Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 | /* * Copyright © 2010 Daniel Vetter * Copyright © 2011-2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include <linux/slab.h> /* fault-inject.h is not standalone! */ #include <linux/fault-inject.h> #include <linux/log2.h> #include <linux/random.h> #include <linux/seq_file.h> #include <linux/stop_machine.h> #include <asm/set_memory.h> #include <drm/drmP.h> #include <drm/i915_drm.h> #include "i915_drv.h" #include "i915_vgpu.h" #include "i915_trace.h" #include "intel_drv.h" #include "intel_frontbuffer.h" #define I915_GFP_ALLOW_FAIL (GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_NOWARN) /** * DOC: Global GTT views * * Background and previous state * * Historically objects could exists (be bound) in global GTT space only as * singular instances with a view representing all of the object's backing pages * in a linear fashion. This view will be called a normal view. * * To support multiple views of the same object, where the number of mapped * pages is not equal to the backing store, or where the layout of the pages * is not linear, concept of a GGTT view was added. * * One example of an alternative view is a stereo display driven by a single * image. In this case we would have a framebuffer looking like this * (2x2 pages): * * 12 * 34 * * Above would represent a normal GGTT view as normally mapped for GPU or CPU * rendering. In contrast, fed to the display engine would be an alternative * view which could look something like this: * * 1212 * 3434 * * In this example both the size and layout of pages in the alternative view is * different from the normal view. * * Implementation and usage * * GGTT views are implemented using VMAs and are distinguished via enum * i915_ggtt_view_type and struct i915_ggtt_view. * * A new flavour of core GEM functions which work with GGTT bound objects were * added with the _ggtt_ infix, and sometimes with _view postfix to avoid * renaming in large amounts of code. They take the struct i915_ggtt_view * parameter encapsulating all metadata required to implement a view. * * As a helper for callers which are only interested in the normal view, * globally const i915_ggtt_view_normal singleton instance exists. All old core * GEM API functions, the ones not taking the view parameter, are operating on, * or with the normal GGTT view. * * Code wanting to add or use a new GGTT view needs to: * * 1. Add a new enum with a suitable name. * 2. Extend the metadata in the i915_ggtt_view structure if required. * 3. Add support to i915_get_vma_pages(). * * New views are required to build a scatter-gather table from within the * i915_get_vma_pages function. This table is stored in the vma.ggtt_view and * exists for the lifetime of an VMA. * * Core API is designed to have copy semantics which means that passed in * struct i915_ggtt_view does not need to be persistent (left around after * calling the core API functions). * */ static int i915_get_ggtt_vma_pages(struct i915_vma *vma); static void gen6_ggtt_invalidate(struct drm_i915_private *dev_priv) { /* * Note that as an uncached mmio write, this will flush the * WCB of the writes into the GGTT before it triggers the invalidate. */ I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); } static void guc_ggtt_invalidate(struct drm_i915_private *dev_priv) { gen6_ggtt_invalidate(dev_priv); I915_WRITE(GEN8_GTCR, GEN8_GTCR_INVALIDATE); } static void gmch_ggtt_invalidate(struct drm_i915_private *dev_priv) { intel_gtt_chipset_flush(); } static inline void i915_ggtt_invalidate(struct drm_i915_private *i915) { i915->ggtt.invalidate(i915); } int intel_sanitize_enable_ppgtt(struct drm_i915_private *dev_priv, int enable_ppgtt) { bool has_full_ppgtt; bool has_full_48bit_ppgtt; if (!dev_priv->info.has_aliasing_ppgtt) return 0; has_full_ppgtt = dev_priv->info.has_full_ppgtt; has_full_48bit_ppgtt = dev_priv->info.has_full_48bit_ppgtt; if (intel_vgpu_active(dev_priv)) { /* GVT-g has no support for 32bit ppgtt */ has_full_ppgtt = false; has_full_48bit_ppgtt = intel_vgpu_has_full_48bit_ppgtt(dev_priv); } /* * We don't allow disabling PPGTT for gen9+ as it's a requirement for * execlists, the sole mechanism available to submit work. */ if (enable_ppgtt == 0 && INTEL_GEN(dev_priv) < 9) return 0; /* Full PPGTT is required by the Gen9 cmdparser */ if (enable_ppgtt == 1 && INTEL_GEN(dev_priv) != 9) return 1; if (enable_ppgtt == 2 && has_full_ppgtt) return 2; if (enable_ppgtt == 3 && has_full_48bit_ppgtt) return 3; /* Disable ppgtt on SNB if VT-d is on. */ if (IS_GEN6(dev_priv) && intel_vtd_active()) { DRM_INFO("Disabling PPGTT because VT-d is on\n"); return 0; } /* Early VLV doesn't have this */ if (IS_VALLEYVIEW(dev_priv) && dev_priv->drm.pdev->revision < 0xb) { DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); return 0; } if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) { if (has_full_48bit_ppgtt) return 3; if (has_full_ppgtt) return 2; } return 1; } static int ppgtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 unused) { u32 pte_flags; int err; if (!(vma->flags & I915_VMA_LOCAL_BIND)) { err = vma->vm->allocate_va_range(vma->vm, vma->node.start, vma->size); if (err) return err; } /* Applicable to VLV, and gen8+ */ pte_flags = 0; if (i915_gem_object_is_readonly(vma->obj)) pte_flags |= PTE_READ_ONLY; vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); return 0; } static void ppgtt_unbind_vma(struct i915_vma *vma) { vma->vm->clear_range(vma->vm, vma->node.start, vma->size); } static int ppgtt_set_pages(struct i915_vma *vma) { GEM_BUG_ON(vma->pages); vma->pages = vma->obj->mm.pages; vma->page_sizes = vma->obj->mm.page_sizes; return 0; } static void clear_pages(struct i915_vma *vma) { GEM_BUG_ON(!vma->pages); if (vma->pages != vma->obj->mm.pages) { sg_free_table(vma->pages); kfree(vma->pages); } vma->pages = NULL; memset(&vma->page_sizes, 0, sizeof(vma->page_sizes)); } static gen8_pte_t gen8_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW; if (unlikely(flags & PTE_READ_ONLY)) pte &= ~_PAGE_RW; switch (level) { case I915_CACHE_NONE: pte |= PPAT_UNCACHED; break; case I915_CACHE_WT: pte |= PPAT_DISPLAY_ELLC; break; default: pte |= PPAT_CACHED; break; } return pte; } static gen8_pde_t gen8_pde_encode(const dma_addr_t addr, const enum i915_cache_level level) { gen8_pde_t pde = _PAGE_PRESENT | _PAGE_RW; pde |= addr; if (level != I915_CACHE_NONE) pde |= PPAT_CACHED_PDE; else pde |= PPAT_UNCACHED; return pde; } #define gen8_pdpe_encode gen8_pde_encode #define gen8_pml4e_encode gen8_pde_encode static gen6_pte_t snb_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 unused) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= GEN6_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_L3_LLC: case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(level); } return pte; } static gen6_pte_t ivb_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 unused) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= GEN6_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_L3_LLC: pte |= GEN7_PTE_CACHE_L3_LLC; break; case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: MISSING_CASE(level); } return pte; } static gen6_pte_t byt_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 flags) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= GEN6_PTE_ADDR_ENCODE(addr); if (!(flags & PTE_READ_ONLY)) pte |= BYT_PTE_WRITEABLE; if (level != I915_CACHE_NONE) pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; return pte; } static gen6_pte_t hsw_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 unused) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= HSW_PTE_ADDR_ENCODE(addr); if (level != I915_CACHE_NONE) pte |= HSW_WB_LLC_AGE3; return pte; } static gen6_pte_t iris_pte_encode(dma_addr_t addr, enum i915_cache_level level, u32 unused) { gen6_pte_t pte = GEN6_PTE_VALID; pte |= HSW_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_NONE: break; case I915_CACHE_WT: pte |= HSW_WT_ELLC_LLC_AGE3; break; default: pte |= HSW_WB_ELLC_LLC_AGE3; break; } return pte; } static void stash_init(struct pagestash *stash) { pagevec_init(&stash->pvec); spin_lock_init(&stash->lock); } static struct page *stash_pop_page(struct pagestash *stash) { struct page *page = NULL; spin_lock(&stash->lock); if (likely(stash->pvec.nr)) page = stash->pvec.pages[--stash->pvec.nr]; spin_unlock(&stash->lock); return page; } static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec) { int nr; spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING); nr = min_t(int, pvec->nr, pagevec_space(&stash->pvec)); memcpy(stash->pvec.pages + stash->pvec.nr, pvec->pages + pvec->nr - nr, sizeof(pvec->pages[0]) * nr); stash->pvec.nr += nr; spin_unlock(&stash->lock); pvec->nr -= nr; } static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp) { struct pagevec stack; struct page *page; if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1))) i915_gem_shrink_all(vm->i915); page = stash_pop_page(&vm->free_pages); if (page) return page; if (!vm->pt_kmap_wc) return alloc_page(gfp); /* Look in our global stash of WC pages... */ page = stash_pop_page(&vm->i915->mm.wc_stash); if (page) return page; /* * Otherwise batch allocate pages to amortize cost of set_pages_wc. * * We have to be careful as page allocation may trigger the shrinker * (via direct reclaim) which will fill up the WC stash underneath us. * So we add our WB pages into a temporary pvec on the stack and merge * them into the WC stash after all the allocations are complete. */ pagevec_init(&stack); do { struct page *page; page = alloc_page(gfp); if (unlikely(!page)) break; stack.pages[stack.nr++] = page; } while (pagevec_space(&stack)); if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) { page = stack.pages[--stack.nr]; /* Merge spare WC pages to the global stash */ stash_push_pagevec(&vm->i915->mm.wc_stash, &stack); /* Push any surplus WC pages onto the local VM stash */ if (stack.nr) stash_push_pagevec(&vm->free_pages, &stack); } /* Return unwanted leftovers */ if (unlikely(stack.nr)) { WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr)); __pagevec_release(&stack); } return page; } static void vm_free_pages_release(struct i915_address_space *vm, bool immediate) { struct pagevec *pvec = &vm->free_pages.pvec; struct pagevec stack; lockdep_assert_held(&vm->free_pages.lock); GEM_BUG_ON(!pagevec_count(pvec)); if (vm->pt_kmap_wc) { /* * When we use WC, first fill up the global stash and then * only if full immediately free the overflow. */ stash_push_pagevec(&vm->i915->mm.wc_stash, pvec); /* * As we have made some room in the VM's free_pages, * we can wait for it to fill again. Unless we are * inside i915_address_space_fini() and must * immediately release the pages! */ if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1)) return; /* * We have to drop the lock to allow ourselves to sleep, * so take a copy of the pvec and clear the stash for * others to use it as we sleep. */ stack = *pvec; pagevec_reinit(pvec); spin_unlock(&vm->free_pages.lock); pvec = &stack; set_pages_array_wb(pvec->pages, pvec->nr); spin_lock(&vm->free_pages.lock); } __pagevec_release(pvec); } static void vm_free_page(struct i915_address_space *vm, struct page *page) { /* * On !llc, we need to change the pages back to WB. We only do so * in bulk, so we rarely need to change the page attributes here, * but doing so requires a stop_machine() from deep inside arch/x86/mm. * To make detection of the possible sleep more likely, use an * unconditional might_sleep() for everybody. */ might_sleep(); spin_lock(&vm->free_pages.lock); if (!pagevec_add(&vm->free_pages.pvec, page)) vm_free_pages_release(vm, false); spin_unlock(&vm->free_pages.lock); } static void i915_address_space_init(struct i915_address_space *vm, struct drm_i915_private *dev_priv) { /* * The vm->mutex must be reclaim safe (for use in the shrinker). * Do a dummy acquire now under fs_reclaim so that any allocation * attempt holding the lock is immediately reported by lockdep. */ mutex_init(&vm->mutex); i915_gem_shrinker_taints_mutex(&vm->mutex); GEM_BUG_ON(!vm->total); drm_mm_init(&vm->mm, 0, vm->total); vm->mm.head_node.color = I915_COLOR_UNEVICTABLE; stash_init(&vm->free_pages); INIT_LIST_HEAD(&vm->active_list); INIT_LIST_HEAD(&vm->inactive_list); INIT_LIST_HEAD(&vm->unbound_list); } static void i915_address_space_fini(struct i915_address_space *vm) { spin_lock(&vm->free_pages.lock); if (pagevec_count(&vm->free_pages.pvec)) vm_free_pages_release(vm, true); GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec)); spin_unlock(&vm->free_pages.lock); drm_mm_takedown(&vm->mm); mutex_destroy(&vm->mutex); } static int __setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p, gfp_t gfp) { p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL); if (unlikely(!p->page)) return -ENOMEM; p->daddr = dma_map_page_attrs(vm->dma, p->page, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_WARN); if (unlikely(dma_mapping_error(vm->dma, p->daddr))) { vm_free_page(vm, p->page); return -ENOMEM; } return 0; } static int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p) { return __setup_page_dma(vm, p, __GFP_HIGHMEM); } static void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p) { dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); vm_free_page(vm, p->page); } #define kmap_atomic_px(px) kmap_atomic(px_base(px)->page) #define setup_px(vm, px) setup_page_dma((vm), px_base(px)) #define cleanup_px(vm, px) cleanup_page_dma((vm), px_base(px)) #define fill_px(vm, px, v) fill_page_dma((vm), px_base(px), (v)) #define fill32_px(vm, px, v) fill_page_dma_32((vm), px_base(px), (v)) static void fill_page_dma(struct i915_address_space *vm, struct i915_page_dma *p, const u64 val) { u64 * const vaddr = kmap_atomic(p->page); memset64(vaddr, val, PAGE_SIZE / sizeof(val)); kunmap_atomic(vaddr); } static void fill_page_dma_32(struct i915_address_space *vm, struct i915_page_dma *p, const u32 v) { fill_page_dma(vm, p, (u64)v << 32 | v); } static int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp) { unsigned long size; /* * In order to utilize 64K pages for an object with a size < 2M, we will * need to support a 64K scratch page, given that every 16th entry for a * page-table operating in 64K mode must point to a properly aligned 64K * region, including any PTEs which happen to point to scratch. * * This is only relevant for the 48b PPGTT where we support * huge-gtt-pages, see also i915_vma_insert(). * * TODO: we should really consider write-protecting the scratch-page and * sharing between ppgtt */ size = I915_GTT_PAGE_SIZE_4K; if (i915_vm_is_48bit(vm) && HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) { size = I915_GTT_PAGE_SIZE_64K; gfp |= __GFP_NOWARN; } gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL; do { int order = get_order(size); struct page *page; dma_addr_t addr; page = alloc_pages(gfp, order); if (unlikely(!page)) goto skip; addr = dma_map_page_attrs(vm->dma, page, 0, size, PCI_DMA_BIDIRECTIONAL, DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_NO_WARN); if (unlikely(dma_mapping_error(vm->dma, addr))) goto free_page; if (unlikely(!IS_ALIGNED(addr, size))) goto unmap_page; vm->scratch_page.page = page; vm->scratch_page.daddr = addr; vm->scratch_page.order = order; return 0; unmap_page: dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL); free_page: __free_pages(page, order); skip: if (size == I915_GTT_PAGE_SIZE_4K) return -ENOMEM; size = I915_GTT_PAGE_SIZE_4K; gfp &= ~__GFP_NOWARN; } while (1); } static void cleanup_scratch_page(struct i915_address_space *vm) { struct i915_page_dma *p = &vm->scratch_page; dma_unmap_page(vm->dma, p->daddr, BIT(p->order) << PAGE_SHIFT, PCI_DMA_BIDIRECTIONAL); __free_pages(p->page, p->order); } static struct i915_page_table *alloc_pt(struct i915_address_space *vm) { struct i915_page_table *pt; pt = kmalloc(sizeof(*pt), I915_GFP_ALLOW_FAIL); if (unlikely(!pt)) return ERR_PTR(-ENOMEM); if (unlikely(setup_px(vm, pt))) { kfree(pt); return ERR_PTR(-ENOMEM); } pt->used_ptes = 0; return pt; } static void free_pt(struct i915_address_space *vm, struct i915_page_table *pt) { cleanup_px(vm, pt); kfree(pt); } static void gen8_initialize_pt(struct i915_address_space *vm, struct i915_page_table *pt) { fill_px(vm, pt, gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0)); } static void gen6_initialize_pt(struct gen6_hw_ppgtt *ppgtt, struct i915_page_table *pt) { fill32_px(&ppgtt->base.vm, pt, ppgtt->scratch_pte); } static struct i915_page_directory *alloc_pd(struct i915_address_space *vm) { struct i915_page_directory *pd; pd = kzalloc(sizeof(*pd), I915_GFP_ALLOW_FAIL); if (unlikely(!pd)) return ERR_PTR(-ENOMEM); if (unlikely(setup_px(vm, pd))) { kfree(pd); return ERR_PTR(-ENOMEM); } pd->used_pdes = 0; return pd; } static void free_pd(struct i915_address_space *vm, struct i915_page_directory *pd) { cleanup_px(vm, pd); kfree(pd); } static void gen8_initialize_pd(struct i915_address_space *vm, struct i915_page_directory *pd) { fill_px(vm, pd, gen8_pde_encode(px_dma(vm->scratch_pt), I915_CACHE_LLC)); memset_p((void **)pd->page_table, vm->scratch_pt, I915_PDES); } static int __pdp_init(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp) { const unsigned int pdpes = i915_pdpes_per_pdp(vm); pdp->page_directory = kmalloc_array(pdpes, sizeof(*pdp->page_directory), I915_GFP_ALLOW_FAIL); if (unlikely(!pdp->page_directory)) return -ENOMEM; memset_p((void **)pdp->page_directory, vm->scratch_pd, pdpes); return 0; } static void __pdp_fini(struct i915_page_directory_pointer *pdp) { kfree(pdp->page_directory); pdp->page_directory = NULL; } static inline bool use_4lvl(const struct i915_address_space *vm) { return i915_vm_is_48bit(vm); } static struct i915_page_directory_pointer * alloc_pdp(struct i915_address_space *vm) { struct i915_page_directory_pointer *pdp; int ret = -ENOMEM; GEM_BUG_ON(!use_4lvl(vm)); pdp = kzalloc(sizeof(*pdp), GFP_KERNEL); if (!pdp) return ERR_PTR(-ENOMEM); ret = __pdp_init(vm, pdp); if (ret) goto fail_bitmap; ret = setup_px(vm, pdp); if (ret) goto fail_page_m; return pdp; fail_page_m: __pdp_fini(pdp); fail_bitmap: kfree(pdp); return ERR_PTR(ret); } static void free_pdp(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp) { __pdp_fini(pdp); if (!use_4lvl(vm)) return; cleanup_px(vm, pdp); kfree(pdp); } static void gen8_initialize_pdp(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp) { gen8_ppgtt_pdpe_t scratch_pdpe; scratch_pdpe = gen8_pdpe_encode(px_dma(vm->scratch_pd), I915_CACHE_LLC); fill_px(vm, pdp, scratch_pdpe); } static void gen8_initialize_pml4(struct i915_address_space *vm, struct i915_pml4 *pml4) { fill_px(vm, pml4, gen8_pml4e_encode(px_dma(vm->scratch_pdp), I915_CACHE_LLC)); memset_p((void **)pml4->pdps, vm->scratch_pdp, GEN8_PML4ES_PER_PML4); } /* PDE TLBs are a pain to invalidate on GEN8+. When we modify * the page table structures, we mark them dirty so that * context switching/execlist queuing code takes extra steps * to ensure that tlbs are flushed. */ static void mark_tlbs_dirty(struct i915_hw_ppgtt *ppgtt) { ppgtt->pd_dirty_rings = INTEL_INFO(ppgtt->vm.i915)->ring_mask; } /* Removes entries from a single page table, releasing it if it's empty. * Caller can use the return value to update higher-level entries. */ static bool gen8_ppgtt_clear_pt(struct i915_address_space *vm, struct i915_page_table *pt, u64 start, u64 length) { unsigned int num_entries = gen8_pte_count(start, length); unsigned int pte = gen8_pte_index(start); unsigned int pte_end = pte + num_entries; const gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); gen8_pte_t *vaddr; GEM_BUG_ON(num_entries > pt->used_ptes); pt->used_ptes -= num_entries; if (!pt->used_ptes) return true; vaddr = kmap_atomic_px(pt); while (pte < pte_end) vaddr[pte++] = scratch_pte; kunmap_atomic(vaddr); return false; } static void gen8_ppgtt_set_pde(struct i915_address_space *vm, struct i915_page_directory *pd, struct i915_page_table *pt, unsigned int pde) { gen8_pde_t *vaddr; pd->page_table[pde] = pt; vaddr = kmap_atomic_px(pd); vaddr[pde] = gen8_pde_encode(px_dma(pt), I915_CACHE_LLC); kunmap_atomic(vaddr); } static bool gen8_ppgtt_clear_pd(struct i915_address_space *vm, struct i915_page_directory *pd, u64 start, u64 length) { struct i915_page_table *pt; u32 pde; gen8_for_each_pde(pt, pd, start, length, pde) { GEM_BUG_ON(pt == vm->scratch_pt); if (!gen8_ppgtt_clear_pt(vm, pt, start, length)) continue; gen8_ppgtt_set_pde(vm, pd, vm->scratch_pt, pde); GEM_BUG_ON(!pd->used_pdes); pd->used_pdes--; free_pt(vm, pt); } return !pd->used_pdes; } static void gen8_ppgtt_set_pdpe(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp, struct i915_page_directory *pd, unsigned int pdpe) { gen8_ppgtt_pdpe_t *vaddr; pdp->page_directory[pdpe] = pd; if (!use_4lvl(vm)) return; vaddr = kmap_atomic_px(pdp); vaddr[pdpe] = gen8_pdpe_encode(px_dma(pd), I915_CACHE_LLC); kunmap_atomic(vaddr); } /* Removes entries from a single page dir pointer, releasing it if it's empty. * Caller can use the return value to update higher-level entries */ static bool gen8_ppgtt_clear_pdp(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp, u64 start, u64 length) { struct i915_page_directory *pd; unsigned int pdpe; gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { GEM_BUG_ON(pd == vm->scratch_pd); if (!gen8_ppgtt_clear_pd(vm, pd, start, length)) continue; gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); GEM_BUG_ON(!pdp->used_pdpes); pdp->used_pdpes--; free_pd(vm, pd); } return !pdp->used_pdpes; } static void gen8_ppgtt_clear_3lvl(struct i915_address_space *vm, u64 start, u64 length) { gen8_ppgtt_clear_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length); } static void gen8_ppgtt_set_pml4e(struct i915_pml4 *pml4, struct i915_page_directory_pointer *pdp, unsigned int pml4e) { gen8_ppgtt_pml4e_t *vaddr; pml4->pdps[pml4e] = pdp; vaddr = kmap_atomic_px(pml4); vaddr[pml4e] = gen8_pml4e_encode(px_dma(pdp), I915_CACHE_LLC); kunmap_atomic(vaddr); } /* Removes entries from a single pml4. * This is the top-level structure in 4-level page tables used on gen8+. * Empty entries are always scratch pml4e. */ static void gen8_ppgtt_clear_4lvl(struct i915_address_space *vm, u64 start, u64 length) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct i915_pml4 *pml4 = &ppgtt->pml4; struct i915_page_directory_pointer *pdp; unsigned int pml4e; GEM_BUG_ON(!use_4lvl(vm)); gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { GEM_BUG_ON(pdp == vm->scratch_pdp); if (!gen8_ppgtt_clear_pdp(vm, pdp, start, length)) continue; gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); free_pdp(vm, pdp); } } static inline struct sgt_dma { struct scatterlist *sg; dma_addr_t dma, max; } sgt_dma(struct i915_vma *vma) { struct scatterlist *sg = vma->pages->sgl; dma_addr_t addr = sg_dma_address(sg); return (struct sgt_dma) { sg, addr, addr + sg->length }; } struct gen8_insert_pte { u16 pml4e; u16 pdpe; u16 pde; u16 pte; }; static __always_inline struct gen8_insert_pte gen8_insert_pte(u64 start) { return (struct gen8_insert_pte) { gen8_pml4e_index(start), gen8_pdpe_index(start), gen8_pde_index(start), gen8_pte_index(start), }; } static __always_inline bool gen8_ppgtt_insert_pte_entries(struct i915_hw_ppgtt *ppgtt, struct i915_page_directory_pointer *pdp, struct sgt_dma *iter, struct gen8_insert_pte *idx, enum i915_cache_level cache_level, u32 flags) { struct i915_page_directory *pd; const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); gen8_pte_t *vaddr; bool ret; GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm)); pd = pdp->page_directory[idx->pdpe]; vaddr = kmap_atomic_px(pd->page_table[idx->pde]); do { vaddr[idx->pte] = pte_encode | iter->dma; iter->dma += I915_GTT_PAGE_SIZE; if (iter->dma >= iter->max) { iter->sg = __sg_next(iter->sg); if (!iter->sg) { ret = false; break; } iter->dma = sg_dma_address(iter->sg); iter->max = iter->dma + iter->sg->length; } if (++idx->pte == GEN8_PTES) { idx->pte = 0; if (++idx->pde == I915_PDES) { idx->pde = 0; /* Limited by sg length for 3lvl */ if (++idx->pdpe == GEN8_PML4ES_PER_PML4) { idx->pdpe = 0; ret = true; break; } GEM_BUG_ON(idx->pdpe >= i915_pdpes_per_pdp(&ppgtt->vm)); pd = pdp->page_directory[idx->pdpe]; } kunmap_atomic(vaddr); vaddr = kmap_atomic_px(pd->page_table[idx->pde]); } } while (1); kunmap_atomic(vaddr); return ret; } static void gen8_ppgtt_insert_3lvl(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct sgt_dma iter = sgt_dma(vma); struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); gen8_ppgtt_insert_pte_entries(ppgtt, &ppgtt->pdp, &iter, &idx, cache_level, flags); vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; } static void gen8_ppgtt_insert_huge_entries(struct i915_vma *vma, struct i915_page_directory_pointer **pdps, struct sgt_dma *iter, enum i915_cache_level cache_level, u32 flags) { const gen8_pte_t pte_encode = gen8_pte_encode(0, cache_level, flags); u64 start = vma->node.start; dma_addr_t rem = iter->sg->length; do { struct gen8_insert_pte idx = gen8_insert_pte(start); struct i915_page_directory_pointer *pdp = pdps[idx.pml4e]; struct i915_page_directory *pd = pdp->page_directory[idx.pdpe]; unsigned int page_size; bool maybe_64K = false; gen8_pte_t encode = pte_encode; gen8_pte_t *vaddr; u16 index, max; if (vma->page_sizes.sg & I915_GTT_PAGE_SIZE_2M && IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_2M) && rem >= I915_GTT_PAGE_SIZE_2M && !idx.pte) { index = idx.pde; max = I915_PDES; page_size = I915_GTT_PAGE_SIZE_2M; encode |= GEN8_PDE_PS_2M; vaddr = kmap_atomic_px(pd); } else { struct i915_page_table *pt = pd->page_table[idx.pde]; index = idx.pte; max = GEN8_PTES; page_size = I915_GTT_PAGE_SIZE; if (!index && vma->page_sizes.sg & I915_GTT_PAGE_SIZE_64K && IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || rem >= (max - index) << PAGE_SHIFT)) maybe_64K = true; vaddr = kmap_atomic_px(pt); } do { GEM_BUG_ON(iter->sg->length < page_size); vaddr[index++] = encode | iter->dma; start += page_size; iter->dma += page_size; rem -= page_size; if (iter->dma >= iter->max) { iter->sg = __sg_next(iter->sg); if (!iter->sg) break; rem = iter->sg->length; iter->dma = sg_dma_address(iter->sg); iter->max = iter->dma + rem; if (maybe_64K && index < max && !