sectorsize, offset += sectorsize) { int index = offset / sectorsize; struct sector_ptr *sector = &rbio->bio_sectors[index]; sector->page = bvec.bv_page; sector->pgoff = bvec.bv_offset + bvec_offset; ASSERT(sector->pgoff < PAGE_SIZE); } } } /* * helper function to walk our bio list and populate the bio_pages array with * the result. This seems expensive, but it is faster than constantly * searching through the bio list as we setup the IO in finish_rmw or stripe * reconstruction. * * This must be called before you trust the answers from page_in_rbio */ static void index_rbio_pages(struct btrfs_raid_bio *rbio) { struct bio *bio; spin_lock(&rbio->bio_list_lock); bio_list_for_each(bio, &rbio->bio_list) index_one_bio(rbio, bio); spin_unlock(&rbio->bio_list_lock); } static void bio_get_trace_info(struct btrfs_raid_bio *rbio, struct bio *bio, struct raid56_bio_trace_info *trace_info) { const struct btrfs_io_context *bioc = rbio->bioc; int i; ASSERT(bioc); /* We rely on bio->bi_bdev to find the stripe number. */ if (!bio->bi_bdev) goto not_found; for (i = 0; i < bioc->num_stripes; i++) { if (bio->bi_bdev != bioc->stripes[i].dev->bdev) continue; trace_info->stripe_nr = i; trace_info->devid = bioc->stripes[i].dev->devid; trace_info->offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - bioc->stripes[i].physical; return; } not_found: trace_info->devid = -1; trace_info->offset = -1; trace_info->stripe_nr = -1; } static inline void bio_list_put(struct bio_list *bio_list) { struct bio *bio; while ((bio = bio_list_pop(bio_list))) bio_put(bio); } /* Generate PQ for one vertical stripe. */ static void generate_pq_vertical(struct btrfs_raid_bio *rbio, int sectornr) { void **pointers = rbio->finish_pointers; const u32 sectorsize = rbio->bioc->fs_info->sectorsize; struct sector_ptr *sector; int stripe; const bool has_qstripe = rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6; /* First collect one sector from each data stripe */ for (stripe = 0; stripe < rbio->nr_data; stripe++) { sector = sector_in_rbio(rbio, stripe, sectornr, 0); pointers[stripe] = kmap_local_page(sector->page) + sector->pgoff; } /* Then add the parity stripe */ sector = rbio_pstripe_sector(rbio, sectornr); sector->uptodate = 1; pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff; if (has_qstripe) { /* * RAID6, add the qstripe and call the library function * to fill in our p/q */ sector = rbio_qstripe_sector(rbio, sectornr); sector->uptodate = 1; pointers[stripe++] = kmap_local_page(sector->page) + sector->pgoff; raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, pointers); } else { /* raid5 */ memcpy(pointers[rbio->nr_data], pointers[0], sectorsize); run_xor(pointers + 1, rbio->nr_data - 1, sectorsize); } for (stripe = stripe - 1; stripe >= 0; stripe--) kunmap_local(pointers[stripe]); } static int rmw_assemble_write_bios(struct btrfs_raid_bio *rbio, struct bio_list *bio_list) { /* The total sector number inside the full stripe. */ int total_sector_nr; int sectornr; int stripe; int ret; ASSERT(bio_list_size(bio_list) == 0); /* We should have at least one data sector. */ ASSERT(bitmap_weight(&rbio->dbitmap, rbio->stripe_nsectors)); /* * Reset errors, as we may have errors inherited from from degraded * write. */ bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); /* * Start assembly. Make bios for everything from the higher layers (the * bio_list in our rbio) and our P/Q. Ignore everything else. */ for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; total_sector_nr++) { struct sector_ptr *sector; stripe = total_sector_nr / rbio->stripe_nsectors; sectornr = total_sector_nr % rbio->stripe_nsectors; /* This vertical stripe has no data, skip it. */ if (!test_bit(sectornr, &rbio->dbitmap)) continue; if (stripe < rbio->nr_data) { sector = sector_in_rbio(rbio, stripe, sectornr, 1); if (!sector) continue; } else { sector = rbio_stripe_sector(rbio, stripe, sectornr); } ret = rbio_add_io_sector(rbio, bio_list, sector, stripe, sectornr, REQ_OP_WRITE); if (ret) goto error; } if (likely(!rbio->bioc->replace_nr_stripes)) return 0; /* * Make a copy for the replace target device. * * Thus the source stripe number (in replace_stripe_src) should be valid. */ ASSERT(rbio->bioc->replace_stripe_src >= 0); for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; total_sector_nr++) { struct sector_ptr *sector; stripe = total_sector_nr / rbio->stripe_nsectors; sectornr = total_sector_nr % rbio->stripe_nsectors; /* * For RAID56, there is only one device that can be replaced, * and replace_stripe_src[0] indicates the stripe number we * need to copy from. */ if (stripe != rbio->bioc->replace_stripe_src) { /* * We can skip the whole stripe completely, note * total_sector_nr will be increased by one anyway. */ ASSERT(sectornr == 0); total_sector_nr += rbio->stripe_nsectors - 1; continue; } /* This vertical stripe has no data, skip it. */ if (!test_bit(sectornr, &rbio->dbitmap)) continue; if (stripe < rbio->nr_data) { sector = sector_in_rbio(rbio, stripe, sectornr, 1); if (!sector) continue; } else { sector = rbio_stripe_sector(rbio, stripe, sectornr); } ret = rbio_add_io_sector(rbio, bio_list, sector, rbio->real_stripes, sectornr, REQ_OP_WRITE); if (ret) goto error; } return 0; error: bio_list_put(bio_list); return -EIO; } static void