Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 | /* * mm/percpu.c - percpu memory allocator * * Copyright (C) 2009 SUSE Linux Products GmbH * Copyright (C) 2009 Tejun Heo <tj@kernel.org> * * This file is released under the GPLv2. * * This is percpu allocator which can handle both static and dynamic * areas. Percpu areas are allocated in chunks. Each chunk is * consisted of boot-time determined number of units and the first * chunk is used for static percpu variables in the kernel image * (special boot time alloc/init handling necessary as these areas * need to be brought up before allocation services are running). * Unit grows as necessary and all units grow or shrink in unison. * When a chunk is filled up, another chunk is allocated. * * c0 c1 c2 * ------------------- ------------------- ------------ * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u * ------------------- ...... ------------------- .... ------------ * * Allocation is done in offset-size areas of single unit space. Ie, * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to * cpus. On NUMA, the mapping can be non-linear and even sparse. * Percpu access can be done by configuring percpu base registers * according to cpu to unit mapping and pcpu_unit_size. * * There are usually many small percpu allocations many of them being * as small as 4 bytes. The allocator organizes chunks into lists * according to free size and tries to allocate from the fullest one. * Each chunk keeps the maximum contiguous area size hint which is * guaranteed to be equal to or larger than the maximum contiguous * area in the chunk. This helps the allocator not to iterate the * chunk maps unnecessarily. * * Allocation state in each chunk is kept using an array of integers * on chunk->map. A positive value in the map represents a free * region and negative allocated. Allocation inside a chunk is done * by scanning this map sequentially and serving the first matching * entry. This is mostly copied from the percpu_modalloc() allocator. * Chunks can be determined from the address using the index field * in the page struct. The index field contains a pointer to the chunk. * * To use this allocator, arch code should do the followings. * * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate * regular address to percpu pointer and back if they need to be * different from the default * * - use pcpu_setup_first_chunk() during percpu area initialization to * setup the first chunk containing the kernel static percpu area */ #include <linux/bitmap.h> #include <linux/bootmem.h> #include <linux/err.h> #include <linux/list.h> #include <linux/log2.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/percpu.h> #include <linux/pfn.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/vmalloc.h> #include <linux/workqueue.h> #include <linux/kmemleak.h> #include <asm/cacheflush.h> #include <asm/sections.h> #include <asm/tlbflush.h> #include <asm/io.h> #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ #define PCPU_ATOMIC_MAP_MARGIN_LOW 32 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64 #define PCPU_EMPTY_POP_PAGES_LOW 2 #define PCPU_EMPTY_POP_PAGES_HIGH 4 #ifdef CONFIG_SMP /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ #ifndef __addr_to_pcpu_ptr #define __addr_to_pcpu_ptr(addr) \ (void __percpu *)((unsigned long)(addr) - \ (unsigned long)pcpu_base_addr + \ (unsigned long)__per_cpu_start) #endif #ifndef __pcpu_ptr_to_addr #define __pcpu_ptr_to_addr(ptr) \ (void __force *)((unsigned long)(ptr) + \ (unsigned long)pcpu_base_addr - \ (unsigned long)__per_cpu_start) #endif #else /* CONFIG_SMP */ /* on UP, it's always identity mapped */ #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr) #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr) #endif /* CONFIG_SMP */ struct pcpu_chunk { struct list_head list; /* linked to pcpu_slot lists */ int free_size; /* free bytes in the chunk */ int contig_hint; /* max contiguous size hint */ void *base_addr; /* base address of this chunk */ int map_used; /* # of map entries used before the sentry */ int map_alloc; /* # of map entries allocated */ int *map; /* allocation map */ struct work_struct map_extend_work;/* async ->map[] extension */ void *data; /* chunk data */ int first_free; /* no free below this */ bool immutable; /* no [de]population allowed */ int nr_populated; /* # of populated pages */ unsigned long populated[]; /* populated bitmap */ }; static int pcpu_unit_pages __read_mostly; static int pcpu_unit_size __read_mostly; static int pcpu_nr_units __read_mostly; static int pcpu_atom_size __read_mostly; static int pcpu_nr_slots __read_mostly; static size_t pcpu_chunk_struct_size __read_mostly; /* cpus with the lowest and highest unit addresses */ static unsigned int pcpu_low_unit_cpu __read_mostly; static unsigned int pcpu_high_unit_cpu __read_mostly; /* the address of the first chunk which starts with the kernel static area */ void *pcpu_base_addr __read_mostly; EXPORT_SYMBOL_GPL(pcpu_base_addr); static const int *pcpu_unit_map __read_mostly; /* cpu -> unit */ const unsigned long *pcpu_unit_offsets __read_mostly; /* cpu -> unit offset */ /* group information, used for vm allocation */ static int pcpu_nr_groups __read_mostly; static const unsigned long *pcpu_group_offsets __read_mostly; static const size_t *pcpu_group_sizes __read_mostly; /* * The first chunk which always exists. Note that unlike other * chunks, this one can be allocated and mapped in several different * ways and thus often doesn't live in the vmalloc area. */ static struct pcpu_chunk *pcpu_first_chunk; /* * Optional reserved chunk. This chunk reserves part of the first * chunk and serves it for reserved allocations. The amount of * reserved offset is in pcpu_reserved_chunk_limit. When reserved * area doesn't exist, the following variables contain NULL and 0 * respectively. */ static struct pcpu_chunk *pcpu_reserved_chunk; static int pcpu_reserved_chunk_limit; static DEFINE_SPINLOCK(pcpu_lock); /* all internal data structures */ static DEFINE_MUTEX(pcpu_alloc_mutex); /* chunk create/destroy, [de]pop */ static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ /* * The number of empty populated pages, protected by pcpu_lock. The * reserved chunk doesn't contribute to the count. */ static int pcpu_nr_empty_pop_pages; /* * Balance work is used to populate or destroy chunks asynchronously. We * try to keep the number of populated free pages between * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one * empty chunk. */ static void pcpu_balance_workfn(struct work_struct *work); static DECLARE_WORK(pcpu_balance_work, pcpu_balance_workfn); static bool pcpu_async_enabled __read_mostly; static bool pcpu_atomic_alloc_failed; static void pcpu_schedule_balance_work(void) { if (pcpu_async_enabled) schedule_work(&pcpu_balance_work); } static bool pcpu_addr_in_first_chunk(void *addr) { void *first_start = pcpu_first_chunk->base_addr; return addr >= first_start && addr < first_start + pcpu_unit_size; } static bool pcpu_addr_in_reserved_chunk(void *addr) { void *first_start = pcpu_first_chunk->base_addr; return addr >= first_start && addr < first_start + pcpu_reserved_chunk_limit; } static int __pcpu_size_to_slot(int size) { int highbit = fls(size); /* size is in bytes */ return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); } static int pcpu_size_to_slot(int size) { if (size == pcpu_unit_size) return pcpu_nr_slots - 1; return __pcpu_size_to_slot(size); } static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) { if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) return 0; return pcpu_size_to_slot(chunk->free_size); } /* set the pointer to a chunk in a page struct */ static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) { page->index = (unsigned long)pcpu; } /* obtain pointer to a chunk from a page struct */ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) { return (struct pcpu_chunk *)page->index; } static int __maybe_unused pcpu_page_idx(unsigned int cpu, int page_idx) { return pcpu_unit_map[cpu] * pcpu_unit_pages + page_idx; } static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, unsigned int cpu, int page_idx) { return (unsigned long)chunk->base_addr + pcpu_unit_offsets[cpu] + (page_idx << PAGE_SHIFT); } static void __maybe_unused pcpu_next_unpop(struct pcpu_chunk *chunk, int *rs, int *re, int end) { *rs = find_next_zero_bit(chunk->populated, end, *rs); *re = find_next_bit(chunk->populated, end, *rs + 1); } static void __maybe_unused pcpu_next_pop(struct pcpu_chunk *chunk, int *rs, int *re, int end) { *rs = find_next_bit(chunk->populated, end, *rs); *re = find_next_zero_bit(chunk->populated, end, *rs + 1); } /* * (Un)populated page region iterators. Iterate over (un)populated * page regions between @start and @end in @chunk. @rs and @re should * be integer variables and will be set to start and end page index of * the current region. */ #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \ for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \ (rs) < (re); \ (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end))) #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \ for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \ (rs) < (re); \ (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end))) /** * pcpu_mem_zalloc - allocate memory * @size: bytes to allocate * * Allocate @size bytes. If @size is smaller than PAGE_SIZE, * kzalloc() is used; otherwise, vzalloc() is used. The returned * memory is always zeroed. * * CONTEXT: * Does GFP_KERNEL allocation. * * RETURNS: * Pointer to the allocated area on success, NULL on failure. */ static void *pcpu_mem_zalloc(size_t size) { if (WARN_ON_ONCE(!slab_is_available())) return NULL; if (size <= PAGE_SIZE) return kzalloc(size, GFP_KERNEL); else return vzalloc(size); } /** * pcpu_mem_free - free memory * @ptr: memory to free * @size: size of the area * * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc(). */ static void pcpu_mem_free(void *ptr, size_t size) { if (size <= PAGE_SIZE) kfree(ptr); else vfree(ptr); } /** * pcpu_count_occupied_pages - count the number of pages an area occupies * @chunk: chunk of interest * @i: index of the area in question * * Count the number of pages chunk's @i'th area occupies. When the area's * start and/or end address isn't aligned to page boundary, the straddled * page is included in the count iff the rest of the page is free. */ static int pcpu_count_occupied_pages(struct pcpu_chunk *chunk, int i) { int off = chunk->map[i] & ~1; int end = chunk->map[i + 1] & ~1; if (!PAGE_ALIGNED(off) && i > 0) { int prev = chunk->map[i - 1]; if (!(prev & 1) && prev <= round_down(off, PAGE_SIZE)) off = round_down(off, PAGE_SIZE); } if (!PAGE_ALIGNED(end) && i + 1 < chunk->map_used) { int next = chunk->map[i + 1]; int nend = chunk->map[i + 2] & ~1; if (!(next & 1) && nend >= round_up(end, PAGE_SIZE)) end = round_up(end, PAGE_SIZE); } return max_t(int, PFN_DOWN(end) - PFN_UP(off), 0); } /** * pcpu_chunk_relocate - put chunk in the appropriate chunk slot * @chunk: chunk of interest * @oslot: the previous slot it was on * * This function is called after an allocation or free changed @chunk. * New slot according to the changed state is determined and @chunk is * moved to the slot. Note that the reserved chunk is never put on * chunk slots. * * CONTEXT: * pcpu_lock. */ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) { int nslot = pcpu_chunk_slot(chunk); if (chunk != pcpu_reserved_chunk && oslot != nslot) { if (oslot < nslot) list_move(&chunk->list, &pcpu_slot[nslot]); else list_move_tail(&chunk->list, &pcpu_slot[nslot]); } } /** * pcpu_need_to_extend - determine whether chunk area map needs to be extended * @chunk: chunk of interest * @is_atomic: the allocation context * * Determine whether area map of @chunk needs to be extended. If * @is_atomic, only the amount necessary for a new allocation is * considered; however, async extension is scheduled if the left amount is * low. If !@is_atomic, it aims for more empty space. Combined, this * ensures that the map is likely to have enough available space to * accomodate atomic allocations which can't extend maps directly. * * CONTEXT: * pcpu_lock. * * RETURNS: * New target map allocation length if extension is necessary, 0 * otherwise. */ static int pcpu_need_to_extend(struct pcpu_chunk *chunk, bool is_atomic) { int margin, new_alloc; if (is_atomic) { margin = 3; if (chunk->map_alloc < chunk->map_used + PCPU_ATOMIC_MAP_MARGIN_LOW && pcpu_async_enabled) schedule_work(&chunk->map_extend_work); } else { margin = PCPU_ATOMIC_MAP_MARGIN_HIGH; } if (chunk->map_alloc >= chunk->map_used + margin) return 0; new_alloc = PCPU_DFL_MAP_ALLOC; while (new_alloc < chunk->map_used + margin) new_alloc *= 2; return new_alloc; } /** * pcpu_extend_area_map - extend area map of a chunk * @chunk: chunk of interest * @new_alloc: new target allocation length of the area map * * Extend area map of @chunk to have @new_alloc entries. * * CONTEXT: * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock. * * RETURNS: * 0 on success, -errno on failure. */ static int pcpu_extend_area_map(struct pcpu_chunk *chunk, int new_alloc) { int *old = NULL, *new = NULL; size_t old_size = 0, new_size = new_alloc * sizeof(new[0]); unsigned long flags; new = pcpu_mem_zalloc(new_size); if (!new) return -ENOMEM; /* acquire pcpu_lock and switch to new area map */ spin_lock_irqsave(&pcpu_lock, flags); if (new_alloc <= chunk->map_alloc) goto out_unlock; old_size = chunk->map_alloc * sizeof(chunk->map[0]); old = chunk->map; memcpy(new, old, old_size); chunk->map_alloc = new_alloc; chunk->map = new; new = NULL; out_unlock: spin_unlock_irqrestore(&pcpu_lock, flags); /* * pcpu_mem_free() might end up calling vfree() which uses * IRQ-unsafe lock and thus can't be called under pcpu_lock. */ pcpu_mem_free(old, old_size); pcpu_mem_free(new, new_size); return 0; } static void pcpu_map_extend_workfn(struct work_struct *work) { struct pcpu_chunk *chunk = container_of(work, struct pcpu_chunk, map_extend_work); int new_alloc; spin_lock_irq(&pcpu_lock); new_alloc = pcpu_need_to_extend(chunk, false); spin_unlock_irq(&pcpu_lock); if (new_alloc) pcpu_extend_area_map(chunk, new_alloc); } /** * pcpu_fit_in_area - try to fit the requested allocation in a candidate area * @chunk: chunk the candidate area belongs to * @off: the offset to the start of the candidate area * @this_size: the size of the candidate area * @size: the size of the target allocation * @align: the alignment of the target allocation * @pop_only: only allocate from already populated region * * We're trying to allocate @size bytes aligned at @align. @chunk's area * at @off sized @this_size is a candidate. This function determines * whether the target allocation fits in the candidate area and returns the * number of bytes to pad after @off. If the target area doesn't fit, -1 * is returned. * * If @pop_only is %true, this function only considers the already * populated part of the candidate area. */ static int pcpu_fit_in_area(struct pcpu_chunk *chunk, int off, int this_size, int size, int align, bool pop_only) { int cand_off = off; while (true) { int head = ALIGN(cand_off, align) - off; int page_start, page_end, rs, re; if (this_size < head + size) return -1; if (!pop_only) return head; /* * If the first unpopulated page is beyond the end of the * allocation, the whole allocation is populated; * otherwise, retry from the end of the unpopulated area. */ page_start = PFN_DOWN(head + off); page_end = PFN_UP(head + off + size); rs = page_start; pcpu_next_unpop(chunk, &rs, &re, PFN_UP(off + this_size)); if (rs >= page_end) return head; cand_off = re * PAGE_SIZE; } } /** * pcpu_alloc_area - allocate area from a pcpu_chunk * @chunk: chunk of interest * @size: wanted size in bytes * @align: wanted align * @pop_only: allocate only from the populated area * @occ_pages_p: out param for the number of pages the area occupies * * Try to allocate @size bytes area aligned at @align from @chunk. * Note that this function only allocates the offset. It doesn't * populate or map the area. * * @chunk->map must have at least two free slots. * * CONTEXT: * pcpu_lock. * * RETURNS: * Allocated offset in @chunk on success, -1 if no matching area is * found. */ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align, bool pop_only, int *occ_pages_p) { int oslot = pcpu_chunk_slot(chunk); int max_contig = 0; int i, off; bool seen_free = false; int *p; for (i = chunk->first_free, p = chunk->map + i; i < chunk->map_used; i++, p++) { int head, tail; int this_size; off = *p; if (off & 1) continue; this_size = (p[1] & ~1) - off; head = pcpu_fit_in_area(chunk, off, this_size, size, align, pop_only); if (head < 0) { if (!seen_free) { chunk->first_free = i; seen_free = true; } max_contig = max(this_size, max_contig); continue; } /* * If head is small or the previous block is free, * merge'em. Note that 'small' is defined as smaller * than sizeof(int), which is very small but isn't too * uncommon for percpu allocations. */ if (head && (head < sizeof(int) || !