(IS_ALIGNED(iter->dma, I915_GTT_PAGE_SIZE_64K) && (IS_ALIGNED(rem, I915_GTT_PAGE_SIZE_64K) || rem >= (max - index) << PAGE_SHIFT))) maybe_64K = false; if (unlikely(!IS_ALIGNED(iter->dma, page_size))) break; } } while (rem >= page_size && index < max); kunmap_atomic(vaddr); /* * Is it safe to mark the 2M block as 64K? -- Either we have * filled whole page-table with 64K entries, or filled part of * it and have reached the end of the sg table and we have * enough padding. */ if (maybe_64K && (index == max || (i915_vm_has_scratch_64K(vma->vm) && !iter->sg && IS_ALIGNED(vma->node.start + vma->node.size, I915_GTT_PAGE_SIZE_2M)))) { vaddr = kmap_atomic_px(pd); vaddr[idx.pde] |= GEN8_PDE_IPS_64K; kunmap_atomic(vaddr); page_size = I915_GTT_PAGE_SIZE_64K; /* * We write all 4K page entries, even when using 64K * pages. In order to verify that the HW isn't cheating * by using the 4K PTE instead of the 64K PTE, we want * to remove all the surplus entries. If the HW skipped * the 64K PTE, it will read/write into the scratch page * instead - which we detect as missing results during * selftests. */ if (I915_SELFTEST_ONLY(vma->vm->scrub_64K)) { u16 i; encode = pte_encode | vma->vm->scratch_page.daddr; vaddr = kmap_atomic_px(pd->page_table[idx.pde]); for (i = 1; i < index; i += 16) memset64(vaddr + i, encode, 15); kunmap_atomic(vaddr); } } vma->page_sizes.gtt |= page_size; } while (iter->sg); } static void gen8_ppgtt_insert_4lvl(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct sgt_dma iter = sgt_dma(vma); struct i915_page_directory_pointer **pdps = ppgtt->pml4.pdps; if (vma->page_sizes.sg > I915_GTT_PAGE_SIZE) { gen8_ppgtt_insert_huge_entries(vma, pdps, &iter, cache_level, flags); } else { struct gen8_insert_pte idx = gen8_insert_pte(vma->node.start); while (gen8_ppgtt_insert_pte_entries(ppgtt, pdps[idx.pml4e++], &iter, &idx, cache_level, flags)) GEM_BUG_ON(idx.pml4e >= GEN8_PML4ES_PER_PML4); vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; } } static void gen8_free_page_tables(struct i915_address_space *vm, struct i915_page_directory *pd) { int i; if (!px_page(pd)) return; for (i = 0; i < I915_PDES; i++) { if (pd->page_table[i] != vm->scratch_pt) free_pt(vm, pd->page_table[i]); } } static int gen8_init_scratch(struct i915_address_space *vm) { int ret; ret = setup_scratch_page(vm, __GFP_HIGHMEM); if (ret) return ret; vm->scratch_pt = alloc_pt(vm); if (IS_ERR(vm->scratch_pt)) { ret = PTR_ERR(vm->scratch_pt); goto free_scratch_page; } vm->scratch_pd = alloc_pd(vm); if (IS_ERR(vm->scratch_pd)) { ret = PTR_ERR(vm->scratch_pd); goto free_pt; } if (use_4lvl(vm)) { vm->scratch_pdp = alloc_pdp(vm); if (IS_ERR(vm->scratch_pdp)) { ret = PTR_ERR(vm->scratch_pdp); goto free_pd; } } gen8_initialize_pt(vm, vm->scratch_pt); gen8_initialize_pd(vm, vm->scratch_pd); if (use_4lvl(vm)) gen8_initialize_pdp(vm, vm->scratch_pdp); return 0; free_pd: free_pd(vm, vm->scratch_pd); free_pt: free_pt(vm, vm->scratch_pt); free_scratch_page: cleanup_scratch_page(vm); return ret; } static int gen8_ppgtt_notify_vgt(struct i915_hw_ppgtt *ppgtt, bool create) { struct i915_address_space *vm = &ppgtt->vm; struct drm_i915_private *dev_priv = vm->i915; enum vgt_g2v_type msg; int i; if (use_4lvl(vm)) { const u64 daddr = px_dma(&ppgtt->pml4); I915_WRITE(vgtif_reg(pdp[0].lo), lower_32_bits(daddr)); I915_WRITE(vgtif_reg(pdp[0].hi), upper_32_bits(daddr)); msg = (create ? VGT_G2V_PPGTT_L4_PAGE_TABLE_CREATE : VGT_G2V_PPGTT_L4_PAGE_TABLE_DESTROY); } else { for (i = 0; i < GEN8_3LVL_PDPES; i++) { const u64 daddr = i915_page_dir_dma_addr(ppgtt, i); I915_WRITE(vgtif_reg(pdp[i].lo), lower_32_bits(daddr)); I915_WRITE(vgtif_reg(pdp[i].hi), upper_32_bits(daddr)); } msg = (create ? VGT_G2V_PPGTT_L3_PAGE_TABLE_CREATE : VGT_G2V_PPGTT_L3_PAGE_TABLE_DESTROY); } I915_WRITE(vgtif_reg(g2v_notify), msg); return 0; } static void gen8_free_scratch(struct i915_address_space *vm) { if (use_4lvl(vm)) free_pdp(vm, vm->scratch_pdp); free_pd(vm, vm->scratch_pd); free_pt(vm, vm->scratch_pt); cleanup_scratch_page(vm); } static void gen8_ppgtt_cleanup_3lvl(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp) { const unsigned int pdpes = i915_pdpes_per_pdp(vm); int i; for (i = 0; i < pdpes; i++) { if (pdp->page_directory[i] == vm->scratch_pd) continue; gen8_free_page_tables(vm, pdp->page_directory[i]); free_pd(vm, pdp->page_directory[i]); } free_pdp(vm, pdp); } static void gen8_ppgtt_cleanup_4lvl(struct i915_hw_ppgtt *ppgtt) { int i; for (i = 0; i < GEN8_PML4ES_PER_PML4; i++) { if (ppgtt->pml4.pdps[i] == ppgtt->vm.scratch_pdp) continue; gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, ppgtt->pml4.pdps[i]); } cleanup_px(&ppgtt->vm, &ppgtt->pml4); } static void gen8_ppgtt_cleanup(struct i915_address_space *vm) { struct drm_i915_private *dev_priv = vm->i915; struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); if (intel_vgpu_active(dev_priv)) gen8_ppgtt_notify_vgt(ppgtt, false); if (use_4lvl(vm)) gen8_ppgtt_cleanup_4lvl(ppgtt); else gen8_ppgtt_cleanup_3lvl(&ppgtt->vm, &ppgtt->pdp); gen8_free_scratch(vm); } static int gen8_ppgtt_alloc_pd(struct i915_address_space *vm, struct i915_page_directory *pd, u64 start, u64 length) { struct i915_page_table *pt; u64 from = start; unsigned int pde; gen8_for_each_pde(pt, pd, start, length, pde) { int count = gen8_pte_count(start, length); if (pt == vm->scratch_pt) { pd->used_pdes++; pt = alloc_pt(vm); if (IS_ERR(pt)) { pd->used_pdes--; goto unwind; } if (count < GEN8_PTES || intel_vgpu_active(vm->i915)) gen8_initialize_pt(vm, pt); gen8_ppgtt_set_pde(vm, pd, pt, pde); GEM_BUG_ON(pd->used_pdes > I915_PDES); } pt->used_ptes += count; } return 0; unwind: gen8_ppgtt_clear_pd(vm, pd, from, start - from); return -ENOMEM; } static int gen8_ppgtt_alloc_pdp(struct i915_address_space *vm, struct i915_page_directory_pointer *pdp, u64 start, u64 length) { struct i915_page_directory *pd; u64 from = start; unsigned int pdpe; int ret; gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { if (pd == vm->scratch_pd) { pdp->used_pdpes++; pd = alloc_pd(vm); if (IS_ERR(pd)) { pdp->used_pdpes--; goto unwind; } gen8_initialize_pd(vm, pd); gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); GEM_BUG_ON(pdp->used_pdpes > i915_pdpes_per_pdp(vm)); mark_tlbs_dirty(i915_vm_to_ppgtt(vm)); } ret = gen8_ppgtt_alloc_pd(vm, pd, start, length); if (unlikely(ret)) goto unwind_pd; } return 0; unwind_pd: if (!pd->used_pdes) { gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); GEM_BUG_ON(!pdp->used_pdpes); pdp->used_pdpes--; free_pd(vm, pd); } unwind: gen8_ppgtt_clear_pdp(vm, pdp, from, start - from); return -ENOMEM; } static int gen8_ppgtt_alloc_3lvl(struct i915_address_space *vm, u64 start, u64 length) { return gen8_ppgtt_alloc_pdp(vm, &i915_vm_to_ppgtt(vm)->pdp, start, length); } static int gen8_ppgtt_alloc_4lvl(struct i915_address_space *vm, u64 start, u64 length) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); struct i915_pml4 *pml4 = &ppgtt->pml4; struct i915_page_directory_pointer *pdp; u64 from = start; u32 pml4e; int ret; gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { if (pml4->pdps[pml4e] == vm->scratch_pdp) { pdp = alloc_pdp(vm); if (IS_ERR(pdp)) goto unwind; gen8_initialize_pdp(vm, pdp); gen8_ppgtt_set_pml4e(pml4, pdp, pml4e); } ret = gen8_ppgtt_alloc_pdp(vm, pdp, start, length); if (unlikely(ret)) goto unwind_pdp; } return 0; unwind_pdp: if (!pdp->used_pdpes) { gen8_ppgtt_set_pml4e(pml4, vm->scratch_pdp, pml4e); free_pdp(vm, pdp); } unwind: gen8_ppgtt_clear_4lvl(vm, from, start - from); return -ENOMEM; } static void gen8_dump_pdp(struct i915_hw_ppgtt *ppgtt, struct i915_page_directory_pointer *pdp, u64 start, u64 length, gen8_pte_t scratch_pte, struct seq_file *m) { struct i915_address_space *vm = &ppgtt->vm; struct i915_page_directory *pd; u32 pdpe; gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { struct i915_page_table *pt; u64 pd_len = length; u64 pd_start = start; u32 pde; if (pdp->page_directory[pdpe] == ppgtt->vm.scratch_pd) continue; seq_printf(m, "\tPDPE #%d\n", pdpe); gen8_for_each_pde(pt, pd, pd_start, pd_len, pde) { u32 pte; gen8_pte_t *pt_vaddr; if (pd->page_table[pde] == ppgtt->vm.scratch_pt) continue; pt_vaddr = kmap_atomic_px(pt); for (pte = 0; pte < GEN8_PTES; pte += 4) { u64 va = (pdpe << GEN8_PDPE_SHIFT | pde << GEN8_PDE_SHIFT | pte << GEN8_PTE_SHIFT); int i; bool found = false; for (i = 0; i < 4; i++) if (pt_vaddr[pte + i] != scratch_pte) found = true; if (!found) continue; seq_printf(m, "\t\t0x%llx [%03d,%03d,%04d]: =", va, pdpe, pde, pte); for (i = 0; i < 4; i++) { if (pt_vaddr[pte + i] != scratch_pte) seq_printf(m, " %llx", pt_vaddr[pte + i]); else seq_puts(m, " SCRATCH "); } seq_puts(m, "\n"); } kunmap_atomic(pt_vaddr); } } } static void gen8_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) { struct i915_address_space *vm = &ppgtt->vm; const gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); u64 start = 0, length = ppgtt->vm.total; if (use_4lvl(vm)) { u64 pml4e; struct i915_pml4 *pml4 = &ppgtt->pml4; struct i915_page_directory_pointer *pdp; gen8_for_each_pml4e(pdp, pml4, start, length, pml4e) { if (pml4->pdps[pml4e] == ppgtt->vm.scratch_pdp) continue; seq_printf(m, " PML4E #%llu\n", pml4e); gen8_dump_pdp(ppgtt, pdp, start, length, scratch_pte, m); } } else { gen8_dump_pdp(ppgtt, &ppgtt->pdp, start, length, scratch_pte, m); } } static int gen8_preallocate_top_level_pdp(struct i915_hw_ppgtt *ppgtt) { struct i915_address_space *vm = &ppgtt->vm; struct i915_page_directory_pointer *pdp = &ppgtt->pdp; struct i915_page_directory *pd; u64 start = 0, length = ppgtt->vm.total; u64 from = start; unsigned int pdpe; gen8_for_each_pdpe(pd, pdp, start, length, pdpe) { pd = alloc_pd(vm); if (IS_ERR(pd)) goto unwind; gen8_initialize_pd(vm, pd); gen8_ppgtt_set_pdpe(vm, pdp, pd, pdpe); pdp->used_pdpes++; } pdp->used_pdpes++; /* never remove */ return 0; unwind: start -= from; gen8_for_each_pdpe(pd, pdp, from, start, pdpe) { gen8_ppgtt_set_pdpe(vm, pdp, vm->scratch_pd, pdpe); free_pd(vm, pd); } pdp->used_pdpes = 0; return -ENOMEM; } /* * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers * with a net effect resembling a 2-level page table in normal x86 terms. Each * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address * space. * */ static struct i915_hw_ppgtt *gen8_ppgtt_create(struct drm_i915_private *i915) { struct i915_hw_ppgtt *ppgtt; int err; ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) return ERR_PTR(-ENOMEM); kref_init(&ppgtt->ref); ppgtt->vm.i915 = i915; ppgtt->vm.dma = &i915->drm.pdev->dev; ppgtt->vm.total = USES_FULL_48BIT_PPGTT(i915) ? 