Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 | /* * linux/mm/percpu.c - percpu memory allocator * * Copyright (C) 2009 SUSE Linux Products GmbH * Copyright (C) 2009 Tejun Heo <tj@kernel.org> * * This file is released under the GPLv2. * * This is percpu allocator which can handle both static and dynamic * areas. Percpu areas are allocated in chunks in vmalloc area. Each * chunk is consisted of nr_cpu_ids units and the first chunk is used * for static percpu variables in the kernel image (special boot time * alloc/init handling necessary as these areas need to be brought up * before allocation services are running). Unit grows as necessary * and all units grow or shrink in unison. When a chunk is filled up, * another chunk is allocated. ie. in vmalloc area * * c0 c1 c2 * ------------------- ------------------- ------------ * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u * ------------------- ...... ------------------- .... ------------ * * Allocation is done in offset-size areas of single unit space. Ie, * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0, * c1:u1, c1:u2 and c1:u3. Percpu access can be done by configuring * percpu base registers pcpu_unit_size apart. * * There are usually many small percpu allocations many of them as * small as 4 bytes. The allocator organizes chunks into lists * according to free size and tries to allocate from the fullest one. * Each chunk keeps the maximum contiguous area size hint which is * guaranteed to be eqaul to or larger than the maximum contiguous * area in the chunk. This helps the allocator not to iterate the * chunk maps unnecessarily. * * Allocation state in each chunk is kept using an array of integers * on chunk->map. A positive value in the map represents a free * region and negative allocated. Allocation inside a chunk is done * by scanning this map sequentially and serving the first matching * entry. This is mostly copied from the percpu_modalloc() allocator. * Chunks can be determined from the address using the index field * in the page struct. The index field contains a pointer to the chunk. * * To use this allocator, arch code should do the followings. * * - define CONFIG_HAVE_DYNAMIC_PER_CPU_AREA * * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate * regular address to percpu pointer and back if they need to be * different from the default * * - use pcpu_setup_first_chunk() during percpu area initialization to * setup the first chunk containing the kernel static percpu area */ #include <linux/bitmap.h> #include <linux/bootmem.h> #include <linux/list.h> #include <linux/mm.h> #include <linux/module.h> #include <linux/mutex.h> #include <linux/percpu.h> #include <linux/pfn.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/vmalloc.h> #include <linux/workqueue.h> #include <asm/cacheflush.h> #include <asm/sections.h> #include <asm/tlbflush.h> #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */ #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */ /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */ #ifndef __addr_to_pcpu_ptr #define __addr_to_pcpu_ptr(addr) \ (void *)((unsigned long)(addr) - (unsigned long)pcpu_base_addr \ + (unsigned long)__per_cpu_start) #endif #ifndef __pcpu_ptr_to_addr #define __pcpu_ptr_to_addr(ptr) \ (void *)((unsigned long)(ptr) + (unsigned long)pcpu_base_addr \ - (unsigned long)__per_cpu_start) #endif struct pcpu_chunk { struct list_head list; /* linked to pcpu_slot lists */ int free_size; /* free bytes in the chunk */ int contig_hint; /* max contiguous size hint */ struct vm_struct *vm; /* mapped vmalloc region */ int map_used; /* # of map entries used */ int map_alloc; /* # of map entries allocated */ int *map; /* allocation map */ bool immutable; /* no [de]population allowed */ struct page **page; /* points to page array */ struct page *page_ar[]; /* #cpus * UNIT_PAGES */ }; static int pcpu_unit_pages __read_mostly; static int pcpu_unit_size __read_mostly; static int pcpu_chunk_size __read_mostly; static int pcpu_nr_slots __read_mostly; static size_t pcpu_chunk_struct_size __read_mostly; /* the address of the first chunk which starts with the kernel static area */ void *pcpu_base_addr __read_mostly; EXPORT_SYMBOL_GPL(pcpu_base_addr); /* * The first chunk which always exists. Note that unlike other * chunks, this one can be allocated and mapped in several different * ways and thus often doesn't live in the vmalloc area. */ static struct pcpu_chunk *pcpu_first_chunk; /* * Optional