Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 | /* * Copyright © 2010 Daniel Vetter * Copyright © 2011-2014 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. * */ #include <linux/seq_file.h> #include <drm/drmP.h> #include <drm/i915_drm.h> #include "i915_drv.h" #include "i915_trace.h" #include "intel_drv.h" static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv); static void chv_setup_private_ppat(struct drm_i915_private *dev_priv); bool intel_enable_ppgtt(struct drm_device *dev, bool full) { if (i915.enable_ppgtt == 0) return false; if (i915.enable_ppgtt == 1 && full) return false; return true; } static int sanitize_enable_ppgtt(struct drm_device *dev, int enable_ppgtt) { if (enable_ppgtt == 0 || !HAS_ALIASING_PPGTT(dev)) return 0; if (enable_ppgtt == 1) return 1; if (enable_ppgtt == 2 && HAS_PPGTT(dev)) return 2; #ifdef CONFIG_INTEL_IOMMU /* Disable ppgtt on SNB if VT-d is on. */ if (INTEL_INFO(dev)->gen == 6 && intel_iommu_gfx_mapped) { DRM_INFO("Disabling PPGTT because VT-d is on\n"); return 0; } #endif /* Early VLV doesn't have this */ if (IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && dev->pdev->revision < 0xb) { DRM_DEBUG_DRIVER("disabling PPGTT on pre-B3 step VLV\n"); return 0; } return HAS_ALIASING_PPGTT(dev) ? 1 : 0; } static void ppgtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags); static void ppgtt_unbind_vma(struct i915_vma *vma); static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt); static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid) { gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0; pte |= addr; switch (level) { case I915_CACHE_NONE: pte |= PPAT_UNCACHED_INDEX; break; case I915_CACHE_WT: pte |= PPAT_DISPLAY_ELLC_INDEX; break; default: pte |= PPAT_CACHED_INDEX; break; } return pte; } static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev, dma_addr_t addr, enum i915_cache_level level) { gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW; pde |= addr; if (level != I915_CACHE_NONE) pde |= PPAT_CACHED_PDE_INDEX; else pde |= PPAT_UNCACHED_INDEX; return pde; } static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid, u32 unused) { gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= GEN6_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_L3_LLC: case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: WARN_ON(1); } return pte; } static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid, u32 unused) { gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= GEN6_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_L3_LLC: pte |= GEN7_PTE_CACHE_L3_LLC; break; case I915_CACHE_LLC: pte |= GEN6_PTE_CACHE_LLC; break; case I915_CACHE_NONE: pte |= GEN6_PTE_UNCACHED; break; default: WARN_ON(1); } return pte; } static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid, u32 flags) { gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= GEN6_PTE_ADDR_ENCODE(addr); /* Mark the page as writeable. Other platforms don't have a * setting for read-only/writable, so this matches that behavior. */ if (!(flags & PTE_READ_ONLY)) pte |= BYT_PTE_WRITEABLE; if (level != I915_CACHE_NONE) pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES; return pte; } static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid, u32 unused) { gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= HSW_PTE_ADDR_ENCODE(addr); if (level != I915_CACHE_NONE) pte |= HSW_WB_LLC_AGE3; return pte; } static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr, enum i915_cache_level level, bool valid, u32 unused) { gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0; pte |= HSW_PTE_ADDR_ENCODE(addr); switch (level) { case I915_CACHE_NONE: break; case I915_CACHE_WT: pte |= HSW_WT_ELLC_LLC_AGE3; break; default: pte |= HSW_WB_ELLC_LLC_AGE3; break; } return pte; } /* Broadwell Page Directory Pointer Descriptors */ static int gen8_write_pdp(struct intel_engine_cs *ring, unsigned entry, uint64_t val, bool synchronous) { struct drm_i915_private *dev_priv = ring->dev->dev_private; int ret; BUG_ON(entry >= 4); if (synchronous) { I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32); I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val); return 0; } ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry)); intel_ring_emit(ring, (u32)(val >> 32)); intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1)); intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry)); intel_ring_emit(ring, (u32)(val)); intel_ring_advance(ring); return 0; } static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt, struct intel_engine_cs *ring, bool synchronous) { int i, ret; /* bit of a hack to find the actual last used pd */ int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE; for (i = used_pd - 1; i >= 0; i--) { dma_addr_t addr = ppgtt->pd_dma_addr[i]; ret = gen8_write_pdp(ring, i, addr, synchronous); if (ret) return ret; } return 0; } static void gen8_ppgtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length, bool use_scratch) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); gen8_gtt_pte_t *pt_vaddr, scratch_pte; unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK; unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK; unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK; unsigned num_entries = length >> PAGE_SHIFT; unsigned last_pte, i; scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr, I915_CACHE_LLC, use_scratch); while (num_entries) { struct page *page_table = ppgtt->gen8_pt_pages[pdpe][pde]; last_pte = pte + num_entries; if (last_pte > GEN8_PTES_PER_PAGE) last_pte = GEN8_PTES_PER_PAGE; pt_vaddr = kmap_atomic(page_table); for (i = pte; i < last_pte; i++) { pt_vaddr[i] = scratch_pte; num_entries--; } if (!HAS_LLC(ppgtt->base.dev)) drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); kunmap_atomic(pt_vaddr); pte = 0; if (++pde == GEN8_PDES_PER_PAGE) { pdpe++; pde = 0; } } } static void gen8_ppgtt_insert_entries(struct i915_address_space *vm, struct sg_table *pages, uint64_t start, enum i915_cache_level cache_level, u32 unused) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); gen8_gtt_pte_t *pt_vaddr; unsigned pdpe = start >> GEN8_PDPE_SHIFT & GEN8_PDPE_MASK; unsigned pde = start >> GEN8_PDE_SHIFT & GEN8_PDE_MASK; unsigned pte = start >> GEN8_PTE_SHIFT & GEN8_PTE_MASK; struct sg_page_iter sg_iter; pt_vaddr = NULL; for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { if (WARN_ON(pdpe >= GEN8_LEGACY_PDPS)) break; if (pt_vaddr == NULL) pt_vaddr = kmap_atomic(ppgtt->gen8_pt_pages[pdpe][pde]); pt_vaddr[pte] = gen8_pte_encode(sg_page_iter_dma_address(&sg_iter), cache_level, true); if (++pte == GEN8_PTES_PER_PAGE) { if (!HAS_LLC(ppgtt->base.dev)) drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); kunmap_atomic(pt_vaddr); pt_vaddr = NULL; if (++pde == GEN8_PDES_PER_PAGE) { pdpe++; pde = 0; } pte = 0; } } if (pt_vaddr) { if (!HAS_LLC(ppgtt->base.dev)) drm_clflush_virt_range(pt_vaddr, PAGE_SIZE); kunmap_atomic(pt_vaddr); } } static void gen8_free_page_tables(struct page **pt_pages) { int i; if (pt_pages == NULL) return; for (i = 0; i < GEN8_PDES_PER_PAGE; i++) if (pt_pages[i]) __free_pages(pt_pages[i], 0); } static void gen8_ppgtt_free(const struct i915_hw_ppgtt *ppgtt) { int i; for (i = 0; i < ppgtt->num_pd_pages; i++) { gen8_free_page_tables(ppgtt->gen8_pt_pages[i]); kfree(ppgtt->gen8_pt_pages[i]); kfree(ppgtt->gen8_pt_dma_addr[i]); } __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT)); } static void gen8_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt) { struct pci_dev *hwdev = ppgtt->base.dev->pdev; int i, j; for (i = 0; i < ppgtt->num_pd_pages; i++) { /* TODO: In the future we'll support sparse mappings, so this * will have to change. */ if (!ppgtt->pd_dma_addr[i]) continue; pci_unmap_page(hwdev, ppgtt->pd_dma_addr[i], PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); for (j = 0; j < GEN8_PDES_PER_PAGE; j++) { dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j]; if (addr) pci_unmap_page(hwdev, addr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); } } } static void gen8_ppgtt_cleanup(struct i915_address_space *vm) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); list_del(&vm->global_link); drm_mm_takedown(&vm->mm); gen8_ppgtt_unmap_pages(ppgtt); gen8_ppgtt_free(ppgtt); } static struct page **__gen8_alloc_page_tables(void) { struct page **pt_pages; int i; pt_pages = kcalloc(GEN8_PDES_PER_PAGE, sizeof(struct page *), GFP_KERNEL); if (!pt_pages) return ERR_PTR(-ENOMEM); for (i = 0; i < GEN8_PDES_PER_PAGE; i++) { pt_pages[i] = alloc_page(GFP_KERNEL); if (!pt_pages[i]) goto