1ULL << 48 : 1ULL << 32; /* * From bdw, there is support for read-only pages in the PPGTT. * * XXX GVT is not honouring the lack of RW in the PTE bits. */ ppgtt->vm.has_read_only = !intel_vgpu_active(i915); i915_address_space_init(&ppgtt->vm, i915); /* There are only few exceptions for gen >=6. chv and bxt. * And we are not sure about the latter so play safe for now. */ if (IS_CHERRYVIEW(i915) || IS_BROXTON(i915)) ppgtt->vm.pt_kmap_wc = true; err = gen8_init_scratch(&ppgtt->vm); if (err) goto err_free; if (use_4lvl(&ppgtt->vm)) { err = setup_px(&ppgtt->vm, &ppgtt->pml4); if (err) goto err_scratch; gen8_initialize_pml4(&ppgtt->vm, &ppgtt->pml4); ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_4lvl; ppgtt->vm.insert_entries = gen8_ppgtt_insert_4lvl; ppgtt->vm.clear_range = gen8_ppgtt_clear_4lvl; } else { err = __pdp_init(&ppgtt->vm, &ppgtt->pdp); if (err) goto err_scratch; if (intel_vgpu_active(i915)) { err = gen8_preallocate_top_level_pdp(ppgtt); if (err) { __pdp_fini(&ppgtt->pdp); goto err_scratch; } } ppgtt->vm.allocate_va_range = gen8_ppgtt_alloc_3lvl; ppgtt->vm.insert_entries = gen8_ppgtt_insert_3lvl; ppgtt->vm.clear_range = gen8_ppgtt_clear_3lvl; } if (intel_vgpu_active(i915)) gen8_ppgtt_notify_vgt(ppgtt, true); ppgtt->vm.cleanup = gen8_ppgtt_cleanup; ppgtt->debug_dump = gen8_dump_ppgtt; ppgtt->vm.vma_ops.bind_vma = ppgtt_bind_vma; ppgtt->vm.vma_ops.unbind_vma = ppgtt_unbind_vma; ppgtt->vm.vma_ops.set_pages = ppgtt_set_pages; ppgtt->vm.vma_ops.clear_pages = clear_pages; return ppgtt; err_scratch: gen8_free_scratch(&ppgtt->vm); err_free: kfree(ppgtt); return ERR_PTR(err); } static void gen6_dump_ppgtt(struct i915_hw_ppgtt *base, struct seq_file *m) { struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base); const gen6_pte_t scratch_pte = ppgtt->scratch_pte; struct i915_page_table *pt; u32 pte, pde; gen6_for_all_pdes(pt, &base->pd, pde) { gen6_pte_t *vaddr; if (pt == base->vm.scratch_pt) continue; if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) { u32 expected = GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID; u32 pd_entry = readl(ppgtt->pd_addr + pde); if (pd_entry != expected) seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", pde, pd_entry, expected); seq_printf(m, "\tPDE: %x\n", pd_entry); } vaddr = kmap_atomic_px(base->pd.page_table[pde]); for (pte = 0; pte < GEN6_PTES; pte += 4) { int i; for (i = 0; i < 4; i++) if (vaddr[pte + i] != scratch_pte) break; if (i == 4) continue; seq_printf(m, "\t\t(%03d, %04d) %08llx: ", pde, pte, (pde * GEN6_PTES + pte) * I915_GTT_PAGE_SIZE); for (i = 0; i < 4; i++) { if (vaddr[pte + i] != scratch_pte) seq_printf(m, " %08x", vaddr[pte + i]); else seq_puts(m, " SCRATCH"); } seq_puts(m, "\n"); } kunmap_atomic(vaddr); } } /* Write pde (index) from the page directory @pd to the page table @pt */ static inline void gen6_write_pde(const struct gen6_hw_ppgtt *ppgtt, const unsigned int pde, const struct i915_page_table *pt) { /* Caller needs to make sure the write completes if necessary */ iowrite32(GEN6_PDE_ADDR_ENCODE(px_dma(pt)) | GEN6_PDE_VALID, ppgtt->pd_addr + pde); } static void gen8_ppgtt_enable(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; for_each_engine(engine, dev_priv, id) { u32 four_level = USES_FULL_48BIT_PPGTT(dev_priv) ? GEN8_GFX_PPGTT_48B : 0; I915_WRITE(RING_MODE_GEN7(engine), _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE | four_level)); } } static void gen7_ppgtt_enable(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; u32 ecochk, ecobits; enum intel_engine_id id; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); ecochk = I915_READ(GAM_ECOCHK); if (IS_HASWELL(dev_priv)) { ecochk |= ECOCHK_PPGTT_WB_HSW; } else { ecochk |= ECOCHK_PPGTT_LLC_IVB; ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; } I915_WRITE(GAM_ECOCHK, ecochk); for_each_engine(engine, dev_priv, id) { /* GFX_MODE is per-ring on gen7+ */ I915_WRITE(RING_MODE_GEN7(engine), _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } } static void gen6_ppgtt_enable(struct drm_i915_private *dev_priv) { u32 ecochk, gab_ctl, ecobits; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B); gab_ctl = I915_READ(GAB_CTL); I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); ecochk = I915_READ(GAM_ECOCHK); I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); } /* PPGTT support for Sandybdrige/Gen6 and later */ static void gen6_ppgtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); unsigned int first_entry = start >> PAGE_SHIFT; unsigned int pde = first_entry / GEN6_PTES; unsigned int pte = first_entry % GEN6_PTES; unsigned int num_entries = length >> PAGE_SHIFT; const gen6_pte_t scratch_pte = ppgtt->scratch_pte; while (num_entries) { struct i915_page_table *pt = ppgtt->base.pd.page_table[pde++]; const unsigned int end = min(pte + num_entries, GEN6_PTES); const unsigned int count = end - pte; gen6_pte_t *vaddr; GEM_BUG_ON(pt == vm->scratch_pt); num_entries -= count; GEM_BUG_ON(count > pt->used_ptes); pt->used_ptes -= count; if (!pt->used_ptes) ppgtt->scan_for_unused_pt = true; /* * Note that the hw doesn't support removing PDE on the fly * (they are cached inside the context with no means to * invalidate the cache), so we can only reset the PTE * entries back to scratch. */ vaddr = kmap_atomic_px(pt); do { vaddr[pte++] = scratch_pte; } while (pte < end); kunmap_atomic(vaddr); pte = 0; } } static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vm); unsigned first_entry = vma->node.start >> PAGE_SHIFT; unsigned act_pt = first_entry / GEN6_PTES; unsigned act_pte = first_entry % GEN6_PTES; const u32 pte_encode = vm->pte_encode(0, cache_level, flags); struct sgt_dma iter = sgt_dma(vma); gen6_pte_t *vaddr; GEM_BUG_ON(ppgtt->pd.page_table[act_pt] == vm->scratch_pt); vaddr = kmap_atomic_px(ppgtt->pd.page_table[act_pt]); do { vaddr[act_pte] = pte_encode | GEN6_PTE_ADDR_ENCODE(iter.dma); iter.dma += I915_GTT_PAGE_SIZE; if (iter.dma == iter.max) { iter.sg = __sg_next(iter.sg); if (!iter.sg) break; iter.dma = sg_dma_address(iter.sg); iter.max = iter.dma + iter.sg->length; } if (++act_pte == GEN6_PTES) { kunmap_atomic(vaddr); vaddr = kmap_atomic_px(ppgtt->pd.page_table[++act_pt]); act_pte = 0; } } while (1); kunmap_atomic(vaddr); vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; } static int gen6_alloc_va_range(struct i915_address_space *vm, u64 start, u64 length) { struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); struct i915_page_table *pt; u64 from = start; unsigned int pde; bool flush = false; gen6_for_each_pde(pt, &ppgtt->base.pd, start, length, pde) { const unsigned int count = gen6_pte_count(start, length); if (pt == vm->scratch_pt) { pt = alloc_pt(vm); if (IS_ERR(pt)) goto unwind_out; gen6_initialize_pt(ppgtt, pt); ppgtt->base.pd.page_table[pde] = pt; if (i915_vma_is_bound(ppgtt->vma, I915_VMA_GLOBAL_BIND)) { gen6_write_pde(ppgtt, pde, pt); flush = true; } GEM_BUG_ON(pt->used_ptes); } pt->used_ptes += count; } if (flush) { mark_tlbs_dirty(&ppgtt->base); gen6_ggtt_invalidate(ppgtt->base.vm.i915); } return 0; unwind_out: gen6_ppgtt_clear_range(vm, from, start - from); return -ENOMEM; } static int gen6_ppgtt_init_scratch(struct gen6_hw_ppgtt *ppgtt) { struct i915_address_space * const vm = &ppgtt->base.vm; struct i915_page_table *unused; u32 pde; int ret; ret = setup_scratch_page(vm, __GFP_HIGHMEM); if (ret) return ret; ppgtt->scratch_pte = vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_NONE, PTE_READ_ONLY); vm->scratch_pt = alloc_pt(vm); if (IS_ERR(vm->scratch_pt)) { cleanup_scratch_page(vm); return PTR_ERR(vm->scratch_pt); } gen6_initialize_pt(ppgtt, vm->scratch_pt); gen6_for_all_pdes(unused, &ppgtt->base.pd, pde) ppgtt->base.pd.page_table[pde] = vm->scratch_pt; return 0; } static void gen6_ppgtt_free_scratch(struct i915_address_space *vm) { free_pt(vm, vm->scratch_pt); cleanup_scratch_page(vm); } static void gen6_ppgtt_free_pd(struct gen6_hw_ppgtt *ppgtt) { struct i915_page_table *pt; u32 pde; gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) if (pt != ppgtt->base.vm.scratch_pt) free_pt(&ppgtt->base.vm, pt); } static void gen6_ppgtt_cleanup(struct i915_address_space *vm) { struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(i915_vm_to_ppgtt(vm)); i915_vma_destroy(ppgtt->vma); gen6_ppgtt_free_pd(ppgtt); gen6_ppgtt_free_scratch(vm); } static int pd_vma_set_pages(struct i915_vma *vma) { vma->pages = ERR_PTR(-ENODEV); return 0; } static void pd_vma_clear_pages(struct i915_vma *vma) { GEM_BUG_ON(!vma->pages); vma->pages = NULL; } static int pd_vma_bind(struct i915_vma *vma, enum i915_cache_level cache_level, u32 unused) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm); struct gen6_hw_ppgtt *ppgtt = vma->private; u32 ggtt_offset = i915_ggtt_offset(vma) / I915_GTT_PAGE_SIZE; struct i915_page_table *pt; unsigned int pde; ppgtt->base.pd.base.ggtt_offset = ggtt_offset * sizeof(gen6_pte_t); ppgtt->pd_addr = (gen6_pte_t __iomem *)ggtt->gsm + ggtt_offset; gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) gen6_write_pde(ppgtt, pde, pt); mark_tlbs_dirty(&ppgtt->base); gen6_ggtt_invalidate(ppgtt->base.vm.i915); return 0; } static void pd_vma_unbind(struct i915_vma *vma) { struct gen6_hw_ppgtt *ppgtt = vma->private; struct i915_page_table * const scratch_pt = ppgtt->base.vm.scratch_pt; struct i915_page_table *pt; unsigned int pde; if (!ppgtt->scan_for_unused_pt) return; /* Free all no longer used page tables */ gen6_for_all_pdes(pt, &ppgtt->base.pd, pde) { if (pt->used_ptes || pt == scratch_pt) continue; free_pt(&ppgtt->base.vm, pt); ppgtt->base.pd.page_table[pde] = scratch_pt; } ppgtt->scan_for_unused_pt = false; } static const struct i915_vma_ops pd_vma_ops = { .set_pages = pd_vma_set_pages, .clear_pages = pd_vma_clear_pages, .bind_vma = pd_vma_bind, .unbind_vma = pd_vma_unbind, }; static struct i915_vma *pd_vma_create(struct gen6_hw_ppgtt *ppgtt, int size) { struct drm_i915_private *i915 = ppgtt->base.vm.i915; struct i915_ggtt *ggtt = &i915->ggtt; struct i915_vma *vma; GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(size > ggtt->vm.total); vma = kmem_cache_zalloc(i915->vmas, GFP_KERNEL); if (!vma) return ERR_PTR(-ENOMEM); init_request_active(&vma->last_fence, NULL); vma->vm = &ggtt->vm; vma->ops = &pd_vma_ops; vma->private = ppgtt; vma->active = RB_ROOT; vma->size = size; vma->fence_size = size; vma->flags = I915_VMA_GGTT; vma->ggtt_view.type = I915_GGTT_VIEW_ROTATED; /* prevent fencing */ INIT_LIST_HEAD(&vma->obj_link); list_add(&vma->vm_link, &vma->vm->unbound_list); return vma; } int gen6_ppgtt_pin(struct i915_hw_ppgtt *base) { struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base); int err; /* * Workaround the limited maximum vma->pin_count and the aliasing_ppgtt * which will be pinned into every active context. * (When vma->pin_count becomes atomic, I expect we will naturally * need a larger, unpacked, type and kill this redundancy.) */ if (ppgtt->pin_count++) return 0; /* * PPGTT PDEs reside in the GGTT and consists of 512 entries. The * allocator works in address space sizes, so it's multiplied by page * size. We allocate at the top of the GTT to avoid fragmentation. */ err = i915_vma_pin(ppgtt->vma, 0, GEN6_PD_ALIGN, PIN_GLOBAL | PIN_HIGH); if (err) goto unpin; return 0; unpin: ppgtt->pin_count = 0; return err; } void gen6_ppgtt_unpin(struct i915_hw_ppgtt *base) { struct gen6_hw_ppgtt *ppgtt = to_gen6_ppgtt(base); GEM_BUG_ON(!ppgtt->pin_count); if (--ppgtt->pin_count) return; i915_vma_unpin(ppgtt->vma); } static struct i915_hw_ppgtt *gen6_ppgtt_create(struct drm_i915_private *i915) { struct i915_ggtt * const ggtt = &i915->ggtt; struct gen6_hw_ppgtt *ppgtt; int err; ppgtt = kzalloc(sizeof(*ppgtt), GFP_KERNEL); if (!ppgtt) return ERR_PTR(-ENOMEM); kref_init(&ppgtt->base.ref); ppgtt->base.vm.i915 = i915; ppgtt->base.vm.dma = &i915->drm.pdev->dev; ppgtt->base.vm.total = I915_PDES * GEN6_PTES * I915_GTT_PAGE_SIZE; i915_address_space_init(&ppgtt->base.vm, i915); ppgtt->base.vm.allocate_va_range = gen6_alloc_va_range; ppgtt->base.vm.clear_range = gen6_ppgtt_clear_range; ppgtt->base.vm.insert_entries = gen6_ppgtt_insert_entries; ppgtt->base.vm.cleanup = gen6_ppgtt_cleanup; ppgtt->base.debug_dump = gen6_dump_ppgtt; ppgtt->base.vm.vma_ops.bind_vma = ppgtt_bind_vma; ppgtt->base.vm.vma_ops.unbind_vma = ppgtt_unbind_vma; ppgtt->base.vm.vma_ops.set_pages = ppgtt_set_pages; ppgtt->base.vm.vma_ops.clear_pages = clear_pages; ppgtt->base.vm.pte_encode = ggtt->vm.pte_encode; err = gen6_ppgtt_init_scratch(ppgtt); if (err) goto err_free; ppgtt->vma = pd_vma_create(ppgtt, GEN6_PD_SIZE); if (IS_ERR(ppgtt->vma)) { err = PTR_ERR(ppgtt->vma); goto err_scratch; } return &ppgtt->base; err_scratch: gen6_ppgtt_free_scratch(&ppgtt->base.vm); err_free: kfree(ppgtt); return ERR_PTR(err); } static void gtt_write_workarounds(struct drm_i915_private *dev_priv) { /* This function is