(p[-1] & 1))) { *p = off += head; if (p[-1] & 1) chunk->free_size -= head; else max_contig = max(*p - p[-1], max_contig); this_size -= head; head = 0; } /* if tail is small, just keep it around */ tail = this_size - head - size; if (tail < sizeof(int)) { tail = 0; size = this_size - head; } /* split if warranted */ if (head || tail) { int nr_extra = !!head + !!tail; /* insert new subblocks */ memmove(p + nr_extra + 1, p + 1, sizeof(chunk->map[0]) * (chunk->map_used - i)); chunk->map_used += nr_extra; if (head) { if (!seen_free) { chunk->first_free = i; seen_free = true; } *++p = off += head; ++i; max_contig = max(head, max_contig); } if (tail) { p[1] = off + size; max_contig = max(tail, max_contig); } } if (!seen_free) chunk->first_free = i + 1; /* update hint and mark allocated */ if (i + 1 == chunk->map_used) chunk->contig_hint = max_contig; /* fully scanned */ else chunk->contig_hint = max(chunk->contig_hint, max_contig); chunk->free_size -= size; *p |= 1; *occ_pages_p = pcpu_count_occupied_pages(chunk, i); pcpu_chunk_relocate(chunk, oslot); return off; } chunk->contig_hint = max_contig; /* fully scanned */ pcpu_chunk_relocate(chunk, oslot); /* tell the upper layer that this chunk has no matching area */ return -1; } /** * pcpu_free_area - free area to a pcpu_chunk * @chunk: chunk of interest * @freeme: offset of area to free * @occ_pages_p: out param for the number of pages the area occupies * * Free area starting from @freeme to @chunk. Note that this function * only modifies the allocation map. It doesn't depopulate or unmap * the area. * * CONTEXT: * pcpu_lock. */ static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme, int *occ_pages_p) { int oslot = pcpu_chunk_slot(chunk); int off = 0; unsigned i, j; int to_free = 0; int *p; freeme |= 1; /* we are searching for <given offset, in use> pair */ i = 0; j = chunk->map_used; while (i != j) { unsigned k = (i + j) / 2; off = chunk->map[k]; if (off < freeme) i = k + 1; else if (off > freeme) j = k; else i = j = k; } BUG_ON(off != freeme); if (i < chunk->first_free) chunk->first_free = i; p = chunk->map + i; *p = off &= ~1; chunk->free_size += (p[1] & ~1) - off; *occ_pages_p = pcpu_count_occupied_pages(chunk, i); /* merge with next? */ if (!(p[1] & 1)) to_free++; /* merge with previous? */ if (i > 0 && !(p[-1] & 1)) { to_free++; i--; p--; } if (to_free) { chunk->map_used -= to_free; memmove(p + 1, p + 1 + to_free, (chunk->map_used - i) * sizeof(chunk->map[0])); } chunk->contig_hint = max(chunk->map[i + 1] - chunk->map[i] - 1, chunk->contig_hint); pcpu_chunk_relocate(chunk, oslot); } static struct pcpu_chunk *pcpu_alloc_chunk(void) { struct pcpu_chunk *chunk; chunk = pcpu_mem_zalloc(pcpu_chunk_struct_size); if (!chunk) return NULL; chunk->map = pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); if (!chunk->map) { pcpu_mem_free(chunk, pcpu_chunk_struct_size); return NULL; } chunk->map_alloc = PCPU_DFL_MAP_ALLOC; chunk->map[0] = 0; chunk->map[1] = pcpu_unit_size | 1; chunk->map_used = 1; INIT_LIST_HEAD(&chunk->list); INIT_WORK(&chunk->map_extend_work, pcpu_map_extend_workfn); chunk->free_size = pcpu_unit_size; chunk->contig_hint = pcpu_unit_size; return chunk; } static void pcpu_free_chunk(struct pcpu_chunk *chunk) { if (!chunk) return; pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); pcpu_mem_free(chunk, pcpu_chunk_struct_size); } /** * pcpu_chunk_populated - post-population bookkeeping * @chunk: pcpu_chunk which got populated * @page_start: the start page * @page_end: the end page * * Pages in [@page_start,@page_end) have been populated to @chunk. Update * the bookkeeping information accordingly. Must be called after each * successful population. */ static void pcpu_chunk_populated(struct pcpu_chunk *chunk, int page_start, int page_end) { int nr = page_end - page_start; lockdep_assert_held(&pcpu_lock); bitmap_set(chunk->populated, page_start, nr); chunk->nr_populated += nr; pcpu_nr_empty_pop_pages += nr; } /** * pcpu_chunk_depopulated - post-depopulation bookkeeping * @chunk: pcpu_chunk which got depopulated * @page_start: the start page * @page_end: the end page * * Pages in [@page_start,@page_end) have been depopulated from @chunk. * Update the bookkeeping information accordingly. Must be called after * each successful depopulation. */ static void pcpu_chunk_depopulated(struct pcpu_chunk *chunk, int page_start, int page_end) { int nr = page_end - page_start; lockdep_assert_held(&pcpu_lock); bitmap_clear(chunk->populated, page_start, nr); chunk->nr_populated -= nr; pcpu_nr_empty_pop_pages -= nr; } /* * Chunk management implementation. * * To allow different implementations, chunk alloc/free and * [de]population are implemented in a separate file which is pulled * into this file and compiled together. The following functions * should be implemented. * * pcpu_populate_chunk - populate the specified range of a chunk * pcpu_depopulate_chunk - depopulate the specified range of a chunk * pcpu_create_chunk - create a new chunk * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop * pcpu_addr_to_page - translate address to physical address * pcpu_verify_alloc_info - check alloc_info is acceptable during init */ static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size); static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size); static struct pcpu_chunk *pcpu_create_chunk(void); static void pcpu_destroy_chunk(struct pcpu_chunk *chunk); static struct page *pcpu_addr_to_page(void *addr); static int __init pcpu_verify_alloc_info(const struct pcpu_alloc_info *ai); #ifdef CONFIG_NEED_PER_CPU_KM #include "percpu-km.c" #else #include "percpu-vm.c" #endif /** * pcpu_chunk_addr_search - determine chunk containing specified address * @addr: address for which the chunk needs to be determined. * * RETURNS: * The address of the found chunk. */ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) { /* is it in the first chunk? */ if (pcpu_addr_in_first_chunk(addr)) { /* is it in the reserved area? */ if (pcpu_addr_in_reserved_chunk(addr)) return pcpu_reserved_chunk; return pcpu_first_chunk; } /* * The address is relative to unit0 which might be unused and * thus unmapped. Offset the address to the unit space of the * current processor before looking it up in the vmalloc * space. Note that any possible cpu id can be used here, so * there's no need to worry about preemption or cpu hotplug. */ addr += pcpu_unit_offsets[raw_smp_processor_id()]; return pcpu_get_page_chunk(pcpu_addr_to_page(addr)); } /** * pcpu_alloc - the percpu allocator * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * @reserved: allocate from the reserved chunk if available * @gfp: allocation flags * * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't * contain %GFP_KERNEL, the allocation is atomic. * * RETURNS: * Percpu pointer