set_rbio_range_error(struct btrfs_raid_bio *rbio, struct bio *bio) { struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; u32 offset = (bio->bi_iter.bi_sector << SECTOR_SHIFT) - rbio->bioc->full_stripe_logical; int total_nr_sector = offset >> fs_info->sectorsize_bits; ASSERT(total_nr_sector < rbio->nr_data * rbio->stripe_nsectors); bitmap_set(rbio->error_bitmap, total_nr_sector, bio->bi_iter.bi_size >> fs_info->sectorsize_bits); /* * Special handling for raid56_alloc_missing_rbio() used by * scrub/replace. Unlike call path in raid56_parity_recover(), they * pass an empty bio here. Thus we have to find out the missing device * and mark the stripe error instead. */ if (bio->bi_iter.bi_size == 0) { bool found_missing = false; int stripe_nr; for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { if (!rbio->bioc->stripes[stripe_nr].dev->bdev) { found_missing = true; bitmap_set(rbio->error_bitmap, stripe_nr * rbio->stripe_nsectors, rbio->stripe_nsectors); } } ASSERT(found_missing); } } /* * For subpage case, we can no longer set page Up-to-date directly for * stripe_pages[], thus we need to locate the sector. */ static struct sector_ptr *find_stripe_sector(struct btrfs_raid_bio *rbio, struct page *page, unsigned int pgoff) { int i; for (i = 0; i < rbio->nr_sectors; i++) { struct sector_ptr *sector = &rbio->stripe_sectors[i]; if (sector->page == page && sector->pgoff == pgoff) return sector; } return NULL; } /* * this sets each page in the bio uptodate. It should only be used on private * rbio pages, nothing that comes in from the higher layers */ static void set_bio_pages_uptodate(struct btrfs_raid_bio *rbio, struct bio *bio) { const u32 sectorsize = rbio->bioc->fs_info->sectorsize; struct bio_vec *bvec; struct bvec_iter_all iter_all; ASSERT(!bio_flagged(bio, BIO_CLONED)); bio_for_each_segment_all(bvec, bio, iter_all) { struct sector_ptr *sector; int pgoff; for (pgoff = bvec->bv_offset; pgoff - bvec->bv_offset < bvec->bv_len; pgoff += sectorsize) { sector = find_stripe_sector(rbio, bvec->bv_page, pgoff); ASSERT(sector); if (sector) sector->uptodate = 1; } } } static int get_bio_sector_nr(struct btrfs_raid_bio *rbio, struct bio *bio) { struct bio_vec *bv = bio_first_bvec_all(bio); int i; for (i = 0; i < rbio->nr_sectors; i++) { struct sector_ptr *sector; sector = &rbio->stripe_sectors[i]; if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) break; sector = &rbio->bio_sectors[i]; if (sector->page == bv->bv_page && sector->pgoff == bv->bv_offset) break; } ASSERT(i < rbio->nr_sectors); return i; } static void rbio_update_error_bitmap(struct btrfs_raid_bio *rbio, struct bio *bio) { int total_sector_nr = get_bio_sector_nr(rbio, bio); u32 bio_size = 0; struct bio_vec *bvec; int i; bio_for_each_bvec_all(bvec, bio, i) bio_size += bvec->bv_len; /* * Since we can have multiple bios touching the error_bitmap, we cannot * call bitmap_set() without protection. * * Instead use set_bit() for each bit, as set_bit() itself is atomic. */ for (i = total_sector_nr; i < total_sector_nr + (bio_size >> rbio->bioc->fs_info->sectorsize_bits); i++) set_bit(i, rbio->error_bitmap); } /* Verify the data sectors at read time. */ static void verify_bio_data_sectors(struct btrfs_raid_bio *rbio, struct bio *bio) { struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; int total_sector_nr = get_bio_sector_nr(rbio, bio); struct bio_vec *bvec; struct bvec_iter_all iter_all; /* No data csum for the whole stripe, no need to verify. */ if (!rbio->csum_bitmap || !rbio->csum_buf) return; /* P/Q stripes, they have no data csum to verify against. */ if (total_sector_nr >= rbio->nr_data * rbio->stripe_nsectors) return; bio_for_each_segment_all(bvec, bio, iter_all) { int bv_offset; for (bv_offset = bvec->bv_offset; bv_offset < bvec->bv_offset + bvec->bv_len; bv_offset += fs_info->sectorsize, total_sector_nr++) { u8 csum_buf[BTRFS_CSUM_SIZE]; u8 *expected_csum = rbio->csum_buf + total_sector_nr * fs_info->csum_size; int ret; /* No csum for this sector, skip to the next sector. */ if (!test_bit(total_sector_nr, rbio->csum_bitmap)) continue; ret = btrfs_check_sector_csum(fs_info, bvec->bv_page, bv_offset, csum_buf, expected_csum); if (ret < 0) set_bit(total_sector_nr, rbio->error_bitmap); } } } static void raid_wait_read_end_io(struct bio *bio) { struct btrfs_raid_bio *rbio = bio->bi_private; if (bio->bi_status) { rbio_update_error_bitmap(rbio, bio); } else { set_bio_pages_uptodate(rbio, bio); verify_bio_data_sectors(rbio, bio); } bio_put(bio); if (atomic_dec_and_test(&rbio->stripes_pending)) wake_up(&rbio->io_wait); } static void submit_read_wait_bio_list(struct btrfs_raid_bio *rbio, struct bio_list *bio_list) { struct bio *bio; atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); while ((bio = bio_list_pop(bio_list))) { bio->bi_end_io = raid_wait_read_end_io; if (trace_raid56_scrub_read_recover_enabled()) { struct raid56_bio_trace_info trace_info = { 0 }; bio_get_trace_info(rbio, bio, &trace_info); trace_raid56_scrub_read_recover(rbio, bio, &trace_info); } submit_bio(bio); } wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); } static int alloc_rbio_data_pages(struct btrfs_raid_bio *rbio) { const int data_pages = rbio->nr_data * rbio->stripe_npages; int ret; ret = btrfs_alloc_page_array(data_pages, rbio->stripe_pages); if (ret < 0) return ret; index_stripe_sectors(rbio); return 0; } /* * We use plugging call backs to collect full stripes. * Any time we get a partial stripe write while plugged * we collect it into a list. When the unplug comes down, * we sort the list by logical block number and merge * everything we can into the same rbios */ struct btrfs_plug_cb { struct blk_plug_cb cb; struct btrfs_fs_info *info; struct list_head rbio_list; struct work_struct work; }; /* * rbios on the plug list are sorted for easier merging. */ static int plug_cmp(void *priv, const struct list_head *a, const struct list_head *b) { const struct btrfs_raid_bio *ra = container_of(a, struct btrfs_raid_bio, plug_list); const struct btrfs_raid_bio *rb = container_of(b, struct btrfs_raid_bio, plug_list); u64 a_sector = ra->bio_list.head->bi_iter.bi_sector; u64 b_sector = rb->bio_list.head->bi_iter.bi_sector; if (a_sector < b_sector) return -1; if (a_sector > b_sector) return 1; return 0; } static void raid_unplug(struct blk_plug_cb *cb, bool from_schedule) { struct btrfs_plug_cb *plug = container_of(cb, struct btrfs_plug_cb, cb); struct btrfs_raid_bio *cur; struct btrfs_raid_bio *last = NULL; list_sort(NULL, &plug->rbio_list, plug_cmp); while (!list_empty(&plug->rbio_list)) { cur = list_entry(plug->rbio_list.next, struct btrfs_raid_bio, plug_list); list_del_init(&cur->plug_list); if (rbio_is_full(cur)) { /* We have a full stripe, queue it down. */ start_async_work(cur, rmw_rbio_work); continue; } if (last) { if (rbio_can_merge(last, cur)) { merge_rbio(last, cur); free_raid_bio(cur); continue; } start_async_work(last, rmw_rbio_work); } last = cur; } if (last) start_async_work(last, rmw_rbio_work); kfree(plug); } /* Add the original bio into rbio->bio_list, and update rbio::dbitmap. */ static void rbio_add_bio(struct btrfs_raid_bio *rbio, struct bio *orig_bio) { const struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; const u64 orig_logical = orig_bio->bi_iter.bi_sector << SECTOR_SHIFT; const u64 full_stripe_start = rbio->bioc->full_stripe_logical; const u32 orig_len = orig_bio->bi_iter.bi_size; const u32 sectorsize = fs_info->sectorsize; u64 cur_logical; ASSERT(orig_logical >= full_stripe_start && orig_logical + orig_len <= full_stripe_start + rbio->nr_data * BTRFS_STRIPE_LEN); bio_list_add(&rbio->bio_list, orig_bio); rbio->bio_list_bytes += orig_bio->bi_iter.bi_size; /* Update the dbitmap. */ for (cur_logical = orig_logical; cur_logical < orig_logical + orig_len; cur_logical += sectorsize) { int bit = ((u32)(cur_logical - full_stripe_start) >> fs_info->sectorsize_bits) % rbio->stripe_nsectors; set_bit(bit, &rbio->dbitmap); } } /* * our main entry point for writes from the rest of the FS. */ void raid56_parity_write(struct bio *bio, struct btrfs_io_context *bioc) { struct btrfs_fs_info *fs_info = bioc->fs_info; struct btrfs_raid_bio *rbio; struct btrfs_plug_cb *plug = NULL; struct blk_plug_cb *cb; rbio = alloc_rbio(fs_info, bioc); if (IS_ERR(rbio)) { bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); bio_endio(bio); return; } rbio->operation = BTRFS_RBIO_WRITE; rbio_add_bio(rbio, bio); /* * Don't plug on full rbios, just get them out the door * as quickly as we can */ if (!rbio_is_full(rbio)) { cb = blk_check_plugged(raid_unplug, fs_info, sizeof(*plug)); if (cb) { plug = container_of(cb, struct btrfs_plug_cb, cb); if (!plug->info) { plug->info = fs_info; INIT_LIST_HEAD(&plug->rbio_list); } list_add_tail(&rbio->plug_list, &plug->rbio_list); return; } } /* * Either we don't have any existing plug, or we're doing a full stripe, * queue the rmw work now. */ start_async_work(rbio, rmw_rbio_work); } static int verify_one_sector(struct btrfs_raid_bio *rbio, int stripe_nr, int sector_nr) { struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; struct sector_ptr *sector; u8 csum_buf[BTRFS_CSUM_SIZE]; u8 *csum_expected; int ret; if (!rbio->csum_bitmap || !rbio->csum_buf) return 0; /* No way to verify P/Q as they are not covered by data csum. */ if (stripe_nr >= rbio->nr_data) return 0; /* * If we're rebuilding a read, we have to use pages from the * bio list if possible. */ if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) { sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); } else { sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); } ASSERT(sector->page); csum_expected = rbio->csum_buf + (stripe_nr * rbio->stripe_nsectors + sector_nr) * fs_info->csum_size; ret = btrfs_check_sector_csum(fs_info, sector->page, sector->pgoff, csum_buf, csum_expected); return ret; } /* * Recover a vertical stripe specified by @sector_nr. * @*pointers are the pre-allocated pointers by the caller, so we don't * need to allocate/free the pointers again and again. */ static int recover_vertical(struct btrfs_raid_bio *rbio, int sector_nr, void **pointers, void **unmap_array) { struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; struct sector_ptr *sector; const u32 sectorsize = fs_info->sectorsize; int found_errors; int faila; int failb; int stripe_nr; int ret = 0; /* * Now we just use bitmap to mark the horizontal stripes in * which we have data when doing parity scrub. */ if (rbio->operation == BTRFS_RBIO_PARITY_SCRUB && !test_bit(sector_nr, &rbio->dbitmap)) return 0; found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, &failb); /* * No