for gtt related workarounds. This function is * called on driver load and after a GPU reset, so you can place * workarounds here even if they get overwritten by GPU reset. */ /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */ if (IS_BROADWELL(dev_priv)) I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW); else if (IS_CHERRYVIEW(dev_priv)) I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV); else if (IS_GEN9_LP(dev_priv)) I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT); else if (INTEL_GEN(dev_priv) >= 9) I915_WRITE(GEN8_L3_LRA_1_GPGPU, GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL); /* * To support 64K PTEs we need to first enable the use of the * Intermediate-Page-Size(IPS) bit of the PDE field via some magical * mmio, otherwise the page-walker will simply ignore the IPS bit. This * shouldn't be needed after GEN10. * * 64K pages were first introduced from BDW+, although technically they * only *work* from gen9+. For pre-BDW we instead have the option for * 32K pages, but we don't currently have any support for it in our * driver. */ if (HAS_PAGE_SIZES(dev_priv, I915_GTT_PAGE_SIZE_64K) && INTEL_GEN(dev_priv) <= 10) I915_WRITE(GEN8_GAMW_ECO_DEV_RW_IA, I915_READ(GEN8_GAMW_ECO_DEV_RW_IA) | GAMW_ECO_ENABLE_64K_IPS_FIELD); } int i915_ppgtt_init_hw(struct drm_i915_private *dev_priv) { gtt_write_workarounds(dev_priv); /* In the case of execlists, PPGTT is enabled by the context descriptor * and the PDPs are contained within the context itself. We don't * need to do anything here. */ if (HAS_LOGICAL_RING_CONTEXTS(dev_priv)) return 0; if (!USES_PPGTT(dev_priv)) return 0; if (IS_GEN6(dev_priv)) gen6_ppgtt_enable(dev_priv); else if (IS_GEN7(dev_priv)) gen7_ppgtt_enable(dev_priv); else if (INTEL_GEN(dev_priv) >= 8) gen8_ppgtt_enable(dev_priv); else MISSING_CASE(INTEL_GEN(dev_priv)); return 0; } static struct i915_hw_ppgtt * __hw_ppgtt_create(struct drm_i915_private *i915) { if (INTEL_GEN(i915) < 8) return gen6_ppgtt_create(i915); else return gen8_ppgtt_create(i915); } struct i915_hw_ppgtt * i915_ppgtt_create(struct drm_i915_private *i915, struct drm_i915_file_private *fpriv) { struct i915_hw_ppgtt *ppgtt; ppgtt = __hw_ppgtt_create(i915); if (IS_ERR(ppgtt)) return ppgtt; ppgtt->vm.file = fpriv; trace_i915_ppgtt_create(&ppgtt->vm); return ppgtt; } void i915_ppgtt_close(struct i915_address_space *vm) { GEM_BUG_ON(vm->closed); vm->closed = true; } static void ppgtt_destroy_vma(struct i915_address_space *vm) { struct list_head *phases[] = { &vm->active_list, &vm->inactive_list, &vm->unbound_list, NULL, }, **phase; vm->closed = true; for (phase = phases; *phase; phase++) { struct i915_vma *vma, *vn; list_for_each_entry_safe(vma, vn, *phase, vm_link) i915_vma_destroy(vma); } } void i915_ppgtt_release(struct kref *kref) { struct i915_hw_ppgtt *ppgtt = container_of(kref, struct i915_hw_ppgtt, ref); trace_i915_ppgtt_release(&ppgtt->vm); ppgtt_destroy_vma(&ppgtt->vm); GEM_BUG_ON(!list_empty(&ppgtt->vm.active_list)); GEM_BUG_ON(!list_empty(&ppgtt->vm.inactive_list)); GEM_BUG_ON(!list_empty(&ppgtt->vm.unbound_list)); ppgtt->vm.cleanup(&ppgtt->vm); i915_address_space_fini(&ppgtt->vm); kfree(ppgtt); } /* Certain Gen5 chipsets require require idling the GPU before * unmapping anything from the GTT when VT-d is enabled. */ static bool needs_idle_maps(struct drm_i915_private *dev_priv) { /* Query intel_iommu to see if we need the workaround. Presumably that * was loaded first. */ return IS_GEN5(dev_priv) && IS_MOBILE(dev_priv) && intel_vtd_active(); } static void gen6_check_and_clear_faults(struct drm_i915_private *dev_priv) { struct intel_engine_cs *engine; enum intel_engine_id id; u32 fault; for_each_engine(engine, dev_priv, id) { fault = I915_READ(RING_FAULT_REG(engine)); if (fault & RING_FAULT_VALID) { DRM_DEBUG_DRIVER("Unexpected fault\n" "\tAddr: 0x%08lx\n" "\tAddress space: %s\n" "\tSource ID: %d\n" "\tType: %d\n", fault & PAGE_MASK, fault & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", RING_FAULT_SRCID(fault), RING_FAULT_FAULT_TYPE(fault)); I915_WRITE(RING_FAULT_REG(engine), fault & ~RING_FAULT_VALID); } } POSTING_READ(RING_FAULT_REG(dev_priv->engine[RCS])); } static void gen8_check_and_clear_faults(struct drm_i915_private *dev_priv) { u32 fault = I915_READ(GEN8_RING_FAULT_REG); if (fault & RING_FAULT_VALID) { u32 fault_data0, fault_data1; u64 fault_addr; fault_data0 = I915_READ(GEN8_FAULT_TLB_DATA0); fault_data1 = I915_READ(GEN8_FAULT_TLB_DATA1); fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) | ((u64)fault_data0 << 12); DRM_DEBUG_DRIVER("Unexpected fault\n" "\tAddr: 0x%08x_%08x\n" "\tAddress space: %s\n" "\tEngine ID: %d\n" "\tSource ID: %d\n" "\tType: %d\n", upper_32_bits(fault_addr), lower_32_bits(fault_addr), fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT", GEN8_RING_FAULT_ENGINE_ID(fault), RING_FAULT_SRCID(fault), RING_FAULT_FAULT_TYPE(fault)); I915_WRITE(GEN8_RING_FAULT_REG, fault & ~RING_FAULT_VALID); } POSTING_READ(GEN8_RING_FAULT_REG); } void i915_check_and_clear_faults(struct drm_i915_private *dev_priv) { /* From GEN8 onwards we only have one 'All Engine Fault Register' */ if (INTEL_GEN(dev_priv) >= 8) gen8_check_and_clear_faults(dev_priv); else if (INTEL_GEN(dev_priv) >= 6) gen6_check_and_clear_faults(dev_priv); else return; } void i915_gem_suspend_gtt_mappings(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; /* Don't bother messing with faults pre GEN6 as we have little * documentation supporting that it's a good idea. */ if (INTEL_GEN(dev_priv) < 6) return; i915_check_and_clear_faults(dev_priv); ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); i915_ggtt_invalidate(dev_priv); } int i915_gem_gtt_prepare_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { do { if (dma_map_sg_attrs(&obj->base.dev->pdev->dev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL, DMA_ATTR_NO_WARN)) return 0; /* If the DMA remap fails, one cause can be that we have * too many objects pinned in a small remapping table, * such as swiotlb. Incrementally purge all other objects and * try again - if there are no more pages to remove from * the DMA remapper, i915_gem_shrink will return 0. */ GEM_BUG_ON(obj->mm.pages == pages); } while (i915_gem_shrink(to_i915(obj->base.dev), obj->base.size >> PAGE_SHIFT, NULL, I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_ACTIVE)); return -ENOSPC; } static void gen8_set_pte(void __iomem *addr, gen8_pte_t pte) { writeq(pte, addr); } static void gen8_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level level, u32 unused) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen8_pte_t __iomem *pte = (gen8_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); gen8_set_pte(pte, gen8_pte_encode(addr, level, 0)); ggtt->invalidate(vm->i915); } static void gen8_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level level, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); struct sgt_iter sgt_iter; gen8_pte_t __iomem *gtt_entries; const gen8_pte_t pte_encode = gen8_pte_encode(0, level, 0); dma_addr_t addr; /* * Note that we ignore PTE_READ_ONLY here. The caller must be careful * not to allow the user to override access to a read only page. */ gtt_entries = (gen8_pte_t __iomem *)ggtt->gsm; gtt_entries += vma->node.start >> PAGE_SHIFT; for_each_sgt_dma(addr, sgt_iter, vma->pages) gen8_set_pte(gtt_entries++, pte_encode | addr); /* * We want to flush the TLBs only after we're certain all the PTE * updates have finished. */ ggtt->invalidate(vm->i915); } static void gen6_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level level, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen6_pte_t __iomem *pte = (gen6_pte_t __iomem *)ggtt->gsm + (offset >> PAGE_SHIFT); iowrite32(vm->pte_encode(addr, level, flags), pte); ggtt->invalidate(vm->i915); } /* * Binds an object into the global gtt with the specified cache level. The object * will be accessible to the GPU via commands whose operands reference offsets * within the global GTT as well as accessible by the GPU through the GMADR * mapped BAR (dev_priv->mm.gtt->gtt). */ static void gen6_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level level, u32 flags) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); gen6_pte_t __iomem *entries = (gen6_pte_t __iomem *)ggtt->gsm; unsigned int i = vma->node.start >> PAGE_SHIFT; struct sgt_iter iter; dma_addr_t addr; for_each_sgt_dma(addr, iter, vma->pages) iowrite32(vm->pte_encode(addr, level, flags), &entries[i++]); /* * We want to flush the TLBs only after we're certain all the PTE * updates have finished. */ ggtt->invalidate(vm->i915); } static void nop_clear_range(struct i915_address_space *vm, u64 start, u64 length) { } static void gen8_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; const gen8_pte_t scratch_pte = gen8_pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); gen8_pte_t __iomem *gtt_base = (gen8_pte_t __iomem *)ggtt->gsm + first_entry; const int max_entries = ggtt_total_entries(ggtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; for (i = 0; i < num_entries; i++) gen8_set_pte(>t_base[i], scratch_pte); } static void bxt_vtd_ggtt_wa(struct i915_address_space *vm) { struct drm_i915_private *dev_priv = vm->i915; /* * Make sure the internal GAM fifo has been cleared of all GTT * writes before exiting stop_machine(). This guarantees that * any aperture accesses waiting to start in another process * cannot back up behind the GTT writes causing a hang. * The register can be any arbitrary GAM register. */ POSTING_READ(GFX_FLSH_CNTL_GEN6); } struct insert_page { struct i915_address_space *vm; dma_addr_t addr; u64 offset; enum i915_cache_level level; }; static int bxt_vtd_ggtt_insert_page__cb(void *_arg) { struct insert_page *arg = _arg; gen8_ggtt_insert_page(arg->vm, arg->addr, arg->offset, arg->level, 0); bxt_vtd_ggtt_wa(arg->vm); return 0; } static void bxt_vtd_ggtt_insert_page__BKL(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level level, u32 unused) { struct insert_page arg = { vm, addr, offset, level }; stop_machine(bxt_vtd_ggtt_insert_page__cb, &arg, NULL); } struct insert_entries { struct i915_address_space *vm; struct i915_vma *vma; enum i915_cache_level level; u32 flags; }; static int bxt_vtd_ggtt_insert_entries__cb(void *_arg) { struct insert_entries *arg = _arg; gen8_ggtt_insert_entries(arg->vm, arg->vma, arg->level, arg->flags); bxt_vtd_ggtt_wa(arg->vm); return 0; } static void bxt_vtd_ggtt_insert_entries__BKL(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level level, u32 flags) { struct insert_entries arg = { vm, vma, level, flags }; stop_machine(bxt_vtd_ggtt_insert_entries__cb, &arg, NULL); } struct clear_range { struct i915_address_space *vm; u64 start; u64 length; }; static int bxt_vtd_ggtt_clear_range__cb(void *_arg) { struct clear_range *arg = _arg; gen8_ggtt_clear_range(arg->vm, arg->start, arg->length); bxt_vtd_ggtt_wa(arg->vm); return 0; } static void bxt_vtd_ggtt_clear_range__BKL(struct i915_address_space *vm, u64 start, u64 length) { struct clear_range arg = { vm, start, length }; stop_machine(bxt_vtd_ggtt_clear_range__cb, &arg, NULL); } static void gen6_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; gen6_pte_t scratch_pte, __iomem *gtt_base = (gen6_pte_t __iomem *)ggtt->gsm + first_entry; const int max_entries = ggtt_total_entries(ggtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = vm->pte_encode(vm->scratch_page.daddr, I915_CACHE_LLC, 0); for (i = 0; i < num_entries; i++) iowrite32(scratch_pte, >t_base[i]); } static void i915_ggtt_insert_page(struct i915_address_space *vm, dma_addr_t addr, u64 offset, enum i915_cache_level cache_level, u32 unused) { unsigned int flags = (cache_level == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; intel_gtt_insert_page(addr, offset >> PAGE_SHIFT, flags); } static void i915_ggtt_insert_entries(struct i915_address_space *vm, struct i915_vma *vma, enum i915_cache_level cache_level, u32 unused) { unsigned int flags = (cache_level == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; intel_gtt_insert_sg_entries(vma->pages, vma->node.start >> PAGE_SHIFT, flags); } static void i915_ggtt_clear_range(struct i915_address_space *vm, u64 start, u64 length) { intel_gtt_clear_range(start >> PAGE_SHIFT, length >> PAGE_SHIFT); } static int ggtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct drm_i915_private *i915 = vma->vm->i915; struct drm_i915_gem_object *obj = vma->obj; u32 pte_flags; /* Applicable to VLV (gen8+ do not support RO in the GGTT) */ pte_flags = 0; if (i915_gem_object_is_readonly(obj)) pte_flags |= PTE_READ_ONLY; intel_runtime_pm_get(i915); vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); intel_runtime_pm_put(i915); vma->page_sizes.gtt = I915_GTT_PAGE_SIZE; /* * Without aliasing PPGTT there's no difference between * GLOBAL/LOCAL_BIND, it's all the same ptes. Hence unconditionally * upgrade to both bound if we bind either to avoid double-binding. */ vma->flags |= I915_VMA_GLOBAL_BIND | I915_VMA_LOCAL_BIND; return 0; } static void ggtt_unbind_vma(struct i915_vma *vma) { struct drm_i915_private *i915 = vma->vm->i915; intel_runtime_pm_get(i915); vma->vm->clear_range(vma->vm, vma->node.start, vma->size); intel_runtime_pm_put(i915); } static int aliasing_gtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct drm_i915_private *i915 = vma->vm->i915; u32 pte_flags; int ret; /* Currently applicable only to VLV */ pte_flags = 0; if (i915_gem_object_is_readonly(vma->obj)) pte_flags |= PTE_READ_ONLY; if (flags & I915_VMA_LOCAL_BIND) { struct i915_hw_ppgtt *appgtt = i915->mm.aliasing_ppgtt; if (!