/*
* Copyright (c) 2014, NVIDIA CORPORATION. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*
* Shamelessly ripped off from ChromeOS's gk20a/clk_pllg.c
*
*/
#define gk20a_clk(p) container_of((p), struct gk20a_clk, base)
#include "priv.h"
#include <core/tegra.h>
#include <subdev/timer.h>
#define MHZ (1000 * 1000)
#define MASK(w) ((1 << w) - 1)
#define SYS_GPCPLL_CFG_BASE 0x00137000
#define GPC_BCASE_GPCPLL_CFG_BASE 0x00132800
#define GPCPLL_CFG (SYS_GPCPLL_CFG_BASE + 0)
#define GPCPLL_CFG_ENABLE BIT(0)
#define GPCPLL_CFG_IDDQ BIT(1)
#define GPCPLL_CFG_LOCK_DET_OFF BIT(4)
#define GPCPLL_CFG_LOCK BIT(17)
#define GPCPLL_COEFF (SYS_GPCPLL_CFG_BASE + 4)
#define GPCPLL_COEFF_M_SHIFT 0
#define GPCPLL_COEFF_M_WIDTH 8
#define GPCPLL_COEFF_N_SHIFT 8
#define GPCPLL_COEFF_N_WIDTH 8
#define GPCPLL_COEFF_P_SHIFT 16
#define GPCPLL_COEFF_P_WIDTH 6
#define GPCPLL_CFG2 (SYS_GPCPLL_CFG_BASE + 0xc)
#define GPCPLL_CFG2_SETUP2_SHIFT 16
#define GPCPLL_CFG2_PLL_STEPA_SHIFT 24
#define GPCPLL_CFG3 (SYS_GPCPLL_CFG_BASE + 0x18)
#define GPCPLL_CFG3_PLL_STEPB_SHIFT 16
#define GPCPLL_NDIV_SLOWDOWN (SYS_GPCPLL_CFG_BASE + 0x1c)
#define GPCPLL_NDIV_SLOWDOWN_NDIV_LO_SHIFT 0
#define GPCPLL_NDIV_SLOWDOWN_NDIV_MID_SHIFT 8
#define GPCPLL_NDIV_SLOWDOWN_STEP_SIZE_LO2MID_SHIFT 16
#define GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT 22
#define GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT 31
#define SEL_VCO (SYS_GPCPLL_CFG_BASE + 0x100)
#define SEL_VCO_GPC2CLK_OUT_SHIFT 0
#define GPC2CLK_OUT (SYS_GPCPLL_CFG_BASE + 0x250)
#define GPC2CLK_OUT_SDIV14_INDIV4_WIDTH 1
#define GPC2CLK_OUT_SDIV14_INDIV4_SHIFT 31
#define GPC2CLK_OUT_SDIV14_INDIV4_MODE 1
#define GPC2CLK_OUT_VCODIV_WIDTH 6
#define GPC2CLK_OUT_VCODIV_SHIFT 8
#define GPC2CLK_OUT_VCODIV1 0
#define GPC2CLK_OUT_VCODIV_MASK (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
GPC2CLK_OUT_VCODIV_SHIFT)
#define GPC2CLK_OUT_BYPDIV_WIDTH 6
#define GPC2CLK_OUT_BYPDIV_SHIFT 0
#define GPC2CLK_OUT_BYPDIV31 0x3c
#define GPC2CLK_OUT_INIT_MASK ((MASK(GPC2CLK_OUT_SDIV14_INDIV4_WIDTH) << \
GPC2CLK_OUT_SDIV14_INDIV4_SHIFT)\
| (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << GPC2CLK_OUT_VCODIV_SHIFT)\
| (MASK(GPC2CLK_OUT_BYPDIV_WIDTH) << GPC2CLK_OUT_BYPDIV_SHIFT))
#define GPC2CLK_OUT_INIT_VAL ((GPC2CLK_OUT_SDIV14_INDIV4_MODE << \
GPC2CLK_OUT_SDIV14_INDIV4_SHIFT) \
| (GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT) \
| (GPC2CLK_OUT_BYPDIV31 << GPC2CLK_OUT_BYPDIV_SHIFT))
#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG (GPC_BCASE_GPCPLL_CFG_BASE + 0xa0)
#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT 24
#define GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK \
(0x1 << GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_SHIFT)
static const u8 pl_to_div[] = {
/* PL: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 */
/* p: */ 1, 2, 3, 4, 5, 6, 8, 10, 12, 16, 12, 16, 20, 24, 32,
};
/* All frequencies in Mhz */
struct gk20a_clk_pllg_params {
u32 min_vco, max_vco;
u32 min_u, max_u;
u32 min_m, max_m;
u32 min_n, max_n;
u32 min_pl, max_pl;