reserved chunk. This chunk reserves part of the first * chunk and serves it for reserved allocations. The amount of * reserved offset is in pcpu_reserved_chunk_limit. When reserved * area doesn't exist, the following variables contain NULL and 0 * respectively. */ static struct pcpu_chunk *pcpu_reserved_chunk; static int pcpu_reserved_chunk_limit; /* * Synchronization rules. * * There are two locks - pcpu_alloc_mutex and pcpu_lock. The former * protects allocation/reclaim paths, chunks and chunk->page arrays. * The latter is a spinlock and protects the index data structures - * chunk slots, chunks and area maps in chunks. * * During allocation, pcpu_alloc_mutex is kept locked all the time and * pcpu_lock is grabbed and released as necessary. All actual memory * allocations are done using GFP_KERNEL with pcpu_lock released. * * Free path accesses and alters only the index data structures, so it * can be safely called from atomic context. When memory needs to be * returned to the system, free path schedules reclaim_work which * grabs both pcpu_alloc_mutex and pcpu_lock, unlinks chunks to be * reclaimed, release both locks and frees the chunks. Note that it's * necessary to grab both locks to remove a chunk from circulation as * allocation path might be referencing the chunk with only * pcpu_alloc_mutex locked. */ static DEFINE_MUTEX(pcpu_alloc_mutex); /* protects whole alloc and reclaim */ static DEFINE_SPINLOCK(pcpu_lock); /* protects index data structures */ static struct list_head *pcpu_slot __read_mostly; /* chunk list slots */ /* reclaim work to release fully free chunks, scheduled from free path */ static void pcpu_reclaim(struct work_struct *work); static DECLARE_WORK(pcpu_reclaim_work, pcpu_reclaim); static int __pcpu_size_to_slot(int size) { int highbit = fls(size); /* size is in bytes */ return max(highbit - PCPU_SLOT_BASE_SHIFT + 2, 1); } static int pcpu_size_to_slot(int size) { if (size == pcpu_unit_size) return pcpu_nr_slots - 1; return __pcpu_size_to_slot(size); } static int pcpu_chunk_slot(const struct pcpu_chunk *chunk) { if (chunk->free_size < sizeof(int) || chunk->contig_hint < sizeof(int)) return 0; return pcpu_size_to_slot(chunk->free_size); } static int pcpu_page_idx(unsigned int cpu, int page_idx) { return cpu * pcpu_unit_pages + page_idx; } static struct page **pcpu_chunk_pagep(struct pcpu_chunk *chunk, unsigned int cpu, int page_idx) { return &chunk->page[pcpu_page_idx(cpu, page_idx)]; } static unsigned long pcpu_chunk_addr(struct pcpu_chunk *chunk, unsigned int cpu, int page_idx) { return (unsigned long)chunk->vm->addr + (pcpu_page_idx(cpu, page_idx) << PAGE_SHIFT); } static bool pcpu_chunk_page_occupied(struct pcpu_chunk *chunk, int page_idx) { /* * Any possible cpu id can be used here, so there's no need to * worry about preemption or cpu hotplug. */ return *pcpu_chunk_pagep(chunk, raw_smp_processor_id(), page_idx) != NULL; } /* set the pointer to a chunk in a page struct */ static void pcpu_set_page_chunk(struct page *page, struct pcpu_chunk *pcpu) { page->index = (unsigned long)pcpu; } /* obtain pointer to a chunk from a page struct */ static struct pcpu_chunk *pcpu_get_page_chunk(struct page *page) { return (struct pcpu_chunk *)page->index; } /** * pcpu_mem_alloc - allocate memory * @size: bytes to allocate * * Allocate @size bytes. If @size is smaller than PAGE_SIZE, * kzalloc() is used; otherwise, vmalloc() is used. The returned * memory is always zeroed. * * CONTEXT: * Does GFP_KERNEL allocation. * * RETURNS: * Pointer to the allocated area on success, NULL on failure. */ static void *pcpu_mem_alloc(size_t size) { if (size <= PAGE_SIZE) return kzalloc(size, GFP_KERNEL); else { void *ptr = vmalloc(size); if (ptr) memset(ptr, 0, size); return ptr; } } /** * pcpu_mem_free - free memory * @ptr: memory to free * @size: size of the area * * Free @ptr. @ptr should have been allocated using pcpu_mem_alloc(). */ static void pcpu_mem_free(void *ptr, size_t size) { if (size <= PAGE_SIZE) kfree(ptr); else vfree(ptr); } /** * pcpu_chunk_relocate - put chunk in the appropriate chunk slot * @chunk: chunk of interest * @oslot: the previous slot it was on * * This function is called after an allocation or free changed @chunk. * New slot according to the changed state is determined and @chunk is * moved to the slot. Note that the reserved chunk is never put on * chunk slots. * * CONTEXT: * pcpu_lock. */ static void pcpu_chunk_relocate(struct pcpu_chunk *chunk, int oslot) { int nslot = pcpu_chunk_slot(chunk); if (chunk != pcpu_reserved_chunk && oslot != nslot) { if (oslot < nslot) list_move(&chunk->list, &pcpu_slot[nslot]); else list_move_tail(&chunk->list, &pcpu_slot[nslot]); } } /** * pcpu_chunk_addr_search - determine chunk containing specified address * @addr: address for which the chunk needs to be determined. * * RETURNS: * The address of the found chunk. */ static struct pcpu_chunk *pcpu_chunk_addr_search(void *addr) { void *first_start = pcpu_first_chunk->vm->addr; /* is it in the first chunk? */ if (addr >= first_start && addr < first_start + pcpu_chunk_size) { /* is it in the reserved area? */ if (addr < first_start + pcpu_reserved_chunk_limit) return pcpu_reserved_chunk; return pcpu_first_chunk; } /* * The address is relative to unit0 which might be unused and * thus unmapped. Offset the address to the unit space of the * current processor before looking it up in the vmalloc * space. Note that any possible cpu id can be used here, so * there's no need to worry about preemption or cpu hotplug. */ addr += raw_smp_processor_id() * pcpu_unit_size; return pcpu_get_page_chunk(vmalloc_to_page(addr)); } /** * pcpu_extend_area_map - extend area map for allocation * @chunk: target chunk * * Extend area map of @chunk so that it can accomodate an allocation. * A single allocation can split an area into three areas, so this * function makes sure that @chunk->map has at least two extra slots. * * CONTEXT: * pcpu_alloc_mutex, pcpu_lock. pcpu_lock is released and reacquired * if area map is extended. * * RETURNS: * 0 if noop, 1 if successfully extended, -errno on failure. */ static int pcpu_extend_area_map(struct pcpu_chunk *chunk) { int new_alloc; int *new; size_t size; /* has enough? */ if (chunk->map_alloc >= chunk->map_used + 2) return 0; spin_unlock_irq(&pcpu_lock); new_alloc = PCPU_DFL_MAP_ALLOC; while (new_alloc < chunk->map_used + 2) new_alloc *= 2; new = pcpu_mem_alloc(new_alloc * sizeof(new[0])); if (!new) { spin_lock_irq(&pcpu_lock); return -ENOMEM; } /* * Acquire pcpu_lock and switch to new area map. Only free * could have happened inbetween, so map_used couldn't have * grown. */ spin_lock_irq(&pcpu_lock); BUG_ON(new_alloc < chunk->map_used + 2); size = chunk->map_alloc * sizeof(chunk->map[0]); memcpy(new, chunk->map, size); /* * map_alloc < PCPU_DFL_MAP_ALLOC indicates that the chunk is * one of the first chunks and still using static map. */ if (chunk->map_alloc >= PCPU_DFL_MAP_ALLOC) pcpu_mem_free(chunk->map, size); chunk->map_alloc = new_alloc; chunk->map = new; return 0; } /** * pcpu_split_block - split a map block * @chunk: chunk of interest * @i: index of map block to split * @head: head size in bytes (can be 0) * @tail: tail size in bytes (can be 0) * * Split the @i'th map block into two or three blocks. If @head is * non-zero, @head bytes block is inserted before block @i moving it * to @i+1 and reducing its size by @head bytes. * * If @tail is non-zero, the target block, which can be @i or @i+1 * depending on @head, is reduced by @tail bytes and @tail byte block * is inserted after the target block. * * @chunk->map must have enough free slots to accomodate the split. * * CONTEXT: * pcpu_lock. */ static void pcpu_split_block(struct pcpu_chunk *chunk, int i, int head, int tail) { int nr_extra = !!head + !!tail; BUG_ON(chunk->map_alloc < chunk->map_used + nr_extra); /* insert new subblocks */ memmove(&chunk->map[i + nr_extra], &chunk->map[i], sizeof(chunk->map[0]) * (chunk->map_used - i)); chunk->map_used += nr_extra; if (head) { chunk->map[i + 1] = chunk->map[i] - head; chunk->map[i++] = head; } if (tail) { chunk->map[i++] -= tail; chunk->map[i] = tail; } } /** * pcpu_alloc_area - allocate area from a pcpu_chunk * @chunk: chunk of interest * @size: wanted size in bytes * @align: wanted align * * Try to allocate @size bytes area aligned at @align from @chunk. * Note that this function only allocates the offset. It doesn't * populate or map the area. * * @chunk->map must have at least two free slots. * * CONTEXT: * pcpu_lock. * * RETURNS: * Allocated offset in @chunk on success, -1 if no matching area is * found. */ static int pcpu_alloc_area(struct pcpu_chunk *chunk, int size, int align) { int oslot = pcpu_chunk_slot(chunk); int max_contig = 0; int i, off; for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) { bool is_last = i + 1 == chunk->map_used; int head, tail; /* extra for alignment requirement */ head = ALIGN(off, align) - off; BUG_ON(i == 0 && head != 0); if (chunk->map[i] < 0) continue; if (chunk->map[i] < head + size) { max_contig = max(chunk->map[i], max_contig); continue; } /* * If head is small or the previous block is free, * merge'em. Note that 'small' is defined as smaller * than sizeof(int), which is very small but isn't too * uncommon for percpu allocations. */ if (head && (head < sizeof(int) || chunk->map[i - 1] > 0)) { if (chunk->map[i - 1] > 0) chunk->map[i - 1] += head; else { chunk->map[i - 1] -= head; chunk->free_size -= head; } chunk->map[i] -= head; off += head; head = 0; } /* if tail is small, just keep it around */ tail = chunk->map[i] - head - size; if (tail < sizeof(int)) tail = 0; /* split if warranted */ if (head || tail) { pcpu_split_block(chunk, i, head, tail); if (head) { i++; off += head; max_contig = max(chunk->map[i - 1], max_contig); } if (tail) max_contig = max(chunk->map[i + 1], max_contig); } /* update hint and mark allocated */ if (is_last) chunk->contig_hint = max_contig; /* fully scanned */ else chunk->contig_hint = max(chunk->contig_hint, max_contig); chunk->free_size -= chunk->map[i]; chunk->map[i] = -chunk->map[i]; pcpu_chunk_relocate(chunk, oslot); return off; } chunk->contig_hint = max_contig; /* fully scanned */ pcpu_chunk_relocate(chunk, oslot); /* tell the upper layer that this chunk has no matching area */ return -1; } /** * pcpu_free_area - free area to a pcpu_chunk * @chunk: chunk of interest * @freeme: offset of area to free * * Free area starting from @freeme to @chunk. Note that this function * only modifies the allocation map. It doesn't depopulate or unmap * the area. * * CONTEXT: * pcpu_lock. */ static void pcpu_free_area(struct pcpu_chunk *chunk, int freeme) { int oslot = pcpu_chunk_slot(chunk); int i, off; for (i = 0, off = 0; i < chunk->map_used; off += abs(chunk->map[i++])) if (off == freeme) break; BUG_ON(off != freeme); BUG_ON(chunk->map[i] > 0); chunk->map[i] = -chunk->map[i]; chunk->free_size += chunk->map[i]; /* merge with previous? */ if (i > 0 && chunk->map[i - 1] >= 0) { chunk->map[i - 1] += chunk->map[i]; chunk->map_used--; memmove(&chunk->map[i], &chunk->map[i + 1], (chunk->map_used - i) * sizeof(chunk->map[0])); i--; } /* merge with next? */ if (i + 1 < chunk->map_used && chunk->map[i + 1] >= 0) { chunk->map[i] += chunk->map[i + 1]; chunk->map_used--; memmove(&chunk->map[i + 1], &chunk->map[i + 2], (chunk->map_used - (i + 1)) * sizeof(chunk->map[0])); } chunk->contig_hint = max(chunk->map[i], chunk->contig_hint); pcpu_chunk_relocate(chunk, oslot); } /** * pcpu_unmap - unmap pages out of a pcpu_chunk * @chunk: chunk of interest * @page_start: page index of the first page to unmap * @page_end: page index of the last page to unmap + 1 * @flush_tlb: whether to flush tlb or not * * For each cpu, unmap pages [@page_start,@page_end) out of @chunk. * If @flush is true, vcache is flushed before unmapping and tlb * after. */ static void pcpu_unmap(struct pcpu_chunk *chunk, int page_start, int page_end, bool flush_tlb) { unsigned int last = nr_cpu_ids - 1; unsigned int cpu; /* unmap must not be done on immutable chunk */ WARN_ON(chunk->immutable); /* * Each flushing trial can be very expensive, issue flush on * the whole region at once rather than doing it for each cpu. * This could be an overkill but is more scalable. */ flush_cache_vunmap(pcpu_chunk_addr(chunk, 0, page_start), pcpu_chunk_addr(chunk, last, page_end)); for_each_possible_cpu(cpu) unmap_kernel_range_noflush( pcpu_chunk_addr(chunk, cpu, page_start), (page_end - page_start) << PAGE_SHIFT); /* ditto as flush_cache_vunmap() */ if (flush_tlb) flush_tlb_kernel_range(pcpu_chunk_addr(chunk, 0, page_start), pcpu_chunk_addr(chunk, last, page_end)); } /** * pcpu_depopulate_chunk - depopulate and unmap an area of a pcpu_chunk * @chunk: chunk to depopulate * @off: offset to the area to depopulate * @size: size of the area to depopulate in bytes * @flush: whether to flush cache and tlb or not * * For each cpu, depopulate and unmap pages [@page_start,@page_end) * from @chunk. If @flush is true, vcache is flushed before unmapping * and tlb after. * * CONTEXT: * pcpu_alloc_mutex. */ static void pcpu_depopulate_chunk(struct pcpu_chunk *chunk, int off, int size, bool flush) { int page_start = PFN_DOWN(off); int page_end = PFN_UP(off + size); int unmap_start = -1; int uninitialized_var(unmap_end); unsigned int cpu; int i; for (i = page_start; i < page_end; i++) { for_each_possible_cpu(cpu) { struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); if (!