(vma->flags & I915_VMA_LOCAL_BIND)) { ret = appgtt->vm.allocate_va_range(&appgtt->vm, vma->node.start, vma->size); if (ret) return ret; } appgtt->vm.insert_entries(&appgtt->vm, vma, cache_level, pte_flags); } if (flags & I915_VMA_GLOBAL_BIND) { intel_runtime_pm_get(i915); vma->vm->insert_entries(vma->vm, vma, cache_level, pte_flags); intel_runtime_pm_put(i915); } return 0; } static void aliasing_gtt_unbind_vma(struct i915_vma *vma) { struct drm_i915_private *i915 = vma->vm->i915; if (vma->flags & I915_VMA_GLOBAL_BIND) { intel_runtime_pm_get(i915); vma->vm->clear_range(vma->vm, vma->node.start, vma->size); intel_runtime_pm_put(i915); } if (vma->flags & I915_VMA_LOCAL_BIND) { struct i915_address_space *vm = &i915->mm.aliasing_ppgtt->vm; vm->clear_range(vm, vma->node.start, vma->size); } } void i915_gem_gtt_finish_pages(struct drm_i915_gem_object *obj, struct sg_table *pages) { struct drm_i915_private *dev_priv = to_i915(obj->base.dev); struct device *kdev = &dev_priv->drm.pdev->dev; struct i915_ggtt *ggtt = &dev_priv->ggtt; if (unlikely(ggtt->do_idle_maps)) { if (i915_gem_wait_for_idle(dev_priv, 0, MAX_SCHEDULE_TIMEOUT)) { DRM_ERROR("Failed to wait for idle; VT'd may hang.\n"); /* Wait a bit, in hopes it avoids the hang */ udelay(10); } } dma_unmap_sg(kdev, pages->sgl, pages->nents, PCI_DMA_BIDIRECTIONAL); } static int ggtt_set_pages(struct i915_vma *vma) { int ret; GEM_BUG_ON(vma->pages); ret = i915_get_ggtt_vma_pages(vma); if (ret) return ret; vma->page_sizes = vma->obj->mm.page_sizes; return 0; } static void i915_gtt_color_adjust(const struct drm_mm_node *node, unsigned long color, u64 *start, u64 *end) { if (node->allocated && node->color != color) *start += I915_GTT_PAGE_SIZE; /* Also leave a space between the unallocated reserved node after the * GTT and any objects within the GTT, i.e. we use the color adjustment * to insert a guard page to prevent prefetches crossing over the * GTT boundary. */ node = list_next_entry(node, node_list); if (node->color != color) *end -= I915_GTT_PAGE_SIZE; } int i915_gem_init_aliasing_ppgtt(struct drm_i915_private *i915) { struct i915_ggtt *ggtt = &i915->ggtt; struct i915_hw_ppgtt *ppgtt; int err; ppgtt = i915_ppgtt_create(i915, ERR_PTR(-EPERM)); if (IS_ERR(ppgtt)) return PTR_ERR(ppgtt); if (GEM_WARN_ON(ppgtt->vm.total < ggtt->vm.total)) { err = -ENODEV; goto err_ppgtt; } /* * Note we only pre-allocate as far as the end of the global * GTT. On 48b / 4-level page-tables, the difference is very, * very significant! We have to preallocate as GVT/vgpu does * not like the page directory disappearing. */ err = ppgtt->vm.allocate_va_range(&ppgtt->vm, 0, ggtt->vm.total); if (err) goto err_ppgtt; i915->mm.aliasing_ppgtt = ppgtt; GEM_BUG_ON(ggtt->vm.vma_ops.bind_vma != ggtt_bind_vma); ggtt->vm.vma_ops.bind_vma = aliasing_gtt_bind_vma; GEM_BUG_ON(ggtt->vm.vma_ops.unbind_vma != ggtt_unbind_vma); ggtt->vm.vma_ops.unbind_vma = aliasing_gtt_unbind_vma; return 0; err_ppgtt: i915_ppgtt_put(ppgtt); return err; } void i915_gem_fini_aliasing_ppgtt(struct drm_i915_private *i915) { struct i915_ggtt *ggtt = &i915->ggtt; struct i915_hw_ppgtt *ppgtt; ppgtt = fetch_and_zero(&i915->mm.aliasing_ppgtt); if (!ppgtt) return; i915_ppgtt_put(ppgtt); ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; } int i915_gem_init_ggtt(struct drm_i915_private *dev_priv) { /* Let GEM Manage all of the aperture. * * However, leave one page at the end still bound to the scratch page. * There are a number of places where the hardware apparently prefetches * past the end of the object, and we've seen multiple hangs with the * GPU head pointer stuck in a batchbuffer bound at the last page of the * aperture. One page should be enough to keep any prefetching inside * of the aperture. */ struct i915_ggtt *ggtt = &dev_priv->ggtt; unsigned long hole_start, hole_end; struct drm_mm_node *entry; int ret; ret = intel_vgt_balloon(dev_priv); if (ret) return ret; /* Reserve a mappable slot for our lockless error capture */ ret = drm_mm_insert_node_in_range(&ggtt->vm.mm, &ggtt->error_capture, PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE, 0, ggtt->mappable_end, DRM_MM_INSERT_LOW); if (ret) return ret; /* Clear any non-preallocated blocks */ drm_mm_for_each_hole(entry, &ggtt->vm.mm, hole_start, hole_end) { DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", hole_start, hole_end); ggtt->vm.clear_range(&ggtt->vm, hole_start, hole_end - hole_start); } /* And finally clear the reserved guard page */ ggtt->vm.clear_range(&ggtt->vm, ggtt->vm.total - PAGE_SIZE, PAGE_SIZE); if (USES_PPGTT(dev_priv) && !USES_FULL_PPGTT(dev_priv)) { ret = i915_gem_init_aliasing_ppgtt(dev_priv); if (ret) goto err; } return 0; err: drm_mm_remove_node(&ggtt->error_capture); return ret; } /** * i915_ggtt_cleanup_hw - Clean up GGTT hardware initialization * @dev_priv: i915 device */ void i915_ggtt_cleanup_hw(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; struct i915_vma *vma, *vn; struct pagevec *pvec; ggtt->vm.closed = true; mutex_lock(&dev_priv->drm.struct_mutex); i915_gem_fini_aliasing_ppgtt(dev_priv); GEM_BUG_ON(!list_empty(&ggtt->vm.active_list)); list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) WARN_ON(i915_vma_unbind(vma)); if (drm_mm_node_allocated(&ggtt->error_capture)) drm_mm_remove_node(&ggtt->error_capture); if (drm_mm_initialized(&ggtt->vm.mm)) { intel_vgt_deballoon(dev_priv); i915_address_space_fini(&ggtt->vm); } ggtt->vm.cleanup(&ggtt->vm); pvec = &dev_priv->mm.wc_stash.pvec; if (pvec->nr) { set_pages_array_wb(pvec->pages, pvec->nr); __pagevec_release(pvec); } mutex_unlock(&dev_priv->drm.struct_mutex); arch_phys_wc_del(ggtt->mtrr); io_mapping_fini(&ggtt->iomap); i915_gem_cleanup_stolen(&dev_priv->drm); } static unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; return snb_gmch_ctl << 20; } static unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; if (bdw_gmch_ctl) bdw_gmch_ctl = 1 << bdw_gmch_ctl; #ifdef CONFIG_X86_32 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * I915_GTT_PAGE_SIZE */ if (bdw_gmch_ctl > 4) bdw_gmch_ctl = 4; #endif return bdw_gmch_ctl << 20; } static unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) { gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; gmch_ctrl &= SNB_GMCH_GGMS_MASK; if (gmch_ctrl) return 1 << (20 + gmch_ctrl); return 0; } static int ggtt_probe_common(struct i915_ggtt *ggtt, u64 size) { struct drm_i915_private *dev_priv = ggtt->vm.i915; struct pci_dev *pdev = dev_priv->drm.pdev; phys_addr_t phys_addr; int ret; /* For Modern GENs the PTEs and register space are split in the BAR */ phys_addr = pci_resource_start(pdev, 0) + pci_resource_len(pdev, 0) / 2; /* * On BXT+/CNL+ writes larger than 64 bit to the GTT pagetable range * will be dropped. For WC mappings in general we have 64 byte burst * writes when the WC buffer is flushed, so we can't use it, but have to * resort to an uncached mapping. The WC issue is easily caught by the * readback check when writing GTT PTE entries. */ if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) ggtt->gsm = ioremap_nocache(phys_addr, size); else ggtt->gsm = ioremap_wc(phys_addr, size); if (!ggtt->gsm) { DRM_ERROR("Failed to map the ggtt page table\n"); return -ENOMEM; } ret = setup_scratch_page(&ggtt->vm, GFP_DMA32); if (ret) { DRM_ERROR("Scratch setup failed\n"); /* iounmap will also get called at remove, but meh */ iounmap(ggtt->gsm); return ret; } return 0; } static struct intel_ppat_entry * __alloc_ppat_entry(struct intel_ppat *ppat, unsigned int index, u8 value) { struct intel_ppat_entry *entry = &ppat->entries[index]; GEM_BUG_ON(index >= ppat->max_entries); GEM_BUG_ON(test_bit(index, ppat->used)); entry->ppat = ppat; entry->value = value; kref_init(&entry->ref); set_bit(index, ppat->used); set_bit(index, ppat->dirty); return entry; } static void __free_ppat_entry(struct intel_ppat_entry *entry) { struct intel_ppat *ppat = entry->ppat; unsigned int index = entry - ppat->entries; GEM_BUG_ON(index >= ppat->max_entries); GEM_BUG_ON(!test_bit(index, ppat->used)); entry->value = ppat->clear_value; clear_bit(index, ppat->used); set_bit(index, ppat->dirty); } /** * intel_ppat_get - get a usable PPAT entry * @i915: i915 device instance * @value: the PPAT value required by the caller * * The function tries to search if there is an existing PPAT entry which * matches with the required value. If perfectly matched, the existing PPAT * entry will be used. If only partially matched, it will try to check if * there is any available PPAT index. If yes, it will allocate a new PPAT * index for the required entry and update the HW. If not, the partially * matched entry will be used. */ const struct intel_ppat_entry * intel_ppat_get(struct drm_i915_private *i915, u8 value) { struct intel_ppat *ppat = &i915->ppat; struct intel_ppat_entry *entry = NULL; unsigned int scanned, best_score; int i; GEM_BUG_ON(!ppat->max_entries); scanned = best_score = 0; for_each_set_bit(i, ppat->used, ppat->max_entries) { unsigned int score; score = ppat->match(ppat->entries[i].value, value); if (score > best_score) { entry = &ppat->entries[i]; if (score == INTEL_PPAT_PERFECT_MATCH) { kref_get(&entry->ref); return entry; } best_score = score; } scanned++; } if (scanned == ppat->max_entries) { if (!entry) return ERR_PTR(-ENOSPC); kref_get(&entry->ref); return entry; } i = find_first_zero_bit(ppat->used, ppat->max_entries); entry = __alloc_ppat_entry(ppat, i, value); ppat->update_hw(i915); return entry; } static void release_ppat(struct kref *kref) { struct intel_ppat_entry *entry = container_of(kref, struct intel_ppat_entry, ref); struct drm_i915_private *i915 = entry->ppat->i915; __free_ppat_entry(entry); entry->ppat->update_hw(i915); } /** * intel_ppat_put - put back the PPAT entry got from intel_ppat_get() * @entry: an intel PPAT entry * * Put back the PPAT entry got from intel_ppat_get(). If the PPAT index of the * entry is dynamically allocated, its reference count will be decreased. Once * the reference count becomes into zero, the PPAT index becomes free again. */ void intel_ppat_put(const struct intel_ppat_entry *entry) { struct intel_ppat *ppat = entry->ppat; unsigned int index = entry - ppat->entries; GEM_BUG_ON(!ppat->max_entries); kref_put(&ppat->entries[index].ref, release_ppat); } static void cnl_private_pat_update_hw(struct drm_i915_private *dev_priv) { struct intel_ppat *ppat = &dev_priv->ppat; int i; for_each_set_bit(i, ppat->dirty, ppat->max_entries) { I915_WRITE(GEN10_PAT_INDEX(i), ppat->entries[i].value); clear_bit(i, ppat->dirty); } } static void bdw_private_pat_update_hw(struct drm_i915_private *dev_priv) { struct intel_ppat *ppat = &dev_priv->ppat; u64 pat = 0; int i; for (i = 0; i < ppat->max_entries; i++) pat |= GEN8_PPAT(i, ppat->entries[i].value); bitmap_clear(ppat->dirty, 0, ppat->max_entries); I915_WRITE(GEN8_PRIVATE_PAT_LO, lower_32_bits(pat)); I915_WRITE(GEN8_PRIVATE_PAT_HI, upper_32_bits(pat)); } static unsigned int bdw_private_pat_match(u8 src, u8 dst) { unsigned int score = 0; enum { AGE_MATCH = BIT(0), TC_MATCH = BIT(1), CA_MATCH = BIT(2), }; /* Cache attribute has to be matched. */ if (GEN8_PPAT_GET_CA(src) != GEN8_PPAT_GET_CA(dst)) return 0; score |= CA_MATCH; if (GEN8_PPAT_GET_TC(src) == GEN8_PPAT_GET_TC(dst)) score |= TC_MATCH; if (GEN8_PPAT_GET_AGE(src) == GEN8_PPAT_GET_AGE(dst)) score |= AGE_MATCH; if (score == (AGE_MATCH | TC_MATCH | CA_MATCH)) return INTEL_PPAT_PERFECT_MATCH; return score; } static unsigned int chv_private_pat_match(u8 src, u8 dst) { return (CHV_PPAT_GET_SNOOP(src) == CHV_PPAT_GET_SNOOP(dst)) ? INTEL_PPAT_PERFECT_MATCH : 0; } static void cnl_setup_private_ppat(struct intel_ppat *ppat) { ppat->max_entries = 8; ppat->update_hw = cnl_private_pat_update_hw; ppat->match = bdw_private_pat_match; ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); } /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability * bits. When using advanced contexts each context stores its own PAT, but * writing this data shouldn't be harmful even in those cases. */ static void bdw_setup_private_ppat(struct intel_ppat *ppat) { ppat->max_entries = 8; ppat->update_hw = bdw_private_pat_update_hw; ppat->match = bdw_private_pat_match; ppat->clear_value = GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3); if (!USES_PPGTT(ppat->i915)) { /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, * so RTL will always use the value corresponding to * pat_sel = 000". * So let's disable cache for GGTT to avoid screen corruptions. * MOCS still can be used though. * - System agent ggtt writes (i.e. cpu gtt mmaps) already work * before this patch, i.e. the same uncached + snooping access * like on gen6/7 seems to be in effect. * - So this just fixes blitter/render access. Again it looks * like it's not just uncached access, but uncached + snooping. * So we can still hold onto all our assumptions wrt cpu * clflushing on LLC machines. */ __alloc_ppat_entry(ppat, 0, GEN8_PPAT_UC); return; } __alloc_ppat_entry(ppat, 0, GEN8_PPAT_WB | GEN8_PPAT_LLC); /* for normal objects, no eLLC */ __alloc_ppat_entry(ppat, 1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC); /* for something pointing to ptes? */ __alloc_ppat_entry(ppat, 2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC); /* for scanout with eLLC */ __alloc_ppat_entry(ppat, 3, GEN8_PPAT_UC); /* Uncached objects, mostly for scanout */ __alloc_ppat_entry(ppat, 4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)); __alloc_ppat_entry(ppat, 5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)); __alloc_ppat_entry(ppat, 6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)); __alloc_ppat_entry(ppat, 7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); } static void chv_setup_private_ppat(struct intel_ppat *ppat) { ppat->max_entries = 8; ppat->update_hw = bdw_private_pat_update_hw; ppat->match = chv_private_pat_match; ppat->clear_value = CHV_PPAT_SNOOP; /* * Map WB on BDW to snooped on CHV. * * Only the snoop bit has meaning for CHV, the rest is * ignored. * * The hardware will never snoop for certain types of accesses: * - CPU GTT (GMADR->GGTT->no snoop->memory) * - PPGTT page tables * - some other special cycles * * As with BDW, we also need to consider the following for GT accesses: * "For GGTT, there is NO pat_sel[2:0] from the entry, * so RTL will always use the value corresponding to * pat_sel = 000". * Which means we must set the snoop bit in PAT entry 0 * in order to keep the global status page working. */ __alloc_ppat_entry(ppat, 0, CHV_PPAT_SNOOP); __alloc_ppat_entry(ppat, 1, 0); __alloc_ppat_entry(ppat, 2, 0); __alloc_ppat_entry(ppat, 3, 0); __alloc_ppat_entry(ppat, 4, CHV_PPAT_SNOOP); __alloc_ppat_entry(ppat, 5, CHV_PPAT_SNOOP); __alloc_ppat_entry(ppat, 6, CHV_PPAT_SNOOP); __alloc_ppat_entry(ppat, 7, CHV_PPAT_SNOOP); } static void gen6_gmch_remove(struct i915_address_space *vm) { struct i915_ggtt *ggtt = i915_vm_to_ggtt(vm); iounmap(ggtt->gsm); cleanup_scratch_page(vm); } static void setup_private_pat(struct drm_i915_private *dev_priv) { struct intel_ppat *ppat = &dev_priv->ppat; int i; ppat->i915 = dev_priv; if (INTEL_GEN(dev_priv) >= 10) cnl_setup_private_ppat(ppat); else if (IS_CHERRYVIEW(dev_priv) || IS_GEN9_LP(dev_priv)) chv_setup_private_ppat(ppat); else bdw_setup_private_ppat(ppat); GEM_BUG_ON(ppat->max_entries > INTEL_MAX_PPAT_ENTRIES); for_each_clear_bit(i, ppat->used, ppat->max_entries) { ppat->entries[i].value = ppat->clear_value; ppat->entries[i].ppat = ppat; set_bit(i, ppat->dirty); } ppat->update_hw(dev_priv); } static int gen8_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *dev_priv = ggtt->vm.i915; struct pci_dev *pdev = dev_priv->drm.pdev; unsigned int size; u16 snb_gmch_ctl; int err; /* TODO: We're not aware of mappable constraints on gen8 yet */ ggtt->gmadr = (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), pci_resource_len(pdev, 2)); ggtt->mappable_end = resource_size(&ggtt->gmadr); err = pci_set_dma_mask(pdev, DMA_BIT_MASK(39)); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(39)); if (err) DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); if (IS_CHERRYVIEW(dev_priv)) size = chv_get_total_gtt_size(snb_gmch_ctl); else size = gen8_get_total_gtt_size(snb_gmch_ctl); ggtt->vm.total = (size / sizeof(gen8_pte_t)) << PAGE_SHIFT; ggtt->vm.cleanup = gen6_gmch_remove; ggtt->vm.insert_page = gen8_ggtt_insert_page; ggtt->vm.clear_range = nop_clear_range; if (!USES_FULL_PPGTT(dev_priv) || intel_scanout_needs_vtd_wa(dev_priv)) ggtt->vm.clear_range = gen8_ggtt_clear_range; ggtt->vm.insert_entries = gen8_ggtt_insert_entries; /* Serialize GTT updates with aperture access on BXT if VT-d is on. */ if (intel_ggtt_update_needs_vtd_wa(dev_priv)) { ggtt->vm.insert_entries = bxt_vtd_ggtt_insert_entries__BKL; ggtt->vm.insert_page = bxt_vtd_ggtt_insert_page__BKL; if (ggtt->vm.clear_range != nop_clear_range) ggtt->vm.clear_range = bxt_vtd_ggtt_clear_range__BKL; } ggtt->invalidate = gen6_ggtt_invalidate; ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; ggtt->vm.vma_ops.set_pages = ggtt_set_pages; ggtt->vm.vma_ops.clear_pages = clear_pages; setup_private_pat(dev_priv); return ggtt_probe_common(ggtt, size); } static int gen6_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *dev_priv = ggtt->vm.i915; struct pci_dev *pdev = dev_priv->drm.pdev; unsigned int size; u16 snb_gmch_ctl; int err; ggtt->gmadr = (struct resource) DEFINE_RES_MEM(pci_resource_start(pdev, 2), pci_resource_len(pdev, 2)); ggtt->mappable_end = resource_size(&ggtt->gmadr); /* 64/512MB is the current min/max we actually know of, but this is just * a coarse sanity check. */ if (ggtt->mappable_end < (64<<20) || ggtt->mappable_end > (512<<20)) { DRM_ERROR("Unknown GMADR size (%pa)\n", &ggtt->mappable_end); return -ENXIO; } err = pci_set_dma_mask(pdev, DMA_BIT_MASK(40)); if (!err) err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(40)); if (err) DRM_ERROR("Can't set DMA mask/consistent mask (%d)\n", err); pci_read_config_word(pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); size = gen6_get_total_gtt_size(snb_gmch_ctl); ggtt->vm.total = (size / sizeof(gen6_pte_t)) << PAGE_SHIFT; ggtt->vm.clear_range = gen6_ggtt_clear_range; ggtt->vm.insert_page = gen6_ggtt_insert_page; ggtt->vm.insert_entries = gen6_ggtt_insert_entries; ggtt->vm.cleanup = gen6_gmch_remove; ggtt->invalidate = gen6_ggtt_invalidate; if (HAS_EDRAM(dev_priv)) ggtt->vm.pte_encode = iris_pte_encode; else if (IS_HASWELL(dev_priv)) ggtt->vm.pte_encode = hsw_pte_encode; else if (IS_VALLEYVIEW(dev_priv)) ggtt->vm.pte_encode = byt_pte_encode; else if (INTEL_GEN(dev_priv) >= 7) ggtt->vm.pte_encode = ivb_pte_encode; else ggtt->vm.pte_encode = snb_pte_encode; ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; ggtt->vm.vma_ops.set_pages = ggtt_set_pages; ggtt->vm.vma_ops.clear_pages = clear_pages; return ggtt_probe_common(ggtt, size); } static void i915_gmch_remove(struct i915_address_space *vm) { intel_gmch_remove(); } static int i915_gmch_probe(struct i915_ggtt *ggtt) { struct drm_i915_private *dev_priv = ggtt->vm.i915; phys_addr_t gmadr_base; int ret; ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->drm.pdev, NULL); if (!ret) { DRM_ERROR("failed to set up gmch\n"); return -EIO; } intel_gtt_get(&ggtt->vm.total, &gmadr_base, &ggtt->mappable_end); ggtt->gmadr = (struct resource) DEFINE_RES_MEM(gmadr_base, ggtt->mappable_end); ggtt->do_idle_maps = needs_idle_maps(dev_priv); ggtt->vm.insert_page = i915_ggtt_insert_page; ggtt->vm.insert_entries = i915_ggtt_insert_entries; ggtt->vm.clear_range = i915_ggtt_clear_range; ggtt->vm.cleanup = i915_gmch_remove; ggtt->invalidate = gmch_ggtt_invalidate; ggtt->vm.vma_ops.bind_vma = ggtt_bind_vma; ggtt->vm.vma_ops.unbind_vma = ggtt_unbind_vma; ggtt->vm.vma_ops.set_pages = ggtt_set_pages; ggtt->vm.vma_ops.clear_pages = clear_pages; if (unlikely(ggtt->do_idle_maps)) DRM_INFO("applying Ironlake quirks for intel_iommu\n"); return 0; } /** * i915_ggtt_probe_hw - Probe GGTT hardware location * @dev_priv: i915 device */ int i915_ggtt_probe_hw(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; int ret; ggtt->vm.i915 = dev_priv; ggtt->vm.dma = &dev_priv->drm.pdev->dev; if (INTEL_GEN(dev_priv) <= 5) ret = i915_gmch_probe(ggtt); else if (INTEL_GEN(dev_priv) < 8) ret = gen6_gmch_probe(ggtt); else ret = gen8_gmch_probe(ggtt); if (ret) return ret; /* Trim the GGTT to fit the GuC mappable upper range (when enabled). * This is easier than doing range restriction on the fly, as we * currently don't have any bits spare to pass in this upper * restriction! */ if (USES_GUC(dev_priv)) { ggtt->vm.total = min_t(u64, ggtt->vm.total, GUC_GGTT_TOP); ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->vm.total); } if ((ggtt->vm.total - 1) >> 32) { DRM_ERROR("We never expected a Global GTT with more than 32bits" " of address space! Found %lldM!\n", ggtt->vm.total >> 20); ggtt->vm.total = 1ULL << 32; ggtt->mappable_end = min_t(u64, ggtt->mappable_end, ggtt->vm.total); } if (ggtt->mappable_end > ggtt->vm.total) { DRM_ERROR("mappable aperture extends past end of GGTT," " aperture=%pa, total=%llx\n", &ggtt->mappable_end, ggtt->vm.total); ggtt->mappable_end = ggtt->vm.total; } /* GMADR is the PCI mmio aperture into the global GTT. */ DRM_DEBUG_DRIVER("GGTT size = %lluM\n", ggtt->vm.total >> 20); DRM_DEBUG_DRIVER("GMADR size = %lluM\n", (u64)ggtt->mappable_end >> 20); DRM_DEBUG_DRIVER("DSM size = %lluM\n", (u64)resource_size(&intel_graphics_stolen_res) >> 20); if (intel_vtd_active()) DRM_INFO("VT-d active for gfx access\n"); return 0; } /** * i915_ggtt_init_hw - Initialize GGTT hardware * @dev_priv: i915 device */ int i915_ggtt_init_hw(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; int ret; stash_init(&dev_priv->mm.wc_stash); /* Note that we use page colouring to enforce a guard page at the * end of the address space. This is required as the CS may prefetch * beyond the end of the batch buffer, across the page boundary, * and beyond the end of the GTT if we do not provide a guard. */ mutex_lock(&dev_priv->drm.struct_mutex); i915_address_space_init(&ggtt->vm, dev_priv); /* Only VLV supports read-only GGTT mappings */ ggtt->vm.has_read_only = IS_VALLEYVIEW(dev_priv); if (!HAS_LLC(dev_priv) && !USES_PPGTT(dev_priv)) ggtt->vm.mm.color_adjust = i915_gtt_color_adjust; mutex_unlock(&dev_priv->drm.struct_mutex); if (!io_mapping_init_wc(&dev_priv->ggtt.iomap, dev_priv->ggtt.gmadr.start, dev_priv->ggtt.mappable_end)) { ret = -EIO; goto out_gtt_cleanup; } ggtt->mtrr = arch_phys_wc_add(ggtt->gmadr.start, ggtt->mappable_end); /* * Initialise stolen early so that we may reserve preallocated * objects for the BIOS to KMS transition. */ ret = i915_gem_init_stolen(dev_priv); if (ret) goto out_gtt_cleanup; return 0; out_gtt_cleanup: ggtt->vm.cleanup(&ggtt->vm); return ret; } int i915_ggtt_enable_hw(struct drm_i915_private *dev_priv) { if (INTEL_GEN(dev_priv) < 6 && !intel_enable_gtt()) return -EIO; return 0; } void i915_ggtt_enable_guc(struct drm_i915_private *i915) { GEM_BUG_ON(i915->ggtt.invalidate != gen6_ggtt_invalidate); i915->ggtt.invalidate = guc_ggtt_invalidate; i915_ggtt_invalidate(i915); } void i915_ggtt_disable_guc(struct drm_i915_private *i915) { /* We should only be called after i915_ggtt_enable_guc() */ GEM_BUG_ON(i915->ggtt.invalidate != guc_ggtt_invalidate); i915->ggtt.invalidate = gen6_ggtt_invalidate; i915_ggtt_invalidate(i915); } void i915_gem_restore_gtt_mappings(struct drm_i915_private *dev_priv) { struct i915_ggtt *ggtt = &dev_priv->ggtt; struct i915_vma *vma, *vn; i915_check_and_clear_faults(dev_priv); /* First fill our portion of the GTT with scratch pages */ ggtt->vm.clear_range(&ggtt->vm, 0, ggtt->vm.total); ggtt->vm.closed = true; /* skip rewriting PTE on VMA unbind */ /* clflush objects bound into the GGTT and rebind them. */ GEM_BUG_ON(!list_empty(&ggtt->vm.active_list)); list_for_each_entry_safe(vma, vn, &ggtt->vm.inactive_list, vm_link) { struct drm_i915_gem_object *obj = vma->obj; if (!