};
static const struct gk20a_clk_pllg_params gk20a_pllg_params = {
.min_vco = 1000, .max_vco = 2064,
.min_u = 12, .max_u = 38,
.min_m = 1, .max_m = 255,
.min_n = 8, .max_n = 255,
.min_pl = 1, .max_pl = 32,
};
struct gk20a_clk {
struct nvkm_clk base;
const struct gk20a_clk_pllg_params *params;
u32 m, n, pl;
u32 parent_rate;
};
static void
gk20a_pllg_read_mnp(struct gk20a_clk *clk)
{
struct nvkm_device *device = clk->base.subdev.device;
u32 val;
val = nvkm_rd32(device, GPCPLL_COEFF);
clk->m = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
clk->n = (val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH);
clk->pl = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
}
static u32
gk20a_pllg_calc_rate(struct gk20a_clk *clk)
{
u32 rate;
u32 divider;
rate = clk->parent_rate * clk->n;
divider = clk->m * pl_to_div[clk->pl];
do_div(rate, divider);
return rate / 2;
}
static int
gk20a_pllg_calc_mnp(struct gk20a_clk *clk, unsigned long rate)
{
struct nvkm_subdev *subdev = &clk->base.subdev;
u32 target_clk_f, ref_clk_f, target_freq;
u32 min_vco_f, max_vco_f;
u32 low_pl, high_pl, best_pl;
u32 target_vco_f, vco_f;
u32 best_m, best_n;
u32 u_f;
u32 m, n, n2;
u32 delta, lwv, best_delta = ~0;
u32 pl;
target_clk_f = rate * 2 / MHZ;
ref_clk_f = clk->parent_rate / MHZ;
max_vco_f = clk->params->max_vco;
min_vco_f = clk->params->min_vco;
best_m = clk->params->max_m;
best_n = clk->params->min_n;
best_pl = clk->params->min_pl;
target_vco_f = target_clk_f + target_clk_f / 50;
if (max_vco_f < target_vco_f)
max_vco_f = target_vco_f;
/* min_pl <= high_pl <= max_pl */
high_pl = (max_vco_f + target_vco_f - 1) / target_vco_f;
high_pl = min(high_pl, clk->params->max_pl);
high_pl = max(high_pl, clk->params->min_pl);
/* min_pl <= low_pl <= max_pl */
low_pl = min_vco_f / target_vco_f;
low_pl = min(low_pl, clk->params->max_pl);
low_pl = max(low_pl, clk->params->min_pl);
/* Find Indices of high_pl and low_pl */
for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
if (pl_to_div[pl] >= low_pl) {
low_pl = pl;
break;
}
}
for (pl = 0; pl < ARRAY_SIZE(pl_to_div) - 1; pl++) {
if (pl_to_div[pl] >= high_pl) {
high_pl = pl;
break;
}
}
nvkm_debug(subdev, "low_PL %d(div%d), high_PL %d(div%d)", low_pl,
pl_to_div[low_pl], high_pl, pl_to_div[high_pl]);
/* Select lowest possible VCO */
for (pl = low_pl; pl <= high_pl; pl++) {
target_vco_f = target_clk_f * pl_to_div[pl];
for (m = clk->params->min_m; m <= clk->params->max_m; m++) {
u_f = ref_clk_f / m;
if (u_f < clk->params->min_u)
break;
if (u_f > clk->params->max_u)
continue;
n = (target_vco_f * m) / ref_clk_f;
n2 = ((target_vco_f * m) + (ref_clk_f - 1)) / ref_clk_f;
if (n > clk->params->max_n)
break;
for (; n <= n2; n++) {
if (n < clk->params->min_n)
continue;
if (n > clk->params->max_n)
break;
vco_f = ref_clk_f * n / m;
if (vco_f >= min_vco_f && vco_f <= max_vco_f) {
lwv = (vco_f + (pl_to_div[pl] / 2))
/ pl_to_div[pl];
delta = abs(lwv - target_clk_f);
if (delta < best_delta) {
best_delta = delta;
best_m = m;
best_n = n;
best_pl = pl;
if (best_delta == 0)
goto found_match;
}
}
}