*pagep) continue; __free_page(*pagep); /* * If it's partial depopulation, it might get * populated or depopulated again. Mark the * page gone. */ *pagep = NULL; unmap_start = unmap_start < 0 ? i : unmap_start; unmap_end = i + 1; } } if (unmap_start >= 0) pcpu_unmap(chunk, unmap_start, unmap_end, flush); } /** * pcpu_map - map pages into a pcpu_chunk * @chunk: chunk of interest * @page_start: page index of the first page to map * @page_end: page index of the last page to map + 1 * * For each cpu, map pages [@page_start,@page_end) into @chunk. * vcache is flushed afterwards. */ static int pcpu_map(struct pcpu_chunk *chunk, int page_start, int page_end) { unsigned int last = nr_cpu_ids - 1; unsigned int cpu; int err; /* map must not be done on immutable chunk */ WARN_ON(chunk->immutable); for_each_possible_cpu(cpu) { err = map_kernel_range_noflush( pcpu_chunk_addr(chunk, cpu, page_start), (page_end - page_start) << PAGE_SHIFT, PAGE_KERNEL, pcpu_chunk_pagep(chunk, cpu, page_start)); if (err < 0) return err; } /* flush at once, please read comments in pcpu_unmap() */ flush_cache_vmap(pcpu_chunk_addr(chunk, 0, page_start), pcpu_chunk_addr(chunk, last, page_end)); return 0; } /** * pcpu_populate_chunk - populate and map an area of a pcpu_chunk * @chunk: chunk of interest * @off: offset to the area to populate * @size: size of the area to populate in bytes * * For each cpu, populate and map pages [@page_start,@page_end) into * @chunk. The area is cleared on return. * * CONTEXT: * pcpu_alloc_mutex, does GFP_KERNEL allocation. */ static int pcpu_populate_chunk(struct pcpu_chunk *chunk, int off, int size) { const gfp_t alloc_mask = GFP_KERNEL | __GFP_HIGHMEM | __GFP_COLD; int page_start = PFN_DOWN(off); int page_end = PFN_UP(off + size); int map_start = -1; int uninitialized_var(map_end); unsigned int cpu; int i; for (i = page_start; i < page_end; i++) { if (pcpu_chunk_page_occupied(chunk, i)) { if (map_start >= 0) { if (pcpu_map(chunk, map_start, map_end)) goto err; map_start = -1; } continue; } map_start = map_start < 0 ? i : map_start; map_end = i + 1; for_each_possible_cpu(cpu) { struct page **pagep = pcpu_chunk_pagep(chunk, cpu, i); *pagep = alloc_pages_node(cpu_to_node(cpu), alloc_mask, 0); if (!*pagep) goto err; pcpu_set_page_chunk(*pagep, chunk); } } if (map_start >= 0 && pcpu_map(chunk, map_start, map_end)) goto err; for_each_possible_cpu(cpu) memset(chunk->vm->addr + cpu * pcpu_unit_size + off, 0, size); return 0; err: /* likely under heavy memory pressure, give memory back */ pcpu_depopulate_chunk(chunk, off, size, true); return -ENOMEM; } static void free_pcpu_chunk(struct pcpu_chunk *chunk) { if (!chunk) return; if (chunk->vm) free_vm_area(chunk->vm); pcpu_mem_free(chunk->map, chunk->map_alloc * sizeof(chunk->map[0])); kfree(chunk); } static struct pcpu_chunk *alloc_pcpu_chunk(void) { struct pcpu_chunk *chunk; chunk = kzalloc(pcpu_chunk_struct_size, GFP_KERNEL); if (!chunk) return NULL; chunk->map = pcpu_mem_alloc(PCPU_DFL_MAP_ALLOC * sizeof(chunk->map[0])); chunk->map_alloc = PCPU_DFL_MAP_ALLOC; chunk->map[chunk->map_used++] = pcpu_unit_size; chunk->page = chunk->page_ar; chunk->vm = get_vm_area(pcpu_chunk_size, VM_ALLOC); if (!chunk->vm) { free_pcpu_chunk(chunk); return NULL; } INIT_LIST_HEAD(&chunk->list); chunk->free_size = pcpu_unit_size; chunk->contig_hint = pcpu_unit_size; return chunk; } /** * pcpu_alloc - the percpu allocator * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * @reserved: allocate from the reserved chunk if available * * Allocate percpu area of @size bytes aligned at @align. * * CONTEXT: * Does GFP_KERNEL allocation. * * RETURNS: * Percpu pointer to the allocated area on success, NULL on failure. */ static void *pcpu_alloc(size_t size, size_t align, bool reserved) { struct pcpu_chunk *chunk; int slot, off; if (unlikely(!size || size > PCPU_MIN_UNIT_SIZE || align > PAGE_SIZE)) { WARN(true, "illegal size (%zu) or align (%zu) for " "percpu allocation\n", size, align); return NULL; } mutex_lock(&pcpu_alloc_mutex); spin_lock_irq(&pcpu_lock); /* serve reserved allocations from the reserved chunk if available */ if (reserved && pcpu_reserved_chunk) { chunk = pcpu_reserved_chunk; if (size > chunk->contig_hint || pcpu_extend_area_map(chunk) < 0) goto fail_unlock; off = pcpu_alloc_area(chunk, size, align); if (off >= 0) goto area_found; goto fail_unlock; } restart: /* search through