to the allocated area on success, NULL on failure. */ static void __percpu *pcpu_alloc(size_t size, size_t align, bool reserved, gfp_t gfp) { static int warn_limit = 10; struct pcpu_chunk *chunk; const char *err; bool is_atomic = (gfp & GFP_KERNEL) != GFP_KERNEL; int occ_pages = 0; int slot, off, new_alloc, cpu, ret; unsigned long flags; void __percpu *ptr; /* * We want the lowest bit of offset available for in-use/free * indicator, so force >= 16bit alignment and make size even. */ if (unlikely(align < 2)) align = 2; size = ALIGN(size, 2); if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { WARN(true, "illegal size (%zu) or align (%zu) for " "percpu allocation\n", size, align); return NULL; } spin_lock_irqsave(&pcpu_lock, flags); /* serve reserved allocations from the reserved chunk if available */ if (reserved && pcpu_reserved_chunk) { chunk = pcpu_reserved_chunk; if (size > chunk->contig_hint) { err = "alloc from reserved chunk failed"; goto fail_unlock; } while ((new_alloc = pcpu_need_to_extend(chunk, is_atomic))) { spin_unlock_irqrestore(&pcpu_lock, flags); if (is_atomic || pcpu_extend_area_map(chunk, new_alloc) < 0) { err = "failed to extend area map of reserved chunk"; goto fail; } spin_lock_irqsave(&pcpu_lock, flags); } off = pcpu_alloc_area(chunk, size, align, is_atomic, &occ_pages); if (off >= 0) goto area_found; err = "alloc from reserved chunk failed"; goto fail_unlock; } restart: /* search through normal chunks */ for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { list_for_each_entry(chunk, &pcpu_slot[slot], list) { if (size > chunk->contig_hint) continue; new_alloc = pcpu_need_to_extend(chunk, is_atomic); if (new_alloc) { if (is_atomic) continue; spin_unlock_irqrestore(&pcpu_lock, flags); if (pcpu_extend_area_map(chunk, new_alloc) < 0) { err = "failed to extend area map"; goto fail; } spin_lock_irqsave(&pcpu_lock, flags); /* * pcpu_lock has been dropped, need to * restart cpu_slot list walking. */ goto restart; } off = pcpu_alloc_area(chunk, size, align, is_atomic, &occ_pages); if (off >= 0) goto area_found; } } spin_unlock_irqrestore(&pcpu_lock, flags); /* * No space left. Create a new chunk. We don't want multiple * tasks to create chunks simultaneously. Serialize and create iff * there's still no empty chunk after grabbing the mutex. */ if (is_atomic) goto fail; mutex_lock(&pcpu_alloc_mutex); if (list_empty(&pcpu_slot[pcpu_nr_slots - 1])) { chunk = pcpu_create_chunk(); if (!chunk) { mutex_unlock(&pcpu_alloc_mutex); err = "failed to allocate new chunk"; goto fail; } spin_lock_irqsave(&pcpu_lock, flags); pcpu_chunk_relocate(chunk, -1); } else { spin_lock_irqsave(&pcpu_lock, flags); } mutex_unlock(&pcpu_alloc_mutex); goto restart; area_found: spin_unlock_irqrestore(&pcpu_lock, flags); /* populate if not all pages are already there */ if (!is_atomic) { int page_start, page_end, rs, re; mutex_lock(&pcpu_alloc_mutex); page_start = PFN_DOWN(off); page_end = PFN_UP(off + size); pcpu_for_each_unpop_region(chunk, rs, re, page_start, page_end) { WARN_ON(chunk->immutable); ret = pcpu_populate_chunk(chunk, rs, re); spin_lock_irqsave(&pcpu_lock, flags); if (ret) { mutex_unlock(&pcpu_alloc_mutex); pcpu_free_area(chunk, off, &occ_pages); err = "failed to populate"; goto fail_unlock; } pcpu_chunk_populated(chunk, rs, re); spin_unlock_irqrestore(&pcpu_lock, flags); } mutex_unlock(&pcpu_alloc_mutex); } if (chunk != pcpu_reserved_chunk) pcpu_nr_empty_pop_pages -= occ_pages; if (pcpu_nr_empty_pop_pages < PCPU_EMPTY_POP_PAGES_LOW) pcpu_schedule_balance_work(); /* clear the areas and return address relative to base address */ for_each_possible_cpu(cpu) memset((void *)pcpu_chunk_addr(chunk, cpu, 0) + off, 0, size); ptr = __addr_to_pcpu_ptr(chunk->base_addr + off); kmemleak_alloc_percpu(ptr, size, gfp); return ptr; fail_unlock: spin_unlock_irqrestore(&pcpu_lock, flags); fail: if (!is_atomic && warn_limit) { pr_warning("PERCPU: allocation failed, size=%zu align=%zu atomic=%d, %s\n", size, align, is_atomic, err); dump_stack(); if (!--warn_limit) pr_info("PERCPU: limit reached, disable warning\n"); } if (is_atomic) { /* see the flag handling in pcpu_blance_workfn() */ pcpu_atomic_alloc_failed = true; pcpu_schedule_balance_work(); } return NULL; } /** * __alloc_percpu_gfp - allocate dynamic percpu area * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * @gfp: allocation flags * * Allocate zero-filled percpu area of @size bytes aligned at @align. If * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can * be called from any context but is a lot more likely to fail. * * RETURNS: * Percpu pointer to the allocated area on success, NULL on failure. */ void __percpu *__alloc_percpu_gfp(size_t size, size_t align, gfp_t gfp) { return pcpu_alloc(size, align, false, gfp); } EXPORT_SYMBOL_GPL(__alloc_percpu_gfp); /** * __alloc_percpu - allocate dynamic percpu area * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL). */ void __percpu *__alloc_percpu(size_t size, size_t align) { return pcpu_alloc(size, align, false, GFP_KERNEL); } EXPORT_SYMBOL_GPL(__alloc_percpu); /** * __alloc_reserved_percpu - allocate reserved percpu area * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * * Allocate zero-filled percpu area of @size bytes aligned at @align * from reserved percpu area if arch has set it up; otherwise, * allocation is served from the same dynamic area. Might sleep. * Might trigger writeouts. * * CONTEXT: * Does GFP_KERNEL allocation. * * RETURNS: * Percpu pointer to the allocated area on success, NULL on failure. */ void __percpu *__alloc_reserved_percpu(size_t size, size_t align) { return pcpu_alloc(size, align, true, GFP_KERNEL); } /** * pcpu_balance_workfn - manage the amount of free chunks and populated pages * @work: unused * * Reclaim all fully free chunks except for the first one. */ static void pcpu_balance_workfn(struct work_struct *work) { LIST_HEAD(to_free); struct list_head *free_head = &pcpu_slot[pcpu_nr_slots - 1]; struct pcpu_chunk *chunk, *next; int slot, nr_to_pop, ret; /* * There's no reason to keep around multiple unused chunks and VM * areas can be scarce. Destroy all free chunks except for one. */ mutex_lock(&pcpu_alloc_mutex); spin_lock_irq(&pcpu_lock); list_for_each_entry_safe(chunk, next, free_head, list) { WARN_ON(chunk->immutable); /* spare the first one */ if (chunk == list_first_entry(free_head, struct pcpu_chunk, list)) continue; list_move(&chunk->list, &to_free); } spin_unlock_irq(&pcpu_lock); list_for_each_entry_safe(chunk, next, &to_free, list) { int rs, re; pcpu_for_each_pop_region(chunk, rs, re, 0, pcpu_unit_pages) { pcpu_depopulate_chunk(chunk, rs, re); spin_lock_irq(&pcpu_lock); pcpu_chunk_depopulated(chunk, rs, re); spin_unlock_irq(&pcpu_lock); } pcpu_destroy_chunk(chunk); } /* * Ensure there are certain number of free populated pages for * atomic allocs. Fill up from the most packed so that atomic * allocs don't increase fragmentation. If atomic allocation * failed previously, always populate the maximum amount. This * should prevent atomic allocs larger than PAGE_SIZE from keeping * failing indefinitely; however, large atomic allocs are not * something we support properly and can be highly unreliable and * inefficient. */ retry_pop: if (pcpu_atomic_alloc_failed) { nr_to_pop = PCPU_EMPTY_POP_PAGES_HIGH; /* best effort anyway, don't worry about synchronization */ pcpu_atomic_alloc_failed = false; } else { nr_to_pop = clamp(PCPU_EMPTY_POP_PAGES_HIGH - pcpu_nr_empty_pop_pages, 0, PCPU_EMPTY_POP_PAGES_HIGH); } for (slot = pcpu_size_to_slot(PAGE_SIZE); slot < pcpu_nr_slots; slot++) { int nr_unpop = 0, rs, re; if (!nr_to_pop) break; spin_lock_irq(&pcpu_lock); list_for_each_entry(chunk, &pcpu_slot[slot], list) { nr_unpop = pcpu_unit_pages - chunk->nr_populated; if (nr_unpop) break; } spin_unlock_irq(&pcpu_lock); if (!nr_unpop) continue; /* @chunk can't go away while pcpu_alloc_mutex is held */ pcpu_for_each_unpop_region(chunk, rs, re, 0, pcpu_unit_pages) { int nr = min(re - rs, nr_to_pop); ret = pcpu_populate_chunk(chunk, rs, rs + nr); if (!ret) { nr_to_pop -= nr; spin_lock_irq(&pcpu_lock); pcpu_chunk_populated(chunk, rs, rs + nr); spin_unlock_irq(&pcpu_lock); } else { nr_to_pop = 0; } if (!nr_to_pop) break; } } if (nr_to_pop) { /* ran out of chunks to populate, create a new one and retry */ chunk = pcpu_create_chunk(); if (chunk) { spin_lock_irq(&pcpu_lock); pcpu_chunk_relocate(chunk, -1); spin_unlock_irq(&pcpu_lock); goto retry_pop; } } mutex_unlock(&pcpu_alloc_mutex); } /** * free_percpu - free percpu area * @ptr: pointer to area to free * * Free percpu area @ptr. * * CONTEXT: * Can be called from atomic context. */ void free_percpu(void __percpu *ptr) { void *addr; struct pcpu_chunk *chunk; unsigned long flags; int off, occ_pages; if (!ptr) return; kmemleak_free_percpu(ptr); addr = __pcpu_ptr_to_addr(ptr); spin_lock_irqsave(&pcpu_lock, flags); chunk = pcpu_chunk_addr_search(addr); off = addr - chunk->base_addr; pcpu_free_area(chunk, off, &occ_pages); if (chunk != pcpu_reserved_chunk) pcpu_nr_empty_pop_pages += occ_pages; /* if there are more than one fully free chunks, wake up grim reaper */ if (chunk->free_size == pcpu_unit_size) { struct pcpu_chunk *pos; list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) if (pos != chunk) { pcpu_schedule_balance_work(); break; } } spin_unlock_irqrestore(&pcpu_lock, flags); } EXPORT_SYMBOL_GPL(free_percpu); /** * is_kernel_percpu_address - test whether address is from static percpu area * @addr: address to test * * Test whether @addr belongs to in-kernel static percpu area. Module * static percpu areas are not considered. For those, use * is_module_percpu_address(). * * RETURNS: * %true if @addr is from in-kernel static percpu area, %false otherwise. */ bool is_kernel_percpu_address(unsigned long addr) { #ifdef CONFIG_SMP const size_t static_size = __per_cpu_end - __per_cpu_start; void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); unsigned int cpu; for_each_possible_cpu(cpu) { void *start = per_cpu_ptr(base, cpu); if ((void *)addr >= start && (void *)addr < start + static_size) return true; } #endif /* on UP, can't distinguish from other static vars, always false */ return false; } /** * per_cpu_ptr_to_phys - convert translated percpu address to physical address * @addr: the address to be converted to physical address * * Given @addr which is dereferenceable address obtained via one of * percpu access macros, this function translates it into its physical * address. The caller is responsible for ensuring @addr stays valid * until this function finishes. * * percpu allocator has special setup for the first chunk, which currently * supports either embedding in linear address space or vmalloc mapping, * and, from the second one, the backing allocator (currently either vm or * km) provides translation. * * The addr can be translated simply without checking if it falls into the * first chunk. But the current code reflects better how percpu allocator * actually works, and the verification can discover both bugs in percpu * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current * code. * * RETURNS: * The physical address for @addr. */ phys_addr_t per_cpu_ptr_to_phys(void *addr) { void __percpu *base = __addr_to_pcpu_ptr(pcpu_base_addr); bool in_first_chunk = false; unsigned long first_low, first_high; unsigned int cpu; /* * The following test on unit_low/high isn't strictly * necessary but will speed up lookups of addresses which * aren't in the first chunk. */ first_low = pcpu_chunk_addr(pcpu_first_chunk, pcpu_low_unit_cpu, 0); first_high = pcpu_chunk_addr(pcpu_first_chunk, pcpu_high_unit_cpu, pcpu_unit_pages); if ((unsigned long)addr >= first_low && (unsigned long)addr < first_high) { for_each_possible_cpu(cpu) { void *start = per_cpu_ptr(base, cpu); if (addr >= start && addr < start + pcpu_unit_size) { in_first_chunk = true; break; } } } if (in_first_chunk) { if (!is_vmalloc_addr(addr)) return __pa(addr); else return page_to_phys(vmalloc_to_page(addr)) + offset_in_page(addr); } else return page_to_phys(pcpu_addr_to_page(addr)) + offset_in_page(addr); } /** * pcpu_alloc_alloc_info - allocate percpu allocation info * @nr_groups: the number of groups * @nr_units: the number of units * * Allocate ai which is large enough for @nr_groups groups containing * @nr_units units. The returned ai's groups[0].cpu_map points to the * cpu_map array which is long enough for @nr_units and filled with * NR_CPUS. It's the caller's responsibility to initialize cpu_map * pointer of other groups. * * RETURNS: * Pointer to the allocated pcpu_alloc_info on success, NULL on * failure. */ struct pcpu_alloc_info * __init pcpu_alloc_alloc_info(int nr_groups, int nr_units) { struct pcpu_alloc_info *ai; size_t base_size, ai_size; void *ptr; int unit; base_size = ALIGN(sizeof(*ai) + nr_groups * sizeof(ai->groups[0]), __alignof__(ai->groups[0].cpu_map[0])); ai_size = base_size + nr_units * sizeof(ai->groups[0].cpu_map[0]); ptr = memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size), 0); if (!ptr) return NULL; ai = ptr; ptr += base_size; ai->groups[0].cpu_map = ptr; for (unit = 0; unit < nr_units; unit++) ai->groups[0].cpu_map[unit] = NR_CPUS; ai->nr_groups = nr_groups; ai->__ai_size = PFN_ALIGN(ai_size); return ai; } /** * pcpu_free_alloc_info - free percpu allocation info * @ai: pcpu_alloc_info to free * * Free @ai which was allocated by pcpu_alloc_alloc_info(). */ void __init pcpu_free_alloc_info(struct pcpu_alloc_info *ai) { memblock_free_early(__pa(ai), ai->__ai_size); } /** * pcpu_dump_alloc_info - print out information about pcpu_alloc_info * @lvl: loglevel * @ai: allocation info to dump * * Print out information about @ai using loglevel @lvl. */ static void pcpu_dump_alloc_info(const char *lvl, const struct pcpu_alloc_info *ai) { int group_width = 1, cpu_width = 1, width; char empty_str[] = "--------"; int alloc = 0, alloc_end = 0; int group, v; int upa, apl; /* units per alloc, allocs per line */ v = ai->nr_groups; while (v /= 10) group_width++; v = num_possible_cpus(); while (v /= 10) cpu_width++; empty_str[min_t(int, cpu_width, sizeof(empty_str) - 1)] = '\0'; upa = ai->alloc_size / ai->unit_size; width = upa * (cpu_width + 1) + group_width + 3; apl = rounddown_pow_of_two(max(60 / width, 1)); printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu", lvl, ai->static_size, ai->reserved_size, ai->dyn_size, ai->unit_size, ai->alloc_size / ai->atom_size, ai->atom_size); for (group = 0; group < ai->nr_groups; group++) { const struct pcpu_group_info *gi = &ai->groups[group]; int unit = 0, unit_end = 0; BUG_ON(gi->nr_units % upa); for (alloc_end += gi->nr_units / upa; alloc < alloc_end; alloc++) { if (!(alloc % apl)) { printk(KERN_CONT "\n"); printk("%spcpu-alloc: ", lvl); } printk(KERN_CONT "[%0*d] ", group_width, group); for (unit_end += upa; unit < unit_end; unit++) if (gi->cpu_map[unit] != NR_CPUS) printk(KERN_CONT "%0*d ", cpu_width, gi->cpu_map[unit]); else printk(KERN_CONT "%s ", empty_str); } } printk(KERN_CONT "\n"); } /** * pcpu_setup_first_chunk - initialize the first percpu chunk * @ai: pcpu_alloc_info describing how to percpu area is shaped * @base_addr: mapped address * * Initialize the first percpu chunk which contains the kernel static * perpcu area. This function is to be called from arch percpu area * setup path. * * @ai contains all information necessary to initialize the first * chunk and prime the dynamic percpu allocator. * * @ai->static_size is the size of static percpu area. * * @ai->reserved_size, if non-zero, specifies the amount of bytes to * reserve after the static area in the first chunk. This reserves * the first chunk such that it's available only through reserved * percpu allocation. This is primarily used to serve module percpu * static areas on architectures where the addressing model has * limited offset range for symbol relocations to guarantee module * percpu symbols fall inside the relocatable