}
}
found_match:
WARN_ON(best_delta == ~0);
if (best_delta != 0)
nvkm_debug(subdev,
"no best match for target @ %dMHz on gpc_pll",
target_clk_f);
clk->m = best_m;
clk->n = best_n;
clk->pl = best_pl;
target_freq = gk20a_pllg_calc_rate(clk) / MHZ;
nvkm_debug(subdev,
"actual target freq %d MHz, M %d, N %d, PL %d(div%d)\n",
target_freq, clk->m, clk->n, clk->pl, pl_to_div[clk->pl]);
return 0;
}
static int
gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
{
struct nvkm_subdev *subdev = &clk->base.subdev;
struct nvkm_device *device = subdev->device;
u32 val;
int ramp_timeout;
/* get old coefficients */
val = nvkm_rd32(device, GPCPLL_COEFF);
/* do nothing if NDIV is the same */
if (n == ((val >> GPCPLL_COEFF_N_SHIFT) & MASK(GPCPLL_COEFF_N_WIDTH)))
return 0;
/* setup */
nvkm_mask(device, GPCPLL_CFG2, 0xff << GPCPLL_CFG2_PLL_STEPA_SHIFT,
0x2b << GPCPLL_CFG2_PLL_STEPA_SHIFT);
nvkm_mask(device, GPCPLL_CFG3, 0xff << GPCPLL_CFG3_PLL_STEPB_SHIFT,
0xb << GPCPLL_CFG3_PLL_STEPB_SHIFT);
/* pll slowdown mode */
nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT),
BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT));
/* new ndiv ready for ramp */
val = nvkm_rd32(device, GPCPLL_COEFF);
val &= ~(MASK(GPCPLL_COEFF_N_WIDTH) << GPCPLL_COEFF_N_SHIFT);
val |= (n & MASK(GPCPLL_COEFF_N_WIDTH)) << GPCPLL_COEFF_N_SHIFT;
udelay(1);
nvkm_wr32(device, GPCPLL_COEFF, val);
/* dynamic ramp to new ndiv */
val = nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
val |= 0x1 << GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT;
udelay(1);
nvkm_wr32(device, GPCPLL_NDIV_SLOWDOWN, val);
for (ramp_timeout = 500; ramp_timeout > 0; ramp_timeout--) {
udelay(1);
val = nvkm_rd32(device, GPC_BCAST_NDIV_SLOWDOWN_DEBUG);
if (val & GPC_BCAST_NDIV_SLOWDOWN_DEBUG_PLL_DYNRAMP_DONE_SYNCED_MASK)
break;
}
/* exit slowdown mode */
nvkm_mask(device, GPCPLL_NDIV_SLOWDOWN,
BIT(GPCPLL_NDIV_SLOWDOWN_SLOWDOWN_USING_PLL_SHIFT) |
BIT(GPCPLL_NDIV_SLOWDOWN_EN_DYNRAMP_SHIFT), 0);
nvkm_rd32(device, GPCPLL_NDIV_SLOWDOWN);
if (ramp_timeout <= 0) {
nvkm_error(subdev, "gpcpll dynamic ramp timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static void
_gk20a_pllg_enable(struct gk20a_clk *clk)
{
struct nvkm_device *device = clk->base.subdev.device;
nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
nvkm_rd32(device, GPCPLL_CFG);
}
static void
_gk20a_pllg_disable(struct gk20a_clk *clk)
{
struct nvkm_device *device = clk->base.subdev.device;
nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
nvkm_rd32(device, GPCPLL_CFG);
}
static int
_gk20a_pllg_program_mnp(struct gk20a_clk *clk, bool allow_slide)
{
struct nvkm_subdev *subdev = &clk->base.subdev;
struct nvkm_device *device = subdev->device;
u32 val, cfg;
u32 m_old, pl_old, n_lo;
/* get old coefficients */
val = nvkm_rd32(device, GPCPLL_COEFF);
m_old = (val >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
pl_old = (val >> GPCPLL_COEFF_P_SHIFT) & MASK(GPCPLL_COEFF_P_WIDTH);
/* do NDIV slide if there is no change in M and PL */
cfg = nvkm_rd32(device, GPCPLL_CFG);