(vma->flags & I915_VMA_GLOBAL_BIND)) continue; if (!i915_vma_unbind(vma)) continue; WARN_ON(i915_vma_bind(vma, obj ? obj->cache_level : 0, PIN_UPDATE)); if (obj) WARN_ON(i915_gem_object_set_to_gtt_domain(obj, false)); } ggtt->vm.closed = false; i915_ggtt_invalidate(dev_priv); if (INTEL_GEN(dev_priv) >= 8) { struct intel_ppat *ppat = &dev_priv->ppat; bitmap_set(ppat->dirty, 0, ppat->max_entries); dev_priv->ppat.update_hw(dev_priv); return; } } static struct scatterlist * rotate_pages(const dma_addr_t *in, unsigned int offset, unsigned int width, unsigned int height, unsigned int stride, struct sg_table *st, struct scatterlist *sg) { unsigned int column, row; unsigned int src_idx; for (column = 0; column < width; column++) { src_idx = stride * (height - 1) + column; for (row = 0; row < height; row++) { st->nents++; /* We don't need the pages, but need to initialize * the entries so the sg list can be happily traversed. * The only thing we need are DMA addresses. */ sg_set_page(sg, NULL, I915_GTT_PAGE_SIZE, 0); sg_dma_address(sg) = in[offset + src_idx]; sg_dma_len(sg) = I915_GTT_PAGE_SIZE; sg = sg_next(sg); src_idx -= stride; } } return sg; } static noinline struct sg_table * intel_rotate_pages(struct intel_rotation_info *rot_info, struct drm_i915_gem_object *obj) { const unsigned long n_pages = obj->base.size / I915_GTT_PAGE_SIZE; unsigned int size = intel_rotation_info_size(rot_info); struct sgt_iter sgt_iter; dma_addr_t dma_addr; unsigned long i; dma_addr_t *page_addr_list; struct sg_table *st; struct scatterlist *sg; int ret = -ENOMEM; /* Allocate a temporary list of source pages for random access. */ page_addr_list = kvmalloc_array(n_pages, sizeof(dma_addr_t), GFP_KERNEL); if (!page_addr_list) return ERR_PTR(ret); /* Allocate target SG list. */ st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, size, GFP_KERNEL); if (ret) goto err_sg_alloc; /* Populate source page list from the object. */ i = 0; for_each_sgt_dma(dma_addr, sgt_iter, obj->mm.pages) page_addr_list[i++] = dma_addr; GEM_BUG_ON(i != n_pages); st->nents = 0; sg = st->sgl; for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++) { sg = rotate_pages(page_addr_list, rot_info->plane[i].offset, rot_info->plane[i].width, rot_info->plane[i].height, rot_info->plane[i].stride, st, sg); } kvfree(page_addr_list); return st; err_sg_alloc: kfree(st); err_st_alloc: kvfree(page_addr_list); DRM_DEBUG_DRIVER("Failed to create rotated mapping for object size %zu! (%ux%u tiles, %u pages)\n", obj->base.size, rot_info->plane[0].width, rot_info->plane[0].height, size); return ERR_PTR(ret); } static noinline struct sg_table * intel_partial_pages(const struct i915_ggtt_view *view, struct drm_i915_gem_object *obj) { struct sg_table *st; struct scatterlist *sg, *iter; unsigned int count = view->partial.size; unsigned int offset; int ret = -ENOMEM; st = kmalloc(sizeof(*st), GFP_KERNEL); if (!st) goto err_st_alloc; ret = sg_alloc_table(st, count, GFP_KERNEL); if (ret) goto err_sg_alloc; iter = i915_gem_object_get_sg(obj, view->partial.offset, &offset); GEM_BUG_ON(!iter); sg = st->sgl; st->nents = 0; do { unsigned int len; len = min(iter->length - (offset << PAGE_SHIFT), count << PAGE_SHIFT); sg_set_page(sg, NULL, len, 0); sg_dma_address(sg) = sg_dma_address(iter) + (offset << PAGE_SHIFT); sg_dma_len(sg) = len; st->nents++; count -= len >> PAGE_SHIFT; if (count == 0) { sg_mark_end(sg); return st; } sg = __sg_next(sg); iter = __sg_next(iter); offset = 0; } while (1); err_sg_alloc: kfree(st); err_st_alloc: return ERR_PTR(ret); } static int i915_get_ggtt_vma_pages(struct i915_vma *vma) { int ret; /* The vma->pages are only valid within the lifespan of the borrowed * obj->mm.pages. When the obj->mm.pages sg_table is regenerated, so * must be the vma->pages. A simple rule is that vma->pages must only * be accessed when the obj->mm.pages are pinned. */ GEM_BUG_ON(!i915_gem_object_has_pinned_pages(vma->obj)); switch (vma->ggtt_view.type) { default: GEM_BUG_ON(vma->ggtt_view.type); /* fall through */ case I915_GGTT_VIEW_NORMAL: vma->pages = vma->obj->mm.pages; return 0; case I915_GGTT_VIEW_ROTATED: vma->pages = intel_rotate_pages(&vma->ggtt_view.rotated, vma->obj); break; case I915_GGTT_VIEW_PARTIAL: vma->pages = intel_partial_pages(&vma->ggtt_view, vma->obj); break; } ret = 0; if (unlikely(IS_ERR(vma->pages))) { ret = PTR_ERR(vma->pages); vma->pages = NULL; DRM_ERROR("Failed to get pages for VMA view type %u (%d)!\n", vma->ggtt_view.type, ret); } return ret; } /** * i915_gem_gtt_reserve - reserve a node in an address_space (GTT) * @vm: the &struct i915_address_space * @node: the &struct drm_mm_node (typically i915_vma.mode) * @size: how much space to allocate inside the GTT, * must be #I915_GTT_PAGE_SIZE aligned * @offset: where to insert inside the GTT, * must be #I915_GTT_MIN_ALIGNMENT aligned, and the node * (@offset + @size) must fit within the address space * @color: color to apply to node, if this node is not from a VMA, * color must be #I915_COLOR_UNEVICTABLE * @flags: control search and eviction behaviour * * i915_gem_gtt_reserve() tries to insert the @node at the exact @offset inside * the address space (using @size and @color). If the @node does not fit, it * tries to evict any overlapping nodes from the GTT, including any * neighbouring nodes if the colors do not match (to ensure guard pages between * differing domains). See i915_gem_evict_for_node() for the gory details * on the eviction algorithm. #PIN_NONBLOCK may used to prevent waiting on * evicting active overlapping objects, and any overlapping node that is pinned * or marked as unevictable will also result in failure. * * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if * asked to wait for eviction and interrupted. */ int i915_gem_gtt_reserve(struct i915_address_space *vm, struct drm_mm_node *node, u64 size, u64 offset, unsigned long color, unsigned int flags) { int err; GEM_BUG_ON(!size); GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(!IS_ALIGNED(offset, I915_GTT_MIN_ALIGNMENT)); GEM_BUG_ON(range_overflows(offset, size, vm->total)); GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); GEM_BUG_ON(drm_mm_node_allocated(node)); node->size = size; node->start = offset; node->color = color; err = drm_mm_reserve_node(&vm->mm, node); if (err != -ENOSPC) return err; if (flags & PIN_NOEVICT) return -ENOSPC; err = i915_gem_evict_for_node(vm, node, flags); if (err == 0) err = drm_mm_reserve_node(&vm->mm, node); return err; } static u64 random_offset(u64 start, u64 end, u64 len, u64 align) { u64 range, addr; GEM_BUG_ON(range_overflows(start, len, end)); GEM_BUG_ON(round_up(start, align) > round_down(end - len, align)); range = round_down(end - len, align) - round_up(start, align); if (range) { if (sizeof(unsigned long) == sizeof(u64)) { addr = get_random_long(); } else { addr = get_random_int(); if (range > U32_MAX) { addr <<= 32; addr |= get_random_int(); } } div64_u64_rem(addr, range, &addr); start += addr; } return round_up(start, align); } /** * i915_gem_gtt_insert - insert a node into an address_space (GTT) * @vm: the &struct i915_address_space * @node: the &struct drm_mm_node (typically i915_vma.node) * @size: how much space to allocate inside the GTT, * must be #I915_GTT_PAGE_SIZE aligned * @alignment: required alignment of starting offset, may be 0 but * if specified, this must be a power-of-two and at least * #I915_GTT_MIN_ALIGNMENT * @color: color to apply to node * @start: start of any range restriction inside GTT (0 for all), * must be #I915_GTT_PAGE_SIZE aligned * @end: end of any range restriction inside GTT (U64_MAX for all), * must be #I915_GTT_PAGE_SIZE aligned if not U64_MAX * @flags: control search and eviction behaviour * * i915_gem_gtt_insert() first searches for an available hole into which * is can insert the node. The hole address is aligned to @alignment and * its @size must then fit entirely within the [@start, @end] bounds. The * nodes on either side of the hole must match @color, or else a guard page * will be inserted between the two nodes (or the node evicted). If no * suitable hole is found, first a victim is randomly selected and tested * for eviction, otherwise then the LRU list of objects within the GTT * is scanned to find the first set of replacement nodes to create the hole. * Those old overlapping nodes are evicted from the GTT (and so must be * rebound before any future use). Any node that is currently pinned cannot * be evicted (see i915_vma_pin()). Similar if the node's VMA is currently * active and #PIN_NONBLOCK is specified, that node is also skipped when * searching for an eviction candidate. See i915_gem_evict_something() for * the gory details on the eviction algorithm. * * Returns: 0 on success, -ENOSPC if no suitable hole is found, -EINTR if * asked to wait for eviction and interrupted. */ int i915_gem_gtt_insert(struct i915_address_space *vm, struct drm_mm_node *node, u64 size, u64 alignment, unsigned long color, u64 start, u64 end, unsigned int flags) { enum drm_mm_insert_mode mode; u64 offset; int err; lockdep_assert_held(&vm->i915->drm.struct_mutex); GEM_BUG_ON(!size); GEM_BUG_ON(!IS_ALIGNED(size, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(alignment && !is_power_of_2(alignment)); GEM_BUG_ON(alignment && !IS_ALIGNED(alignment, I915_GTT_MIN_ALIGNMENT)); GEM_BUG_ON(start >= end); GEM_BUG_ON(start > 0 && !IS_ALIGNED(start, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(end < U64_MAX && !IS_ALIGNED(end, I915_GTT_PAGE_SIZE)); GEM_BUG_ON(vm == &vm->i915->mm.aliasing_ppgtt->vm); GEM_BUG_ON(drm_mm_node_allocated(node)); if (unlikely(range_overflows(start, size, end))) return -ENOSPC; if (unlikely(round_up(start, alignment) > round_down(end - size, alignment))) return -ENOSPC; mode = DRM_MM_INSERT_BEST; if (flags & PIN_HIGH) mode = DRM_MM_INSERT_HIGHEST; if (flags & PIN_MAPPABLE) mode = DRM_MM_INSERT_LOW; /* We only allocate in PAGE_SIZE/GTT_PAGE_SIZE (4096) chunks, * so we know that we always have a minimum alignment of 4096. * The drm_mm range manager is optimised to return results * with zero alignment, so where possible use the optimal * path. */ BUILD_BUG_ON(I915_GTT_MIN_ALIGNMENT > I915_GTT_PAGE_SIZE); if (alignment <= I915_GTT_MIN_ALIGNMENT) alignment = 0; err = drm_mm_insert_node_in_range(&vm->mm, node, size, alignment, color, start, end, mode); if (err != -ENOSPC) return err; if (mode & DRM_MM_INSERT_ONCE) { err = drm_mm_insert_node_in_range(&vm->mm, node, size, alignment, color, start, end, DRM_MM_INSERT_BEST); if (err != -ENOSPC) return err; } if (flags & PIN_NOEVICT) return -ENOSPC; /* No free space, pick a slot at random. * * There is a pathological case here using a GTT shared between * mmap and GPU (i.e. ggtt/aliasing_ppgtt but not full-ppgtt): * * |<-- 256 MiB aperture -->||<-- 1792 MiB unmappable -->| * (64k objects) (448k objects) * * Now imagine that the eviction LRU is ordered top-down (just because * pathology meets real life), and that we need to evict an object to * make room inside the aperture. The eviction scan then has to walk * the 448k list before it finds one within range. And now imagine that * it has to search for a new hole between every byte inside the memcpy, * for several simultaneous clients. * * On a full-ppgtt system, if we have run out of available space, there * will be lots and lots of objects in the eviction list! Again, * searching that LRU list may be slow if we are also applying any * range restrictions (e.g. restriction to low 4GiB) and so, for * simplicity and similarilty between different GTT, try the single * random replacement first. */ offset = random_offset(start, end, size, alignment ?: I915_GTT_MIN_ALIGNMENT); err = i915_gem_gtt_reserve(vm, node, size, offset, color, flags); if (err != -ENOSPC) return err; /* Randomly selected placement is pinned, do a search */ err = i915_gem_evict_something(vm, size, alignment, color, start, end, flags); if (err) return err; return drm_mm_insert_node_in_range(&vm->mm, node, size, alignment, color, start, end, DRM_MM_INSERT_EVICT); } #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) #include "selftests/mock_gtt.c" #include "selftests/i915_gem_gtt.c" #endif |