normal chunks */ for (slot = pcpu_size_to_slot(size); slot < pcpu_nr_slots; slot++) { list_for_each_entry(chunk, &pcpu_slot[slot], list) { if (size > chunk->contig_hint) continue; switch (pcpu_extend_area_map(chunk)) { case 0: break; case 1: goto restart; /* pcpu_lock dropped, restart */ default: goto fail_unlock; } off = pcpu_alloc_area(chunk, size, align); if (off >= 0) goto area_found; } } /* hmmm... no space left, create a new chunk */ spin_unlock_irq(&pcpu_lock); chunk = alloc_pcpu_chunk(); if (!chunk) goto fail_unlock_mutex; spin_lock_irq(&pcpu_lock); pcpu_chunk_relocate(chunk, -1); goto restart; area_found: spin_unlock_irq(&pcpu_lock); /* populate, map and clear the area */ if (pcpu_populate_chunk(chunk, off, size)) { spin_lock_irq(&pcpu_lock); pcpu_free_area(chunk, off); goto fail_unlock; } mutex_unlock(&pcpu_alloc_mutex); return __addr_to_pcpu_ptr(chunk->vm->addr + off); fail_unlock: spin_unlock_irq(&pcpu_lock); fail_unlock_mutex: mutex_unlock(&pcpu_alloc_mutex); return NULL; } /** * __alloc_percpu - allocate dynamic percpu area * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * * Allocate percpu area of @size bytes aligned at @align. Might * sleep. Might trigger writeouts. * * CONTEXT: * Does GFP_KERNEL allocation. * * RETURNS: * Percpu pointer to the allocated area on success, NULL on failure. */ void *__alloc_percpu(size_t size, size_t align) { return pcpu_alloc(size, align, false); } EXPORT_SYMBOL_GPL(__alloc_percpu); /** * __alloc_reserved_percpu - allocate reserved percpu area * @size: size of area to allocate in bytes * @align: alignment of area (max PAGE_SIZE) * * Allocate percpu area of @size bytes aligned at @align from reserved * percpu area if arch has set it up; otherwise, allocation is served * from the same dynamic area. Might sleep. Might trigger writeouts. * * CONTEXT: * Does GFP_KERNEL allocation. * * RETURNS: * Percpu pointer to the allocated area on success, NULL on failure. */ void *__alloc_reserved_percpu(size_t size, size_t align) { return pcpu_alloc(size, align, true); } /** * pcpu_reclaim - reclaim fully free chunks, workqueue function * @work: unused * * Reclaim all fully free chunks except for the first one. * * CONTEXT: * workqueue context. */ static void pcpu_reclaim(struct work_struct *work) { LIST_HEAD(todo); struct list_head *head = &pcpu_slot[pcpu_nr_slots - 1]; struct pcpu_chunk *chunk, *next; mutex_lock(&pcpu_alloc_mutex); spin_lock_irq(&pcpu_lock); list_for_each_entry_safe(chunk, next, head, list) { WARN_ON(chunk->immutable); /* spare the first one */ if (chunk == list_first_entry(head, struct pcpu_chunk, list)) continue; list_move(&chunk->list, &todo); } spin_unlock_irq(&pcpu_lock); mutex_unlock(&pcpu_alloc_mutex); list_for_each_entry_safe(chunk, next, &todo, list) { pcpu_depopulate_chunk(chunk, 0, pcpu_unit_size, false); free_pcpu_chunk(chunk); } } /** * free_percpu - free percpu area * @ptr: pointer to area to free * * Free percpu area @ptr. * * CONTEXT: * Can be called from atomic context. */ void free_percpu(void *ptr) { void *addr = __pcpu_ptr_to_addr(ptr); struct pcpu_chunk *chunk; unsigned long flags; int off; if (!ptr) return; spin_lock_irqsave(&pcpu_lock, flags); chunk = pcpu_chunk_addr_search(addr); off = addr - chunk->vm->addr; pcpu_free_area(chunk, off); /* if there are more than one fully free chunks, wake up grim reaper */ if (chunk->free_size == pcpu_unit_size) { struct pcpu_chunk *pos; list_for_each_entry(pos, &pcpu_slot[pcpu_nr_slots - 1], list) if (pos != chunk) { schedule_work(&pcpu_reclaim_work); break; } } spin_unlock_irqrestore(&pcpu_lock, flags); } EXPORT_SYMBOL_GPL(free_percpu); /** * pcpu_setup_first_chunk - initialize the first percpu chunk * @get_page_fn: callback to fetch page pointer * @static_size: the size of static percpu area in bytes * @reserved_size: the size of reserved percpu area in bytes * @dyn_size: free size for dynamic allocation in bytes, -1 for auto * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto * @base_addr: mapped address, NULL for auto * @populate_pte_fn: callback to allocate pagetable, NULL if unnecessary * * Initialize the first percpu chunk which contains the kernel static * perpcu area. This function is to be called from arch percpu area * setup path. The first two parameters are mandatory. The rest are * optional. * * @get_page_fn() should return pointer to percpu page given cpu * number and page number. It should at least return enough pages to * cover the static area. The