if (allow_slide && clk->m == m_old && clk->pl == pl_old &&
(cfg & GPCPLL_CFG_ENABLE)) {
return gk20a_pllg_slide(clk, clk->n);
}
/* slide down to NDIV_LO */
n_lo = DIV_ROUND_UP(m_old * clk->params->min_vco,
clk->parent_rate / MHZ);
if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
int ret = gk20a_pllg_slide(clk, n_lo);
if (ret)
return ret;
}
/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
/* put PLL in bypass before programming it */
val = nvkm_rd32(device, SEL_VCO);
val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
udelay(2);
nvkm_wr32(device, SEL_VCO, val);
/* get out from IDDQ */
val = nvkm_rd32(device, GPCPLL_CFG);
if (val & GPCPLL_CFG_IDDQ) {
val &= ~GPCPLL_CFG_IDDQ;
nvkm_wr32(device, GPCPLL_CFG, val);
nvkm_rd32(device, GPCPLL_CFG);
udelay(2);
}
_gk20a_pllg_disable(clk);
nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
clk->m, clk->n, clk->pl);
n_lo = DIV_ROUND_UP(clk->m * clk->params->min_vco,
clk->parent_rate / MHZ);
val = clk->m << GPCPLL_COEFF_M_SHIFT;
val |= (allow_slide ? n_lo : clk->n) << GPCPLL_COEFF_N_SHIFT;
val |= clk->pl << GPCPLL_COEFF_P_SHIFT;
nvkm_wr32(device, GPCPLL_COEFF, val);
_gk20a_pllg_enable(clk);
val = nvkm_rd32(device, GPCPLL_CFG);
if (val & GPCPLL_CFG_LOCK_DET_OFF) {
val &= ~GPCPLL_CFG_LOCK_DET_OFF;
nvkm_wr32(device, GPCPLL_CFG, val);
}
if (nvkm_usec(device, 300,
if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
break;
) < 0)
return -ETIMEDOUT;
/* switch to VCO mode */
nvkm_mask(device, SEL_VCO, 0, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
/* restore out divider 1:1 */
val = nvkm_rd32(device, GPC2CLK_OUT);
val &= ~GPC2CLK_OUT_VCODIV_MASK;
udelay(2);
nvkm_wr32(device, GPC2CLK_OUT, val);
/* slide up to new NDIV */
return allow_slide ? gk20a_pllg_slide(clk, clk->n) : 0;
}
static int
gk20a_pllg_program_mnp(struct gk20a_clk *clk)
{
int err;
err = _gk20a_pllg_program_mnp(clk, true);
if (err)
err = _gk20a_pllg_program_mnp(clk, false);
return err;
}
static void
gk20a_pllg_disable(struct gk20a_clk *clk)
{
struct nvkm_device *device = clk->base.subdev.device;
u32 val;
/* slide to VCO min */
val = nvkm_rd32(device, GPCPLL_CFG);
if (val & GPCPLL_CFG_ENABLE) {
u32 coeff, m, n_lo;
coeff = nvkm_rd32(device, GPCPLL_COEFF);
m = (coeff >> GPCPLL_COEFF_M_SHIFT) & MASK(GPCPLL_COEFF_M_WIDTH);
n_lo = DIV_ROUND_UP(m * clk->params->min_vco,
clk->parent_rate / MHZ);
gk20a_pllg_slide(clk, n_lo);
}
/* put PLL in bypass before disabling it */
nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
_gk20a_pllg_disable(clk);
}
#define GK20A_CLK_GPC_MDIV 1000
static struct nvkm_pstate
gk20a_pstates[] = {
{
.base = {
.domain[nv_clk_src_gpc] = 72000,
.voltage = 0,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 108000,
.voltage = 1,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 180000,
.voltage = 2,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 252000,
.voltage = 3,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 324000,
.voltage = 4,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 396000,
.voltage = 5,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 468000,