range. * * @ai->dyn_size determines the number of bytes available for dynamic * allocation in the first chunk. The area between @ai->static_size + * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused. * * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE * and equal to or larger than @ai->static_size + @ai->reserved_size + * @ai->dyn_size. * * @ai->atom_size is the allocation atom size and used as alignment * for vm areas. * * @ai->alloc_size is the allocation size and always multiple of * @ai->atom_size. This is larger than @ai->atom_size if * @ai->unit_size is larger than @ai->atom_size. * * @ai->nr_groups and @ai->groups describe virtual memory layout of * percpu areas. Units which should be colocated are put into the * same group. Dynamic VM areas will be allocated according to these * groupings. If @ai->nr_groups is zero, a single group containing * all units is assumed. * * The caller should have mapped the first chunk at @base_addr and * copied static data to each unit. * * If the first chunk ends up with both reserved and dynamic areas, it * is served by two chunks - one to serve the core static and reserved * areas and the other for the dynamic area. They share the same vm * and page map but uses different area allocation map to stay away * from each other. The latter chunk is circulated in the chunk slots * and available for dynamic allocation like any other chunks. * * RETURNS: * 0 on success, -errno on failure. */ int __init pcpu_setup_first_chunk(const struct pcpu_alloc_info *ai, void *base_addr) { static int smap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; static int dmap[PERCPU_DYNAMIC_EARLY_SLOTS] __initdata; size_t dyn_size = ai->dyn_size; size_t size_sum = ai->static_size + ai->reserved_size + dyn_size; struct pcpu_chunk *schunk, *dchunk = NULL; unsigned long *group_offsets; size_t *group_sizes; unsigned long *unit_off; unsigned int cpu; int *unit_map; int group, unit, i; #define PCPU_SETUP_BUG_ON(cond) do { \ if (unlikely(cond)) { \ pr_emerg("PERCPU: failed to initialize, %s", #cond); \ pr_emerg("PERCPU: cpu_possible_mask=%*pb\n", \ cpumask_pr_args(cpu_possible_mask)); \ pcpu_dump_alloc_info(KERN_EMERG, ai); \ BUG(); \ } \ } while (0) /* sanity checks */ PCPU_SETUP_BUG_ON(ai->nr_groups <= 0); #ifdef CONFIG_SMP PCPU_SETUP_BUG_ON(!ai->static_size); PCPU_SETUP_BUG_ON((unsigned long)__per_cpu_start & ~PAGE_MASK); #endif PCPU_SETUP_BUG_ON(!base_addr); PCPU_SETUP_BUG_ON((unsigned long)base_addr & ~PAGE_MASK); PCPU_SETUP_BUG_ON(ai->unit_size < size_sum); PCPU_SETUP_BUG_ON(ai->unit_size & ~PAGE_MASK); PCPU_SETUP_BUG_ON(ai->unit_size < PCPU_MIN_UNIT_SIZE); PCPU_SETUP_BUG_ON(ai->dyn_size < PERCPU_DYNAMIC_EARLY_SIZE); PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai) < 0); /* process group information and build config tables accordingly */ group_offsets = memblock_virt_alloc(ai->nr_groups * sizeof(group_offsets[0]), 0); group_sizes = memblock_virt_alloc(ai->nr_groups * sizeof(group_sizes[0]), 0); unit_map = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_map[0]), 0); unit_off = memblock_virt_alloc(nr_cpu_ids * sizeof(unit_off[0]), 0); for (cpu = 0; cpu < nr_cpu_ids; cpu++) unit_map[cpu] = UINT_MAX; pcpu_low_unit_cpu = NR_CPUS; pcpu_high_unit_cpu = NR_CPUS; for (group = 0, unit = 0; group < ai->nr_groups; group++, unit += i) { const struct pcpu_group_info *gi = &ai->groups[group]; group_offsets[group] = gi->base_offset; group_sizes[group] = gi->nr_units * ai->unit_size; for (i = 0; i < gi->nr_units; i++) { cpu = gi->cpu_map[i]; if (cpu == NR_CPUS) continue; PCPU_SETUP_BUG_ON(cpu >= nr_cpu_ids); PCPU_SETUP_BUG_ON(!cpu_possible(cpu)); PCPU_SETUP_BUG_ON(unit_map[cpu] != UINT_MAX); unit_map[cpu] = unit + i; unit_off[cpu] = gi->base_offset + i * ai->unit_size; /* determine low/high unit_cpu */ if (pcpu_low_unit_cpu == NR_CPUS || unit_off[cpu] < unit_off[pcpu_low_unit_cpu]) pcpu_low_unit_cpu = cpu; if (pcpu_high_unit_cpu == NR_CPUS || unit_off[cpu] > unit_off[pcpu_high_unit_cpu]) pcpu_high_unit_cpu = cpu; } } pcpu_nr_units = unit; for_each_possible_cpu(cpu) PCPU_SETUP_BUG_ON(unit_map[cpu] == UINT_MAX); /* we're done parsing the input, undefine BUG macro and dump config */ #undef PCPU_SETUP_BUG_ON pcpu_dump_alloc_info(KERN_DEBUG, ai); pcpu_nr_groups = ai->nr_groups; pcpu_group_offsets = group_offsets; pcpu_group_sizes = group_sizes; pcpu_unit_map = unit_map; pcpu_unit_offsets = unit_off; /* determine basic parameters */ pcpu_unit_pages = ai->unit_size >> PAGE_SHIFT; pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; pcpu_atom_size = ai->atom_size; pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + BITS_TO_LONGS(pcpu_unit_pages) * sizeof(unsigned long); /* * Allocate chunk slots. The additional last slot is for * empty chunks. */ pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; pcpu_slot = memblock_virt_alloc( pcpu_nr_slots * sizeof(pcpu_slot[0]), 0); for (i = 0; i < pcpu_nr_slots; i++) INIT_LIST_HEAD(&pcpu_slot[i]); /* * Initialize static chunk. If reserved_size is zero, the * static chunk covers static area + dynamic allocation area * in the first chunk. If reserved_size is not zero, it * covers static area + reserved area (mostly used for module * static percpu allocation). */ schunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); INIT_LIST_HEAD(&schunk->list); INIT_WORK(&schunk->map_extend_work, pcpu_map_extend_workfn); schunk->base_addr = base_addr; schunk->map = smap; schunk->map_alloc = ARRAY_SIZE(smap); schunk->immutable = true; bitmap_fill(schunk->populated, pcpu_unit_pages); schunk->nr_populated = pcpu_unit_pages; if (ai->reserved_size) { schunk->free_size = ai->reserved_size; pcpu_reserved_chunk = schunk; pcpu_reserved_chunk_limit = ai->static_size + ai->reserved_size; } else { schunk->free_size = dyn_size; dyn_size = 0; /* dynamic area covered */ } schunk->contig_hint = schunk->free_size; schunk->map[0] = 1; schunk->map[1] = ai->static_size; schunk->map_used = 1; if (schunk->free_size) schunk->map[++schunk->map_used] = 1 | (ai->static_size + schunk->free_size); else schunk->map[1] |= 1; /* init dynamic chunk if necessary */ if (dyn_size) { dchunk = memblock_virt_alloc(pcpu_chunk_struct_size, 0); INIT_LIST_HEAD(&dchunk->list); INIT_WORK(&dchunk->map_extend_work, pcpu_map_extend_workfn); dchunk->base_addr = base_addr; dchunk->map = dmap; dchunk->map_alloc = ARRAY_SIZE(dmap); dchunk->immutable = true; bitmap_fill(dchunk->populated, pcpu_unit_pages); dchunk->nr_populated = pcpu_unit_pages; dchunk->contig_hint = dchunk->free_size = dyn_size; dchunk->map[0] = 1; dchunk->map[1] = pcpu_reserved_chunk_limit; dchunk->map[2] = (pcpu_reserved_chunk_limit + dchunk->free_size) | 1; dchunk->map_used = 2; } /* link the first chunk in */ pcpu_first_chunk = dchunk ?: schunk; pcpu_nr_empty_pop_pages += pcpu_count_occupied_pages(pcpu_first_chunk, 1); pcpu_chunk_relocate(pcpu_first_chunk, -1); /* we're done */ pcpu_base_addr = base_addr; return 0; } #ifdef CONFIG_SMP const char * const pcpu_fc_names[PCPU_FC_NR] __initconst = { [PCPU_FC_AUTO] = "auto", [PCPU_FC_EMBED] = "embed", [PCPU_FC_PAGE] = "page", }; enum pcpu_fc pcpu_chosen_fc __initdata = PCPU_FC_AUTO; static int __init percpu_alloc_setup(char *str) { if (!str) return -EINVAL; if (0) /* nada */; #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK else if (!strcmp(str, "embed")) pcpu_chosen_fc = PCPU_FC_EMBED; #endif #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK else if (!strcmp(str, "page")) pcpu_chosen_fc = PCPU_FC_PAGE; #endif else pr_warning("PERCPU: unknown allocator %s specified\n", str); return 0; } early_param("percpu_alloc", percpu_alloc_setup); /* * pcpu_embed_first_chunk() is used by the generic percpu setup. * Build it if needed by the arch config or the generic setup is going * to be used. */ #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \ !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA) #define BUILD_EMBED_FIRST_CHUNK #endif /* build pcpu_page_first_chunk() iff needed by the arch config */ #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK) #define BUILD_PAGE_FIRST_CHUNK #endif /* pcpu_build_alloc_info() is used by both embed and page first chunk */ #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK) /** * pcpu_build_alloc_info - build alloc_info considering distances between CPUs * @reserved_size: the size of reserved percpu area in bytes * @dyn_size: minimum free size for dynamic allocation in bytes * @atom_size: allocation atom size * @cpu_distance_fn: callback to determine distance between cpus, optional * * This function determines grouping of units, their mappings to cpus * and other parameters considering needed percpu size, allocation * atom size and distances between CPUs. * * Groups are always multiples of atom size and CPUs which are of * LOCAL_DISTANCE both ways are grouped together and share space for * units in the same group. The returned configuration is guaranteed * to have CPUs on different nodes on different groups and >=75% usage * of allocated virtual address space. * * RETURNS: * On success, pointer to the new allocation_info is returned. On * failure, ERR_PTR value is returned. */ static struct pcpu_alloc_info * __init pcpu_build_alloc_info( size_t reserved_size, size_t dyn_size, size_t atom_size, pcpu_fc_cpu_distance_fn_t cpu_distance_fn) { static int group_map[NR_CPUS] __initdata; static int group_cnt[NR_CPUS] __initdata; const size_t static_size = __per_cpu_end - __per_cpu_start; int nr_groups = 1, nr_units = 0; size_t size_sum, min_unit_size, alloc_size; int upa, max_upa, uninitialized_var(best_upa); /* units_per_alloc */ int last_allocs, group, unit; unsigned int cpu, tcpu; struct pcpu_alloc_info *ai; unsigned int *cpu_map; /* this function may be called multiple times */ memset(group_map, 0, sizeof(group_map)); memset(group_cnt, 0, sizeof(group_cnt)); /* calculate size_sum and ensure dyn_size is enough for early alloc */ size_sum = PFN_ALIGN(static_size + reserved_size + max_t(size_t, dyn_size, PERCPU_DYNAMIC_EARLY_SIZE)); dyn_size = size_sum - static_size - reserved_size; /* * Determine min_unit_size, alloc_size and max_upa such that * alloc_size is multiple of atom_size and is the smallest * which can accommodate 4k aligned segments which are equal to * or larger than min_unit_size. */ min_unit_size = max_t(size_t, size_sum, PCPU_MIN_UNIT_SIZE); alloc_size = roundup(min_unit_size, atom_size); upa = alloc_size / min_unit_size; while (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) upa--; max_upa = upa; /* group cpus according to their proximity */ for_each_possible_cpu(cpu) { group = 0; next_group: for_each_possible_cpu(tcpu) { if (cpu == tcpu) break; if (group_map[tcpu] == group && cpu_distance_fn && (cpu_distance_fn(cpu, tcpu) > LOCAL_DISTANCE || cpu_distance_fn(tcpu, cpu) > LOCAL_DISTANCE)) { group++; nr_groups = max(nr_groups, group + 1); goto next_group; } } group_map[cpu] = group; group_cnt[group]++; } /* * Expand unit size until address space usage goes over 75% * and then as much as possible without using more address * space. */ last_allocs = INT_MAX; for (upa = max_upa; upa; upa--) { int allocs = 0, wasted = 0; if (alloc_size % upa || ((alloc_size / upa) & ~PAGE_MASK)) continue; for (group = 0; group < nr_groups; group++) { int this_allocs = DIV_ROUND_UP(group_cnt[group], upa); allocs += this_allocs; wasted += this_allocs * upa - group_cnt[group]; } /* * Don't accept if wastage is over 1/3. The * greater-than comparison ensures upa==1 always * passes the following check. */ if (wasted > num_possible_cpus() / 3) continue; /* and then don't consume more memory */ if (allocs > last_allocs) break; last_allocs = allocs; best_upa = upa; } upa = best_upa; /* allocate and fill alloc_info */ for (group = 0; group < nr_groups; group++) nr_units += roundup(group_cnt[group], upa); ai = pcpu_alloc_alloc_info(nr_groups, nr_units); if (!ai) return ERR_PTR(-ENOMEM); cpu_map = ai->groups[0].cpu_map; for (group = 0; group < nr_groups; group++) { ai->groups[group].cpu_map = cpu_map; cpu_map += roundup(group_cnt[group], upa); } ai->static_size = static_size; ai->reserved_size = reserved_size; ai->dyn_size = dyn_size; ai->unit_size = alloc_size / upa; ai->atom_size = atom_size; ai->alloc_size = alloc_size; for (group = 0, unit = 0; group_cnt[group]; group++) { struct pcpu_group_info *gi = &ai->groups[group]; /* * Initialize base_offset as if all groups are located * back-to-back. The caller should update this to * reflect actual allocation. */ gi->base_offset = unit * ai->unit_size; for_each_possible_cpu(cpu) if (group_map[cpu] == group) gi->cpu_map[gi->nr_units++] = cpu; gi->nr_units = roundup(gi->nr_units, upa); unit += gi->nr_units; } BUG_ON(unit != nr_units); return ai; } #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */ #if defined(BUILD_EMBED_FIRST_CHUNK) /** * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem * @reserved_size: the size of reserved percpu area in bytes * @dyn_size: minimum free size for dynamic allocation in bytes * @atom_size: allocation atom size * @cpu_distance_fn: callback to determine distance between cpus, optional * @alloc_fn: function to allocate percpu page * @free_fn: function to free percpu page * * This is a helper to ease setting up embedded first percpu chunk and * can be called where pcpu_setup_first_chunk() is expected. * * If this function is used to setup the first chunk, it is allocated * by calling @alloc_fn and used as-is without being mapped into * vmalloc area. Allocations are always whole multiples of @atom_size * aligned to @atom_size. * * This enables the first chunk to piggy back on the linear physical * mapping which often uses larger page size. Please note that this * can result in very sparse cpu->unit mapping on NUMA machines thus * requiring large vmalloc address space. Don't use this allocator if * vmalloc space is not orders of magnitude larger than distances * between node memory addresses (ie. 32bit NUMA machines). * * @dyn_size specifies the minimum dynamic area size. * * If the needed size is smaller than the minimum or specified unit * size, the leftover is returned using @free_fn. * * RETURNS: * 0 on success, -errno on failure. */ int __init pcpu_embed_first_chunk(size_t reserved_size, size_t dyn_size, size_t atom_size, pcpu_fc_cpu_distance_fn_t cpu_distance_fn, pcpu_fc_alloc_fn_t alloc_fn, pcpu_fc_free_fn_t free_fn) { void *base = (void *)ULONG_MAX; void **areas = NULL; struct pcpu_alloc_info *ai; size_t size_sum, areas_size, max_distance; int group, i, rc; ai = pcpu_build_alloc_info(reserved_size, dyn_size, atom_size, cpu_distance_fn); if (IS_ERR(ai)) return PTR_ERR(ai); size_sum = ai->static_size + ai->reserved_size + ai->dyn_size; areas_size = PFN_ALIGN(ai->nr_groups * sizeof(void *)); areas = memblock_virt_alloc_nopanic(areas_size, 0); if (!areas) { rc = -ENOMEM; goto out_free; } /* allocate, copy and determine base address */ for (group = 0; group < ai->nr_groups; group++) { struct pcpu_group_info *gi = &ai->groups[group]; unsigned int cpu = NR_CPUS; void *ptr; for (i = 0; i < gi->nr_units && cpu == NR_CPUS; i++) cpu = gi->cpu_map[i]; BUG_ON(cpu == NR_CPUS); /* allocate space for the whole group */ ptr = alloc_fn(cpu, gi->nr_units * ai->unit_size, atom_size); if (!ptr) { rc = -ENOMEM; goto out_free_areas; } /* kmemleak tracks the percpu allocations separately */ kmemleak_free(ptr); areas[group] = ptr; base = min(ptr, base); } /* * Copy data and free unused parts. This should happen after all * allocations are complete; otherwise, we may end up with * overlapping groups. */ for (group = 0; group < ai->nr_groups; group++) { struct pcpu_group_info *gi = &ai->groups[group]; void *ptr = areas[group]; for (i = 0; i < gi->nr_units; i++, ptr += ai->unit_size) { if (gi->cpu_map[i] == NR_CPUS) { /* unused unit, free whole */ free_fn(ptr, ai->unit_size); continue; } /* copy and return the unused part */ memcpy(ptr, __per_cpu_load, ai->static_size); free_fn(ptr + size_sum, ai->unit_size - size_sum); } } /* base address is now known, determine group base offsets */ max_distance = 0; for (group = 0; group < ai->nr_groups; group++) { ai->groups[group].base_offset = areas[group] - base; max_distance = max_t(size_t, max_distance, ai->groups[group].base_offset); } max_distance += ai->unit_size; /* warn if maximum distance is further than 75% of vmalloc space */ if (max_distance > VMALLOC_TOTAL * 3 / 4) { pr_warning("PERCPU: max_distance=0x%zx too large for vmalloc " "space 0x%lx\n", max_distance, VMALLOC_TOTAL); #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK /* and fail if we have fallback */ rc = -EINVAL; goto out_free; #endif } pr_info("PERCPU: Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n", PFN_DOWN(size_sum), base, ai->static_size, ai->reserved_size, ai->dyn_size, ai->unit_size); rc = pcpu_setup_first_chunk(ai, base); goto out_free; out_free_areas: for (group = 0; group < ai->nr_groups; group++) if (areas[group]) free_fn(areas[group], ai->groups[group].nr_units * ai->unit_size); out_free: pcpu_free_alloc_info(ai); if (areas) memblock_free_early(__pa(areas), areas_size); return rc; } #endif /* BUILD_EMBED_FIRST_CHUNK */ #ifdef BUILD_PAGE_FIRST_CHUNK /** * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages * @reserved_size: the size of reserved percpu area in bytes * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE * @free_fn: function to free percpu page, always called with PAGE_SIZE * @populate_pte_fn: function to populate pte * * This is a helper to ease setting up page-remapped first percpu * chunk and can be called where pcpu_setup_first_chunk() is expected. * * This is the basic allocator. Static percpu area is allocated * page-by-page into vmalloc area. * * RETURNS: * 0 on success, -errno on failure. */ int __init pcpu_page_first_chunk(size_t reserved_size, pcpu_fc_alloc_fn_t alloc_fn, pcpu_fc_free_fn_t free_fn, pcpu_fc_populate_pte_fn_t populate_pte_fn) { static struct vm_struct vm; struct pcpu_alloc_info *ai; char psize_str[16]; int unit_pages; size_t pages_size; struct page **pages; int unit, i, j, rc; snprintf(psize_str, sizeof(psize_str), "%luK", PAGE_SIZE >> 10); ai = pcpu_build_alloc_info(reserved_size, 0, PAGE_SIZE, NULL); if (IS_ERR(ai)) return PTR_ERR(ai); BUG_ON(ai->nr_groups != 1); BUG_ON(ai->groups[0].nr_units != num_possible_cpus()); unit_pages = ai->unit_size >> PAGE_SHIFT; /* unaligned allocations can't be freed, round up to page size */ pages_size = PFN_ALIGN(unit_pages * num_possible_cpus() * sizeof(pages[0])); pages = memblock_virt_alloc(pages_size, 0); /* allocate pages */ j = 0; for (unit = 0; unit < num_possible_cpus(); unit++) for (i = 0; i < unit_pages; i++) { unsigned int cpu = ai->groups[0].cpu_map[unit]; void *ptr; ptr = alloc_fn(cpu, PAGE_SIZE, PAGE_SIZE); if (!ptr) { pr_warning("PERCPU: failed to allocate %s page " "for cpu%u\n", psize_str, cpu); goto enomem; } /* kmemleak tracks the percpu allocations separately */ kmemleak_free(ptr); pages[j++] = virt_to_page(ptr); } /* allocate vm area, map the pages and copy static data */ vm.flags = VM_ALLOC; vm.size = num_possible_cpus() * ai->unit_size; vm_area_register_early(&vm, PAGE_SIZE); for (unit = 0; unit < num_possible_cpus(); unit++) { unsigned long unit_addr = (unsigned long)vm.addr + unit * ai->unit_size; for (i = 0; i < unit_pages; i++) populate_pte_fn(unit_addr + (i << PAGE_SHIFT)); /* pte already populated, the following shouldn't fail */ rc = __pcpu_map_pages(unit_addr, &pages[unit * unit_pages], unit_pages); if (rc < 0) panic("failed to map percpu area, err=%d\n", rc); /* * FIXME: Archs with virtual cache should flush local * cache for the linear mapping here - something * equivalent to flush_cache_vmap() on the local cpu. * flush_cache_vmap() can't be used as most supporting * data structures are not set up yet. */ /* copy static data */ memcpy((void *)unit_addr, __per_cpu_load, ai->static_size); } /* we're ready, commit */ pr_info("PERCPU: %d %s pages/cpu @%p s%zu r%zu d%zu\n", unit_pages, psize_str, vm.addr, ai->static_size, ai->reserved_size, ai->dyn_size); rc = pcpu_setup_first_chunk(ai, vm.addr); goto out_free_ar; enomem: while (--j >= 0) free_fn(page_address(pages[j]), PAGE_SIZE); rc = -ENOMEM; out_free_ar: memblock_free_early(__pa(pages), pages_size); pcpu_free_alloc_info(ai); return rc; } #endif /* BUILD_PAGE_FIRST_CHUNK */ #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA /* * Generic SMP percpu area setup. * * The embedding helper is used because its behavior closely resembles * the original non-dynamic generic percpu area setup. This is * important because many archs have addressing restrictions and might * fail if the percpu area is located far away from the previous * location. As an added bonus, in non-NUMA cases, embedding is * generally a good idea TLB-wise because percpu area can piggy back * on the physical linear memory mapping which uses large page * mappings on applicable archs. */ unsigned long __per_cpu_offset[NR_CPUS] __read_mostly; EXPORT_SYMBOL(__per_cpu_offset); static void * __init pcpu_dfl_fc_alloc(unsigned int cpu, size_t size, size_t align) { return memblock_virt_alloc_from_nopanic( size, align, __pa(MAX_DMA_ADDRESS)); } static void __init pcpu_dfl_fc_free(void *ptr, size_t size) { memblock_free_early(__pa(ptr), size); } void __init setup_per_cpu_areas(void) { unsigned long delta; unsigned int cpu; int rc; /* * Always reserve area for module percpu variables. That's * what the legacy allocator did. */ rc = pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE, PERCPU_DYNAMIC_RESERVE, PAGE_SIZE, NULL, pcpu_dfl_fc_alloc, pcpu_dfl_fc_free); if (rc < 0) panic("Failed to initialize percpu areas."); delta = (unsigned long)pcpu_base_addr - (unsigned long)__per_cpu_start; for_each_possible_cpu(cpu) __per_cpu_offset[cpu] = delta + pcpu_unit_offsets[cpu]; } #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */ #else /* CONFIG_SMP */ /* * UP percpu area setup. * * UP always uses km-based percpu allocator with identity mapping. * Static percpu variables are indistinguishable from the usual static * variables and don't require any special preparation. */ void __init setup_per_cpu_areas(void) { const size_t unit_size = roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE, PERCPU_DYNAMIC_RESERVE)); struct pcpu_alloc_info *ai; void *fc; ai = pcpu_alloc_alloc_info(1, 1); fc = memblock_virt_alloc_from_nopanic(unit_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); if (!ai || !fc) panic("Failed to allocate memory for percpu areas."); /* kmemleak tracks the percpu allocations separately */ kmemleak_free(fc); ai->dyn_size = unit_size; ai->unit_size = unit_size; ai->atom_size = unit_size; ai->alloc_size = unit_size; ai->groups[0].nr_units = 1; ai->groups[0].cpu_map[0] = 0; if (pcpu_setup_first_chunk(ai, fc) < 0) panic("Failed to initialize percpu areas."); } #endif /* CONFIG_SMP */ /* * First and reserved chunks are initialized with temporary allocation * map in initdata so that they can be used before slab is online. * This function is called after slab is brought up and replaces those * with properly allocated maps. */ void __init percpu_init_late(void) { struct pcpu_chunk *target_chunks[] = { pcpu_first_chunk, pcpu_reserved_chunk, NULL }; struct pcpu_chunk *chunk; unsigned long flags; int i; for (i = 0; (chunk = target_chunks[i]); i++) { int *map; const size_t size = PERCPU_DYNAMIC_EARLY_SLOTS * sizeof(map[0]); BUILD_BUG_ON(size > PAGE_SIZE); map = pcpu_mem_zalloc(size); BUG_ON(!map); spin_lock_irqsave(&pcpu_lock, flags); memcpy(map, chunk->map, size); chunk->map = map; spin_unlock_irqrestore(&pcpu_lock, flags); } } /* * Percpu allocator is initialized early during boot when neither slab or * workqueue is available. Plug async management until everything is up * and running. */ static int __init percpu_enable_async(void) { pcpu_async_enabled = true; return 0; } subsys_initcall(percpu_enable_async); |