returned pages for static area should * have been initialized with valid data. If @unit_size is specified, * it can also return pages after the static area. NULL return * indicates end of pages for the cpu. Note that @get_page_fn() must * return the same number of pages for all cpus. * * @reserved_size, if non-zero, specifies the amount of bytes to * reserve after the static area in the first chunk. This reserves * the first chunk such that it's available only through reserved * percpu allocation. This is primarily used to serve module percpu * static areas on architectures where the addressing model has * limited offset range for symbol relocations to guarantee module * percpu symbols fall inside the relocatable range. * * @dyn_size, if non-negative, determines the number of bytes * available for dynamic allocation in the first chunk. Specifying * non-negative value makes percpu leave alone the area beyond * @static_size + @reserved_size + @dyn_size. * * @unit_size, if non-negative, specifies unit size and must be * aligned to PAGE_SIZE and equal to or larger than @static_size + * @reserved_size + if non-negative, @dyn_size. * * Non-null @base_addr means that the caller already allocated virtual * region for the first chunk and mapped it. percpu must not mess * with the chunk. Note that @base_addr with 0 @unit_size or non-NULL * @populate_pte_fn doesn't make any sense. * * @populate_pte_fn is used to populate the pagetable. NULL means the * caller already populated the pagetable. * * If the first chunk ends up with both reserved and dynamic areas, it * is served by two chunks - one to serve the core static and reserved * areas and the other for the dynamic area. They share the same vm * and page map but uses different area allocation map to stay away * from each other. The latter chunk is circulated in the chunk slots * and available for dynamic allocation like any other chunks. * * RETURNS: * The determined pcpu_unit_size which can be used to initialize * percpu access. */ size_t __init pcpu_setup_first_chunk(pcpu_get_page_fn_t get_page_fn, size_t static_size, size_t reserved_size, ssize_t dyn_size, ssize_t unit_size, void *base_addr, pcpu_populate_pte_fn_t populate_pte_fn) { static struct vm_struct first_vm; static int smap[2], dmap[2]; size_t size_sum = static_size + reserved_size + (dyn_size >= 0 ? dyn_size : 0); struct pcpu_chunk *schunk, *dchunk = NULL; unsigned int cpu; int nr_pages; int err, i; /* santiy checks */ BUILD_BUG_ON(ARRAY_SIZE(smap) >= PCPU_DFL_MAP_ALLOC || ARRAY_SIZE(dmap) >= PCPU_DFL_MAP_ALLOC); BUG_ON(!static_size); if (unit_size >= 0) { BUG_ON(unit_size < size_sum); BUG_ON(unit_size & ~PAGE_MASK); BUG_ON(unit_size < PCPU_MIN_UNIT_SIZE); } else BUG_ON(base_addr); BUG_ON(base_addr && populate_pte_fn); if (unit_size >= 0) pcpu_unit_pages = unit_size >> PAGE_SHIFT; else pcpu_unit_pages = max_t(int, PCPU_MIN_UNIT_SIZE >> PAGE_SHIFT, PFN_UP(size_sum)); pcpu_unit_size = pcpu_unit_pages << PAGE_SHIFT; pcpu_chunk_size = nr_cpu_ids * pcpu_unit_size; pcpu_chunk_struct_size = sizeof(struct pcpu_chunk) + nr_cpu_ids * pcpu_unit_pages * sizeof(struct page *); if (dyn_size < 0) dyn_size = pcpu_unit_size - static_size - reserved_size; /* * Allocate chunk slots. The additional last slot is for * empty chunks. */ pcpu_nr_slots = __pcpu_size_to_slot(pcpu_unit_size) + 2; pcpu_slot = alloc_bootmem(pcpu_nr_slots * sizeof(pcpu_slot[0])); for (i = 0; i < pcpu_nr_slots; i++) INIT_LIST_HEAD(&pcpu_slot[i]); /* * Initialize static chunk. If reserved_size is zero, the * static chunk covers static area + dynamic allocation area * in the first chunk. If reserved_size is not zero, it * covers static area + reserved area (mostly used for module * static percpu allocation). */ schunk = alloc_bootmem(pcpu_chunk_struct_size); INIT_LIST_HEAD(&schunk->list); schunk->vm = &first_vm; schunk->map = smap; schunk->map_alloc = ARRAY_SIZE(smap); schunk->page = schunk->page_ar; if (reserved_size) { schunk->free_size = reserved_size; pcpu_reserved_chunk = schunk; pcpu_reserved_chunk_limit = static_size + reserved_size; } else { schunk->free_size = dyn_size; dyn_size = 0; /* dynamic area covered */ } schunk->contig_hint = schunk->free_size; schunk->map[schunk->map_used++] = -static_size; if (schunk->free_size) schunk->map[schunk->map_used++] = schunk->free_size; /* init dynamic chunk if necessary */ if (dyn_size) { dchunk = alloc_bootmem(sizeof(struct pcpu_chunk)); INIT_LIST_HEAD(&dchunk->list); dchunk->vm = &first_vm; dchunk->map = dmap; dchunk->map_alloc = ARRAY_SIZE(dmap); dchunk->page = schunk->page_ar; /* share page map with schunk */ dchunk->contig_hint = dchunk->free_size = dyn_size; dchunk->map[dchunk->map_used++] = -pcpu_reserved_chunk_limit; dchunk->map[dchunk->map_used++] = dchunk->free_size; } /* allocate vm address */ first_vm.flags = VM_ALLOC; first_vm.size = pcpu_chunk_size; if (!base_addr) vm_area_register_early(&first_vm, PAGE_SIZE); else { /* * Pages already mapped. No need to remap into * vmalloc area. In this case the first chunks can't * be mapped or unmapped by percpu and are marked * immutable. */ first_vm.addr = base_addr; schunk->immutable = true; if (dchunk) dchunk->immutable = true; } /* assign pages */ nr_pages = -1; for_each_possible_cpu(cpu) { for (i = 0; i < pcpu_unit_pages; i++) { struct page *page = get_page_fn(cpu, i); if (!page) break; *pcpu_chunk_pagep(schunk, cpu, i) = page; } BUG_ON(i < PFN_UP(static_size)); if (nr_pages < 0) nr_pages = i; else BUG_ON(nr_pages != i); } /* map them */ if (populate_pte_fn) { for_each_possible_cpu(cpu) for (i = 0; i < nr_pages; i++) populate_pte_fn(pcpu_chunk_addr(schunk, cpu, i)); err = pcpu_map(schunk, 0, nr_pages); if (err) panic("failed to setup static percpu area, err=%d\n", err); } /* link the first chunk in */ pcpu_first_chunk = dchunk ?: schunk; pcpu_chunk_relocate(pcpu_first_chunk, -1); /* we're done */ pcpu_base_addr = (void *)pcpu_chunk_addr(schunk, 0, 0); return pcpu_unit_size; } /* * Embedding first chunk setup helper. */ static void *pcpue_ptr __initdata; static size_t pcpue_size __initdata; static size_t pcpue_unit_size __initdata; static struct page * __init pcpue_get_page(unsigned int cpu, int pageno) { size_t off = (size_t)pageno << PAGE_SHIFT; if (off >= pcpue_size) return NULL; return virt_to_page(pcpue_ptr + cpu * pcpue_unit_size + off); } /** * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem * @static_size: the size of static percpu area in bytes * @reserved_size: the size of reserved percpu area in bytes * @dyn_size: free size for dynamic allocation in bytes, -1 for auto * @unit_size: unit size in bytes, must be multiple of PAGE_SIZE, -1 for auto * * This is a helper to ease setting up embedded first percpu chunk and * can be called where pcpu_setup_first_chunk() is expected. * * If this function is used to setup the first chunk, it is allocated * as a contiguous area using bootmem allocator and used as-is without * being mapped into vmalloc area. This enables the first chunk to * piggy back on the linear physical mapping which often uses larger * page size. * * When @dyn_size is positive, dynamic area might be larger than * specified to fill page alignment. Also, when @dyn_size is auto, * @dyn_size does not fill the whole first chunk but only what's * necessary for page alignment after static and reserved areas. * * If the needed size is smaller than the minimum or specified unit * size, the leftover is returned to the bootmem allocator. * * RETURNS: * The determined pcpu_unit_size which can be used to initialize * percpu access on success, -errno on failure. */ ssize_t __init pcpu_embed_first_chunk(size_t static_size, size_t reserved_size, ssize_t dyn_size, ssize_t unit_size) { size_t chunk_size; unsigned int cpu; /* determine parameters and allocate */ pcpue_size = PFN_ALIGN(static_size + reserved_size + (dyn_size >= 0 ? dyn_size : 0)); if (dyn_size != 0) dyn_size = pcpue_size - static_size - reserved_size; if (unit_size >= 0) { BUG_ON(unit_size < pcpue_size); pcpue_unit_size = unit_size; } else pcpue_unit_size = max_t(size_t, pcpue_size, PCPU_MIN_UNIT_SIZE); chunk_size = pcpue_unit_size * nr_cpu_ids; pcpue_ptr = __alloc_bootmem_nopanic(chunk_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS)); if (!pcpue_ptr) { pr_warning("PERCPU: failed to allocate %zu bytes for " "embedding\n", chunk_size); return -ENOMEM; } /* return the leftover and copy */ for (cpu = 0; cpu < nr_cpu_ids; cpu++) { void *ptr = pcpue_ptr + cpu * pcpue_unit_size; if (cpu_possible(cpu)) { free_bootmem(__pa(ptr + pcpue_size), pcpue_unit_size - pcpue_size); memcpy(ptr, __per_cpu_load, static_size); } else free_bootmem(__pa(ptr), pcpue_unit_size); } /* we're ready, commit */ pr_info("PERCPU: Embedded %zu pages at %p, static data %zu bytes\n", pcpue_size >> PAGE_SHIFT, pcpue_ptr, static_size); return pcpu_setup_first_chunk(pcpue_get_page, static_size, reserved_size, dyn_size, pcpue_unit_size, pcpue_ptr, NULL); } |