.voltage = 6,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 540000,
.voltage = 7,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 612000,
.voltage = 8,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 648000,
.voltage = 9,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 684000,
.voltage = 10,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 708000,
.voltage = 11,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 756000,
.voltage = 12,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 804000,
.voltage = 13,
},
},
{
.base = {
.domain[nv_clk_src_gpc] = 852000,
.voltage = 14,
},
},
};
static int
gk20a_clk_read(struct nvkm_clk *base, enum nv_clk_src src)
{
struct gk20a_clk *clk = gk20a_clk(base);
struct nvkm_subdev *subdev = &clk->base.subdev;
struct nvkm_device *device = subdev->device;
switch (src) {
case nv_clk_src_crystal:
return device->crystal;
case nv_clk_src_gpc:
gk20a_pllg_read_mnp(clk);
return gk20a_pllg_calc_rate(clk) / GK20A_CLK_GPC_MDIV;
default:
nvkm_error(subdev, "invalid clock source %d\n", src);
return -EINVAL;
}
}
static int
gk20a_clk_calc(struct nvkm_clk *base, struct nvkm_cstate *cstate)
{
struct gk20a_clk *clk = gk20a_clk(base);
return gk20a_pllg_calc_mnp(clk, cstate->domain[nv_clk_src_gpc] *
GK20A_CLK_GPC_MDIV);
}
static int
gk20a_clk_prog(struct nvkm_clk *base)
{
struct gk20a_clk *clk = gk20a_clk(base);
return gk20a_pllg_program_mnp(clk);
}
static void
gk20a_clk_tidy(struct nvkm_clk *base)
{
}
static void
gk20a_clk_fini(struct nvkm_clk *base)
{
struct gk20a_clk *clk = gk20a_clk(base);
gk20a_pllg_disable(clk);
}
static int
gk20a_clk_init(struct nvkm_clk *base)
{
struct gk20a_clk *clk = gk20a_clk(base);
struct nvkm_subdev *subdev = &clk->base.subdev;
struct nvkm_device *device = subdev->device;
int ret;
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK, GPC2CLK_OUT_INIT_VAL);
ret = gk20a_clk_prog(&clk->base);
if (ret) {
nvkm_error(subdev, "cannot initialize clock\n");
return ret;
}
return 0;
}
static const struct nvkm_clk_func
gk20a_clk = {
.init = gk20a_clk_init,
.fini = gk20a_clk_fini,
.read = gk20a_clk_read,
.calc = gk20a_clk_calc,
.prog = gk20a_clk_prog,
.tidy = gk20a_clk_tidy,
.pstates = gk20a_pstates,
.nr_pstates = ARRAY_SIZE(gk20a_pstates),
.domains = {
{ nv_clk_src_crystal, 0xff },
{ nv_clk_src_gpc, 0xff, 0, "core", GK20A_CLK_GPC_MDIV },
{ nv_clk_src_max }
}
};
int
gk20a_clk_new(struct nvkm_device *device, int index, struct nvkm_clk **pclk)
{
struct nvkm_device_tegra *tdev = device->func->tegra(device);
struct gk20a_clk *clk;
int ret, i;
if (!(clk = kzalloc(sizeof(*clk), GFP_KERNEL)))
return -ENOMEM;
*pclk = &clk->base;
/* Finish initializing the pstates */
for (i = 0; i < ARRAY_SIZE(gk20a_pstates); i++) {
INIT_LIST_HEAD(&gk20a_pstates[i].list);
gk20a_pstates[i].pstate = i + 1;
}
clk->params = &gk20a_pllg_params;
clk->parent_rate = clk_get_rate(tdev->clk);
ret = nvkm_clk_ctor(&gk20a_clk, device, index, true, &clk->base);
nvkm_info(&clk->base.subdev, "parent clock rate: %d Mhz\n",
clk->parent_rate / MHZ);
return ret;
}