errors in the vertical stripe, skip it. Can happen for recovery * which only part of a stripe failed csum check. */ if (!found_errors) return 0; if (found_errors > rbio->bioc->max_errors) return -EIO; /* * Setup our array of pointers with sectors from each stripe * * NOTE: store a duplicate array of pointers to preserve the * pointer order. */ for (stripe_nr = 0; stripe_nr < rbio->real_stripes; stripe_nr++) { /* * If we're rebuilding a read, we have to use pages from the * bio list if possible. */ if ((rbio->operation == BTRFS_RBIO_READ_REBUILD || rbio->operation == BTRFS_RBIO_REBUILD_MISSING)) { sector = sector_in_rbio(rbio, stripe_nr, sector_nr, 0); } else { sector = rbio_stripe_sector(rbio, stripe_nr, sector_nr); } ASSERT(sector->page); pointers[stripe_nr] = kmap_local_page(sector->page) + sector->pgoff; unmap_array[stripe_nr] = pointers[stripe_nr]; } /* All raid6 handling here */ if (rbio->bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) { /* Single failure, rebuild from parity raid5 style */ if (failb < 0) { if (faila == rbio->nr_data) /* * Just the P stripe has failed, without * a bad data or Q stripe. * We have nothing to do, just skip the * recovery for this stripe. */ goto cleanup; /* * a single failure in raid6 is rebuilt * in the pstripe code below */ goto pstripe; } /* * If the q stripe is failed, do a pstripe reconstruction from * the xors. * If both the q stripe and the P stripe are failed, we're * here due to a crc mismatch and we can't give them the * data they want. */ if (failb == rbio->real_stripes - 1) { if (faila == rbio->real_stripes - 2) /* * Only P and Q are corrupted. * We only care about data stripes recovery, * can skip this vertical stripe. */ goto cleanup; /* * Otherwise we have one bad data stripe and * a good P stripe. raid5! */ goto pstripe; } if (failb == rbio->real_stripes - 2) { raid6_datap_recov(rbio->real_stripes, sectorsize, faila, pointers); } else { raid6_2data_recov(rbio->real_stripes, sectorsize, faila, failb, pointers); } } else { void *p; /* Rebuild from P stripe here (raid5 or raid6). */ ASSERT(failb == -1); pstripe: /* Copy parity block into failed block to start with */ memcpy(pointers[faila], pointers[rbio->nr_data], sectorsize); /* Rearrange the pointer array */ p = pointers[faila]; for (stripe_nr = faila; stripe_nr < rbio->nr_data - 1; stripe_nr++) pointers[stripe_nr] = pointers[stripe_nr + 1]; pointers[rbio->nr_data - 1] = p; /* Xor in the rest */ run_xor(pointers, rbio->nr_data - 1, sectorsize); } /* * No matter if this is a RMW or recovery, we should have all * failed sectors repaired in the vertical stripe, thus they are now * uptodate. * Especially if we determine to cache the rbio, we need to * have at least all data sectors uptodate. * * If possible, also check if the repaired sector matches its data * checksum. */ if (faila >= 0) { ret = verify_one_sector(rbio, faila, sector_nr); if (ret < 0) goto cleanup; sector = rbio_stripe_sector(rbio, faila, sector_nr); sector->uptodate = 1; } if (failb >= 0) { ret = verify_one_sector(rbio, failb, sector_nr); if (ret < 0) goto cleanup; sector = rbio_stripe_sector(rbio, failb, sector_nr); sector->uptodate = 1; } cleanup: for (stripe_nr = rbio->real_stripes - 1; stripe_nr >= 0; stripe_nr--) kunmap_local(unmap_array[stripe_nr]); return ret; } static int recover_sectors(struct btrfs_raid_bio *rbio) { void **pointers = NULL; void **unmap_array = NULL; int sectornr; int ret = 0; /* * @pointers array stores the pointer for each sector. * * @unmap_array stores copy of pointers that does not get reordered * during reconstruction so that kunmap_local works. */ pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); if (!pointers || !unmap_array) { ret = -ENOMEM; goto out; } if (rbio->operation == BTRFS_RBIO_READ_REBUILD || rbio->operation == BTRFS_RBIO_REBUILD_MISSING) { spin_lock(&rbio->bio_list_lock); set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); spin_unlock(&rbio->bio_list_lock); } index_rbio_pages(rbio); for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { ret = recover_vertical(rbio, sectornr, pointers, unmap_array); if (ret < 0) break; } out: kfree(pointers); kfree(unmap_array); return ret; } static void recover_rbio(struct btrfs_raid_bio *rbio) { struct bio_list bio_list = BIO_EMPTY_LIST; int total_sector_nr; int ret = 0; /* * Either we're doing recover for a read failure or degraded write, * caller should have set error bitmap correctly. */ ASSERT(bitmap_weight(rbio->error_bitmap, rbio->nr_sectors)); /* For recovery, we need to read all sectors including P/Q. */ ret = alloc_rbio_pages(rbio); if (ret < 0) goto out; index_rbio_pages(rbio); /* * Read everything that hasn't failed. However this time we will * not trust any cached sector. * As we may read out some stale data but higher layer is not reading * that stale part. * * So here we always re-read everything in recovery path. */ for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; total_sector_nr++) { int stripe = total_sector_nr / rbio->stripe_nsectors; int sectornr = total_sector_nr % rbio->stripe_nsectors; struct sector_ptr *sector; /* * Skip the range which has error. It can be a range which is * marked error (for csum mismatch), or it can be a missing * device. */ if (!rbio->bioc->stripes[stripe].dev->bdev || test_bit(total_sector_nr, rbio->error_bitmap)) { /* * Also set the error bit for missing device, which * may not yet have its error bit set. */ set_bit(total_sector_nr, rbio->error_bitmap); continue; } sector = rbio_stripe_sector(rbio, stripe, sectornr); ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, sectornr, REQ_OP_READ); if (ret < 0) { bio_list_put(&bio_list); goto out; } } submit_read_wait_bio_list(rbio, &bio_list); ret = recover_sectors(rbio); out: rbio_orig_end_io(rbio, errno_to_blk_status(ret)); } static void recover_rbio_work(struct work_struct *work) { struct btrfs_raid_bio *rbio; rbio = container_of(work, struct btrfs_raid_bio, work); if (!lock_stripe_add(rbio)) recover_rbio(rbio); } static void recover_rbio_work_locked(struct work_struct *work) { recover_rbio(container_of(work, struct btrfs_raid_bio, work)); } static void set_rbio_raid6_extra_error(struct btrfs_raid_bio *rbio, int mirror_num) { bool found = false; int sector_nr; /* * This is for RAID6 extra recovery tries, thus mirror number should * be large than 2. * Mirror 1 means read from data stripes. Mirror 2 means rebuild using * RAID5 methods. */ ASSERT(mirror_num > 2); for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { int found_errors; int faila; int failb; found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, &failb); /* This vertical stripe doesn't have errors. */ if (!found_errors) continue; /* * If we found errors, there should be only one error marked * by previous set_rbio_range_error(). */ ASSERT(found_errors == 1); found = true; /* Now select another stripe to mark as error. */ failb = rbio->real_stripes - (mirror_num - 1); if (failb <= faila) failb--; /* Set the extra bit in error bitmap. */ if (failb >= 0) set_bit(failb * rbio->stripe_nsectors + sector_nr, rbio->error_bitmap); } /* We should found at least one vertical stripe with error.*/ ASSERT(found); } /* * the main entry point for reads from the higher layers. This * is really only called when the normal read path had a failure, * so we assume the bio they send down corresponds to a failed part * of the drive. */ void raid56_parity_recover(struct bio *bio, struct btrfs_io_context *bioc, int mirror_num) { struct btrfs_fs_info *fs_info = bioc->fs_info; struct btrfs_raid_bio *rbio; rbio = alloc_rbio(fs_info, bioc); if (IS_ERR(rbio)) { bio->bi_status = errno_to_blk_status(PTR_ERR(rbio)); bio_endio(bio); return; } rbio->operation = BTRFS_RBIO_READ_REBUILD; rbio_add_bio(rbio, bio); set_rbio_range_error(rbio, bio); /* * Loop retry: * for 'mirror == 2', reconstruct from all other stripes. * for 'mirror_num > 2', select a stripe to fail on every retry. */ if (mirror_num > 2) set_rbio_raid6_extra_error(rbio, mirror_num); start_async_work(rbio, recover_rbio_work); } static void fill_data_csums(struct btrfs_raid_bio *rbio) { struct btrfs_fs_info *fs_info = rbio->bioc->fs_info; struct btrfs_root *csum_root = btrfs_csum_root(fs_info, rbio->bioc->full_stripe_logical); const u64 start = rbio->bioc->full_stripe_logical; const u32 len = (rbio->nr_data * rbio->stripe_nsectors) << fs_info->sectorsize_bits; int ret; /* The rbio should not have its csum buffer initialized. */ ASSERT(!rbio->csum_buf && !rbio->csum_bitmap); /* * Skip the csum search if: * * - The rbio doesn't belong to data block groups * Then we are doing IO for tree blocks, no need to search csums. * * - The rbio belongs to mixed block groups * This is to avoid deadlock, as we're already holding the full * stripe lock, if we trigger a metadata read, and it needs to do * raid56 recovery, we will deadlock. */ if (!(rbio->bioc->map_type & BTRFS_BLOCK_GROUP_DATA) || rbio->bioc->map_type & BTRFS_BLOCK_GROUP_METADATA) return; rbio->csum_buf = kzalloc(rbio->nr_data * rbio->stripe_nsectors * fs_info->csum_size, GFP_NOFS); rbio->csum_bitmap = bitmap_zalloc(rbio->nr_data * rbio->stripe_nsectors, GFP_NOFS); if (!rbio->csum_buf || !rbio->csum_bitmap) { ret = -ENOMEM; goto error; } ret = btrfs_lookup_csums_bitmap(csum_root, NULL, start, start + len - 1, rbio->csum_buf, rbio->csum_bitmap); if (ret < 0) goto error; if (bitmap_empty(rbio->csum_bitmap, len >> fs_info->sectorsize_bits)) goto no_csum; return; error: /* * We failed to allocate memory or grab the csum, but it's not fatal, * we can still continue. But better to warn users that RMW is no * longer safe for this particular sub-stripe write. */ btrfs_warn_rl(fs_info, "sub-stripe write for full stripe %llu is not safe, failed to get csum: %d", rbio->bioc->full_stripe_logical, ret); no_csum: kfree(rbio->csum_buf); bitmap_free(rbio->csum_bitmap); rbio->csum_buf = NULL; rbio->csum_bitmap = NULL; } static int rmw_read_wait_recover(struct btrfs_raid_bio *rbio) { struct bio_list bio_list = BIO_EMPTY_LIST; int total_sector_nr; int ret = 0; /* * Fill the data csums we need for data verification. We need to fill * the csum_bitmap/csum_buf first, as our endio function will try to * verify the data sectors. */ fill_data_csums(rbio); /* * Build a list of bios to read all sectors (including data and P/Q). * * This behavior is to compensate the later csum verification and recovery. */ for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; total_sector_nr++) { struct sector_ptr *sector; int stripe = total_sector_nr / rbio->stripe_nsectors; int sectornr = total_sector_nr % rbio->stripe_nsectors; sector = rbio_stripe_sector(rbio, stripe, sectornr); ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, sectornr, REQ_OP_READ); if (ret) { bio_list_put(&bio_list); return ret; } } /* * We may or may not have any corrupted sectors (including missing dev * and csum mismatch), just let recover_sectors() to handle them all. */ submit_read_wait_bio_list(rbio, &bio_list); return recover_sectors(rbio); } static void raid_wait_write_end_io(struct bio *bio) { struct btrfs_raid_bio *rbio = bio->bi_private; blk_status_t err = bio->bi_status; if (err) rbio_update_error_bitmap(rbio, bio); bio_put(bio); if (atomic_dec_and_test(&rbio->stripes_pending)) wake_up(&rbio->io_wait); } static void submit_write_bios(struct btrfs_raid_bio *rbio, struct bio_list *bio_list) { struct bio *bio; atomic_set(&rbio->stripes_pending, bio_list_size(bio_list)); while ((bio = bio_list_pop(bio_list))) { bio->bi_end_io = raid_wait_write_end_io; if (trace_raid56_write_stripe_enabled()) { struct raid56_bio_trace_info trace_info = { 0 }; bio_get_trace_info(rbio, bio, &trace_info); trace_raid56_write_stripe(rbio, bio, &trace_info); } submit_bio(bio); } } /* * To determine if we need to read any sector from the disk. * Should only be utilized in RMW path, to skip cached rbio. */ static bool need_read_stripe_sectors(struct btrfs_raid_bio *rbio) { int i; for (i = 0; i < rbio->nr_data * rbio->stripe_nsectors; i++) { struct sector_ptr *sector = &rbio->stripe_sectors[i]; /* * We have a sector which doesn't have page nor uptodate, * thus this rbio can not be cached one, as cached one must * have all its data sectors present and uptodate. */ if (!sector->page || !sector->uptodate) return true; } return false; } static void rmw_rbio(struct btrfs_raid_bio *rbio) { struct bio_list bio_list; int sectornr; int ret = 0; /* * Allocate the pages for parity first, as P/Q pages will always be * needed for both full-stripe and sub-stripe writes. */ ret = alloc_rbio_parity_pages(rbio); if (ret < 0) goto out; /* * Either full stripe write, or we have every data sector already * cached, can go to write path immediately. */ if (!rbio_is_full(rbio) && need_read_stripe_sectors(rbio)) { /* * Now we're doing sub-stripe write, also need all data stripes * to do the full RMW. */ ret = alloc_rbio_data_pages(rbio); if (ret < 0) goto out; index_rbio_pages(rbio); ret = rmw_read_wait_recover(rbio); if (ret < 0) goto out; } /* * At this stage we're not allowed to add any new bios to the * bio list any more, anyone else that wants to change this stripe * needs to do their own rmw. */ spin_lock(&rbio->bio_list_lock); set_bit(RBIO_RMW_LOCKED_BIT, &rbio->flags); spin_unlock(&rbio->bio_list_lock); bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); index_rbio_pages(rbio); /* * We don't cache full rbios because we're assuming * the higher layers are unlikely to use this area of * the disk again soon. If they do use it again, * hopefully they will send another full bio. */ if (!rbio_is_full(rbio)) cache_rbio_pages(rbio); else clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) generate_pq_vertical(rbio, sectornr); bio_list_init(&bio_list); ret = rmw_assemble_write_bios(rbio, &bio_list); if (ret < 0) goto out; /* We should have at least one bio assembled. */ ASSERT(bio_list_size(&bio_list)); submit_write_bios(rbio, &bio_list); wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); /* We may have more errors than our tolerance during the read. */ for (sectornr = 0; sectornr < rbio->stripe_nsectors; sectornr++) { int found_errors; found_errors = get_rbio_veritical_errors(rbio, sectornr, NULL, NULL); if (found_errors > rbio->bioc->max_errors) { ret = -EIO; break; } } out: rbio_orig_end_io(rbio, errno_to_blk_status(ret)); } static void rmw_rbio_work(struct work_struct *work) { struct btrfs_raid_bio *rbio; rbio = container_of(work, struct btrfs_raid_bio, work); if (lock_stripe_add(rbio) == 0) rmw_rbio(rbio); } static void rmw_rbio_work_locked(struct work_struct *work) { rmw_rbio(container_of(work, struct btrfs_raid_bio, work)); } /* * The following code is used to scrub/replace the parity stripe * * Caller must have already increased bio_counter for getting @bioc. * * Note: We need make sure all the pages that add into the scrub/replace * raid bio are correct and not be changed during the scrub/replace. That * is those pages just hold metadata or file data with checksum. */ struct btrfs_raid_bio *raid56_parity_alloc_scrub_rbio(struct bio *bio, struct btrfs_io_context *bioc, struct btrfs_device *scrub_dev, unsigned long *dbitmap, int stripe_nsectors) { struct btrfs_fs_info *fs_info = bioc->fs_info; struct btrfs_raid_bio *rbio; int i; rbio = alloc_rbio(fs_info, bioc); if (IS_ERR(rbio)) return NULL; bio_list_add(&rbio->bio_list, bio); /* * This is a special bio which is used to hold the completion handler * and make the scrub rbio is similar to the other types */ ASSERT(!bio->bi_iter.bi_size); rbio->operation = BTRFS_RBIO_PARITY_SCRUB; /* * After mapping bioc with BTRFS_MAP_WRITE, parities have been sorted * to the end position, so this search can start from the first parity * stripe. */ for (i = rbio->nr_data; i < rbio->real_stripes; i++) { if (bioc->stripes[i].dev == scrub_dev) { rbio->scrubp = i; break; } } ASSERT(i < rbio->real_stripes); bitmap_copy(&rbio->dbitmap, dbitmap, stripe_nsectors); return rbio; } /* * We just scrub the parity that we have correct data on the same horizontal, * so we needn't allocate all pages for all the stripes. */ static int alloc_rbio_essential_pages(struct btrfs_raid_bio *rbio) { const u32 sectorsize = rbio->bioc->fs_info->sectorsize; int total_sector_nr; for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; total_sector_nr++) { struct page *page; int sectornr = total_sector_nr % rbio->stripe_nsectors; int index = (total_sector_nr * sectorsize) >> PAGE_SHIFT; if (!test_bit(sectornr, &rbio->dbitmap)) continue; if (rbio->stripe_pages[index]) continue; page = alloc_page(GFP_NOFS); if (!page) return -ENOMEM; rbio->stripe_pages[index] = page; } index_stripe_sectors(rbio); return 0; } static int finish_parity_scrub(struct btrfs_raid_bio *rbio) { struct btrfs_io_context *bioc = rbio->bioc; const u32 sectorsize = bioc->fs_info->sectorsize; void **pointers = rbio->finish_pointers; unsigned long *pbitmap = &rbio->finish_pbitmap; int nr_data = rbio->nr_data; int stripe; int sectornr; bool has_qstripe; struct sector_ptr p_sector = { 0 }; struct sector_ptr q_sector = { 0 }; struct bio_list bio_list; int is_replace = 0; int ret; bio_list_init(&bio_list); if (rbio->real_stripes - rbio->nr_data == 1) has_qstripe = false; else if (rbio->real_stripes - rbio->nr_data == 2) has_qstripe = true; else BUG(); /* * Replace is running and our P/Q stripe is being replaced, then we * need to duplicate the final write to replace target. */ if (bioc->replace_nr_stripes && bioc->replace_stripe_src == rbio->scrubp) { is_replace = 1; bitmap_copy(pbitmap, &rbio->dbitmap, rbio->stripe_nsectors); } /* * Because the higher layers(scrubber) are unlikely to * use this area of the disk again soon, so don't cache * it. */ clear_bit(RBIO_CACHE_READY_BIT, &rbio->flags); p_sector.page = alloc_page(GFP_NOFS); if (!p_sector.page) return -ENOMEM; p_sector.pgoff = 0; p_sector.uptodate = 1; if (has_qstripe) { /* RAID6, allocate and map temp space for the Q stripe */ q_sector.page = alloc_page(GFP_NOFS); if (!q_sector.page) { __free_page(p_sector.page); p_sector.page = NULL; return -ENOMEM; } q_sector.pgoff = 0; q_sector.uptodate = 1; pointers[rbio->real_stripes - 1] = kmap_local_page(q_sector.page); } bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); /* Map the parity stripe just once */ pointers[nr_data] = kmap_local_page(p_sector.page); for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { struct sector_ptr *sector; void *parity; /* first collect one page from each data stripe */ for (stripe = 0; stripe < nr_data; stripe++) { sector = sector_in_rbio(rbio, stripe, sectornr, 0); pointers[stripe] = kmap_local_page(sector->page) + sector->pgoff; } if (has_qstripe) { /* RAID6, call the library function to fill in our P/Q */ raid6_call.gen_syndrome(rbio->real_stripes, sectorsize, pointers); } else { /* raid5 */ memcpy(pointers[nr_data], pointers[0], sectorsize); run_xor(pointers + 1, nr_data - 1, sectorsize); } /* Check scrubbing parity and repair it */ sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); parity = kmap_local_page(sector->page) + sector->pgoff; if (memcmp(parity, pointers[rbio->scrubp], sectorsize) != 0) memcpy(parity, pointers[rbio->scrubp], sectorsize); else /* Parity is right, needn't writeback */ bitmap_clear(&rbio->dbitmap, sectornr, 1); kunmap_local(parity); for (stripe = nr_data - 1; stripe >= 0; stripe--) kunmap_local(pointers[stripe]); } kunmap_local(pointers[nr_data]); __free_page(p_sector.page); p_sector.page = NULL; if (q_sector.page) { kunmap_local(pointers[rbio->real_stripes - 1]); __free_page(q_sector.page); q_sector.page = NULL; } /* * time to start writing. Make bios for everything from the * higher layers (the bio_list in our rbio) and our p/q. Ignore * everything else. */ for_each_set_bit(sectornr, &rbio->dbitmap, rbio->stripe_nsectors) { struct sector_ptr *sector; sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->scrubp, sectornr, REQ_OP_WRITE); if (ret) goto cleanup; } if (!is_replace) goto submit_write; /* * Replace is running and our parity stripe needs to be duplicated to * the target device. Check we have a valid source stripe number. */ ASSERT(rbio->bioc->replace_stripe_src >= 0); for_each_set_bit(sectornr, pbitmap, rbio->stripe_nsectors) { struct sector_ptr *sector; sector = rbio_stripe_sector(rbio, rbio->scrubp, sectornr); ret = rbio_add_io_sector(rbio, &bio_list, sector, rbio->real_stripes, sectornr, REQ_OP_WRITE); if (ret) goto cleanup; } submit_write: submit_write_bios(rbio, &bio_list); return 0; cleanup: bio_list_put(&bio_list); return ret; } static inline int is_data_stripe(struct btrfs_raid_bio *rbio, int stripe) { if (stripe >= 0 && stripe < rbio->nr_data) return 1; return 0; } static int recover_scrub_rbio(struct btrfs_raid_bio *rbio) { void **pointers = NULL; void **unmap_array = NULL; int sector_nr; int ret = 0; /* * @pointers array stores the pointer for each sector. * * @unmap_array stores copy of pointers that does not get reordered * during reconstruction so that kunmap_local works. */ pointers = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); unmap_array = kcalloc(rbio->real_stripes, sizeof(void *), GFP_NOFS); if (!pointers || !unmap_array) { ret = -ENOMEM; goto out; } for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { int dfail = 0, failp = -1; int faila; int failb; int found_errors; found_errors = get_rbio_veritical_errors(rbio, sector_nr, &faila, &failb); if (found_errors > rbio->bioc->max_errors) { ret = -EIO; goto out; } if (found_errors == 0) continue; /* We should have at least one error here. */ ASSERT(faila >= 0 || failb >= 0); if (is_data_stripe(rbio, faila)) dfail++; else if (is_parity_stripe(faila)) failp = faila; if (is_data_stripe(rbio, failb)) dfail++; else if (is_parity_stripe(failb)) failp = failb; /* * Because we can not use a scrubbing parity to repair the * data, so the capability of the repair is declined. (In the * case of RAID5, we can not repair anything.) */ if (dfail > rbio->bioc->max_errors - 1) { ret = -EIO; goto out; } /* * If all data is good, only parity is correctly, just repair * the parity, no need to recover data stripes. */ if (dfail == 0) continue; /* * Here means we got one corrupted data stripe and one * corrupted parity on RAID6, if the corrupted parity is * scrubbing parity, luckily, use the other one to repair the * data, or we can not repair the data stripe. */ if (failp != rbio->scrubp) { ret = -EIO; goto out; } ret = recover_vertical(rbio, sector_nr, pointers, unmap_array); if (ret < 0) goto out; } out: kfree(pointers); kfree(unmap_array); return ret; } static int scrub_assemble_read_bios(struct btrfs_raid_bio *rbio) { struct bio_list bio_list = BIO_EMPTY_LIST; int total_sector_nr; int ret = 0; /* Build a list of bios to read all the missing parts. */ for (total_sector_nr = 0; total_sector_nr < rbio->nr_sectors; total_sector_nr++) { int sectornr = total_sector_nr % rbio->stripe_nsectors; int stripe = total_sector_nr / rbio->stripe_nsectors; struct sector_ptr *sector; /* No data in the vertical stripe, no need to read. */ if (!test_bit(sectornr, &rbio->dbitmap)) continue; /* * We want to find all the sectors missing from the rbio and * read them from the disk. If sector_in_rbio() finds a sector * in the bio list we don't need to read it off the stripe. */ sector = sector_in_rbio(rbio, stripe, sectornr, 1); if (sector) continue; sector = rbio_stripe_sector(rbio, stripe, sectornr); /* * The bio cache may have handed us an uptodate sector. If so, * use it. */ if (sector->uptodate) continue; ret = rbio_add_io_sector(rbio, &bio_list, sector, stripe, sectornr, REQ_OP_READ); if (ret) { bio_list_put(&bio_list); return ret; } } submit_read_wait_bio_list(rbio, &bio_list); return 0; } static void scrub_rbio(struct btrfs_raid_bio *rbio) { int sector_nr; int ret; ret = alloc_rbio_essential_pages(rbio); if (ret) goto out; bitmap_clear(rbio->error_bitmap, 0, rbio->nr_sectors); ret = scrub_assemble_read_bios(rbio); if (ret < 0) goto out; /* We may have some failures, recover the failed sectors first. */ ret = recover_scrub_rbio(rbio); if (ret < 0) goto out; /* * We have every sector properly prepared. Can finish the scrub * and writeback the good content. */ ret = finish_parity_scrub(rbio); wait_event(rbio->io_wait, atomic_read(&rbio->stripes_pending) == 0); for (sector_nr = 0; sector_nr < rbio->stripe_nsectors; sector_nr++) { int found_errors; found_errors = get_rbio_veritical_errors(rbio, sector_nr, NULL, NULL); if (found_errors > rbio->bioc->max_errors) { ret = -EIO; break; } } out: rbio_orig_end_io(rbio, errno_to_blk_status(ret)); } static void scrub_rbio_work_locked(struct work_struct *work) { scrub_rbio(container_of(work, struct btrfs_raid_bio, work)); } void raid56_parity_submit_scrub_rbio(struct btrfs_raid_bio *rbio) { if (!lock_stripe_add(rbio)) start_async_work(rbio, scrub_rbio_work_locked); } /* * This is for scrub call sites where we already have correct data contents. * This allows us to avoid reading data stripes again. * * Unfortunately here we have to do page copy, other than reusing the pages. * This is due to the fact rbio has its own page management for its cache. */ void raid56_parity_cache_data_pages(struct btrfs_raid_bio *rbio, struct page **data_pages, u64 data_logical) { const u64 offset_in_full_stripe = data_logical - rbio->bioc->full_stripe_logical; const int page_index = offset_in_full_stripe >> PAGE_SHIFT; const u32 sectorsize = rbio->bioc->fs_info->sectorsize; const u32 sectors_per_page = PAGE_SIZE / sectorsize; int ret; /* * If we hit ENOMEM temporarily, but later at * raid56_parity_submit_scrub_rbio() time it succeeded, we just do * the extra read, not a big deal. * * If we hit ENOMEM later at raid56_parity_submit_scrub_rbio() time, * the bio would got proper error number set. */ ret = alloc_rbio_data_pages(rbio); if (ret < 0) return; /* data_logical must be at stripe boundary and inside the full stripe. */ ASSERT(IS_ALIGNED(offset_in_full_stripe, BTRFS_STRIPE_LEN)); ASSERT(offset_in_full_stripe < (rbio->nr_data << BTRFS_STRIPE_LEN_SHIFT)); for (int page_nr = 0; page_nr < (BTRFS_STRIPE_LEN >> PAGE_SHIFT); page_nr++) { struct page *dst = rbio->stripe_pages[page_nr + page_index]; struct page *src = data_pages[page_nr]; memcpy_page(dst, 0, src, 0, PAGE_SIZE); for (int sector_nr = sectors_per_page * page_index; sector_nr < sectors_per_page * (page_index + 1); sector_nr++) rbio->stripe_sectors[sector_nr].uptodate = true; } } |