bail; } return pt_pages; bail: gen8_free_page_tables(pt_pages); kfree(pt_pages); return ERR_PTR(-ENOMEM); } static int gen8_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt, const int max_pdp) { struct page **pt_pages[GEN8_LEGACY_PDPS]; int i, ret; for (i = 0; i < max_pdp; i++) { pt_pages[i] = __gen8_alloc_page_tables(); if (IS_ERR(pt_pages[i])) { ret = PTR_ERR(pt_pages[i]); goto unwind_out; } } /* NB: Avoid touching gen8_pt_pages until last to keep the allocation, * "atomic" - for cleanup purposes. */ for (i = 0; i < max_pdp; i++) ppgtt->gen8_pt_pages[i] = pt_pages[i]; return 0; unwind_out: while (i--) { gen8_free_page_tables(pt_pages[i]); kfree(pt_pages[i]); } return ret; } static int gen8_ppgtt_allocate_dma(struct i915_hw_ppgtt *ppgtt) { int i; for (i = 0; i < ppgtt->num_pd_pages; i++) { ppgtt->gen8_pt_dma_addr[i] = kcalloc(GEN8_PDES_PER_PAGE, sizeof(dma_addr_t), GFP_KERNEL); if (!ppgtt->gen8_pt_dma_addr[i]) return -ENOMEM; } return 0; } static int gen8_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt, const int max_pdp) { ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT)); if (!ppgtt->pd_pages) return -ENOMEM; ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT); BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS); return 0; } static int gen8_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt, const int max_pdp) { int ret; ret = gen8_ppgtt_allocate_page_directories(ppgtt, max_pdp); if (ret) return ret; ret = gen8_ppgtt_allocate_page_tables(ppgtt, max_pdp); if (ret) { __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT)); return ret; } ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE; ret = gen8_ppgtt_allocate_dma(ppgtt); if (ret) gen8_ppgtt_free(ppgtt); return ret; } static int gen8_ppgtt_setup_page_directories(struct i915_hw_ppgtt *ppgtt, const int pd) { dma_addr_t pd_addr; int ret; pd_addr = pci_map_page(ppgtt->base.dev->pdev, &ppgtt->pd_pages[pd], 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pd_addr); if (ret) return ret; ppgtt->pd_dma_addr[pd] = pd_addr; return 0; } static int gen8_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt, const int pd, const int pt) { dma_addr_t pt_addr; struct page *p; int ret; p = ppgtt->gen8_pt_pages[pd][pt]; pt_addr = pci_map_page(ppgtt->base.dev->pdev, p, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); ret = pci_dma_mapping_error(ppgtt->base.dev->pdev, pt_addr); if (ret) return ret; ppgtt->gen8_pt_dma_addr[pd][pt] = pt_addr; return 0; } /** * GEN8 legacy ppgtt programming is accomplished through a max 4 PDP registers * with a net effect resembling a 2-level page table in normal x86 terms. Each * PDP represents 1GB of memory 4 * 512 * 512 * 4096 = 4GB legacy 32b address * space. * * FIXME: split allocation into smaller pieces. For now we only ever do this * once, but with full PPGTT, the multiple contiguous allocations will be bad. * TODO: Do something with the size parameter */ static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size) { const int max_pdp = DIV_ROUND_UP(size, 1 << 30); const int min_pt_pages = GEN8_PDES_PER_PAGE * max_pdp; int i, j, ret; if (size % (1<<30)) DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size); /* 1. Do all our allocations for page directories and page tables. */ ret = gen8_ppgtt_alloc(ppgtt, max_pdp); if (ret) return ret; /* * 2. Create DMA mappings for the page directories and page tables. */ for (i = 0; i < max_pdp; i++) { ret = gen8_ppgtt_setup_page_directories(ppgtt, i); if (ret) goto bail; for (j = 0; j < GEN8_PDES_PER_PAGE; j++) { ret = gen8_ppgtt_setup_page_tables(ppgtt, i, j); if (ret) goto bail; } } /* * 3. Map all the page directory entires to point to the page tables * we've allocated. * * For now, the PPGTT helper functions all require that the PDEs are * plugged in correctly. So we do that now/here. For aliasing PPGTT, we * will never need to touch the PDEs again. */ for (i = 0; i < max_pdp; i++) { gen8_ppgtt_pde_t *pd_vaddr; pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]); for (j = 0; j < GEN8_PDES_PER_PAGE; j++) { dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j]; pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr, I915_CACHE_LLC); } if (!HAS_LLC(ppgtt->base.dev)) drm_clflush_virt_range(pd_vaddr, PAGE_SIZE); kunmap_atomic(pd_vaddr); } ppgtt->enable = gen8_ppgtt_enable; ppgtt->switch_mm = gen8_mm_switch; ppgtt->base.clear_range = gen8_ppgtt_clear_range; ppgtt->base.insert_entries = gen8_ppgtt_insert_entries; ppgtt->base.cleanup = gen8_ppgtt_cleanup; ppgtt->base.start = 0; ppgtt->base.total = ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE * PAGE_SIZE; ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true); DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n", ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp); DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n", ppgtt->num_pd_entries, (ppgtt->num_pd_entries - min_pt_pages) + size % (1<<30)); return 0; bail: gen8_ppgtt_unmap_pages(ppgtt); gen8_ppgtt_free(ppgtt); return ret; } static void gen6_dump_ppgtt(struct i915_hw_ppgtt *ppgtt, struct seq_file *m) { struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private; struct i915_address_space *vm = &ppgtt->base; gen6_gtt_pte_t __iomem *pd_addr; gen6_gtt_pte_t scratch_pte; uint32_t pd_entry; int pte, pde; scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0); pd_addr = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + ppgtt->pd_offset / sizeof(gen6_gtt_pte_t); seq_printf(m, " VM %p (pd_offset %x-%x):\n", vm, ppgtt->pd_offset, ppgtt->pd_offset + ppgtt->num_pd_entries); for (pde = 0; pde < ppgtt->num_pd_entries; pde++) { u32 expected; gen6_gtt_pte_t *pt_vaddr; dma_addr_t pt_addr = ppgtt->pt_dma_addr[pde]; pd_entry = readl(pd_addr + pde); expected = (GEN6_PDE_ADDR_ENCODE(pt_addr) | GEN6_PDE_VALID); if (pd_entry != expected) seq_printf(m, "\tPDE #%d mismatch: Actual PDE: %x Expected PDE: %x\n", pde, pd_entry, expected); seq_printf(m, "\tPDE: %x\n", pd_entry); pt_vaddr = kmap_atomic(ppgtt->pt_pages[pde]); for (pte = 0; pte < I915_PPGTT_PT_ENTRIES; pte+=4) { unsigned long va = (pde * PAGE_SIZE * I915_PPGTT_PT_ENTRIES) + (pte * PAGE_SIZE); int i; bool found = false; for (i = 0; i < 4; i++) if (pt_vaddr[pte + i] != scratch_pte) found = true; if (!found) continue; seq_printf(m, "\t\t0x%lx [%03d,%04d]: =", va, pde, pte); for (i = 0; i < 4; i++) { if (pt_vaddr[pte + i] != scratch_pte) seq_printf(m, " %08x", pt_vaddr[pte + i]); else seq_puts(m, " SCRATCH "); } seq_puts(m, "\n"); } kunmap_atomic(pt_vaddr); } } static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt) { struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private; gen6_gtt_pte_t __iomem *pd_addr; uint32_t pd_entry; int i; WARN_ON(ppgtt->pd_offset & 0x3f); pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm + ppgtt->pd_offset / sizeof(gen6_gtt_pte_t); for (i = 0; i < ppgtt->num_pd_entries; i++) { dma_addr_t pt_addr; pt_addr = ppgtt->pt_dma_addr[i]; pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr); pd_entry |= GEN6_PDE_VALID; writel(pd_entry, pd_addr + i); } readl(pd_addr); } static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt) { BUG_ON(ppgtt->pd_offset & 0x3f); return (ppgtt->pd_offset / 64) << 16; } static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt, struct intel_engine_cs *ring, bool synchronous) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; /* If we're in reset, we can assume the GPU is sufficiently idle to * manually frob these bits. Ideally we could use the ring functions, * except our error handling makes it quite difficult (can't use * intel_ring_begin, ring->flush, or intel_ring_advance) * * FIXME: We should try not to special case reset */ if (synchronous || i915_reset_in_progress(&dev_priv->gpu_error)) { WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt); I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt)); POSTING_READ(RING_PP_DIR_BASE(ring)); return 0; } /* NB: TLBs must be flushed and invalidated before a switch */ ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); if (ret) return ret; ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); intel_ring_emit(ring, RING_PP_DIR_DCLV(ring)); intel_ring_emit(ring, PP_DIR_DCLV_2G); intel_ring_emit(ring, RING_PP_DIR_BASE(ring)); intel_ring_emit(ring, get_pd_offset(ppgtt)); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); return 0; } static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt, struct intel_engine_cs *ring, bool synchronous) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; /* If we're in reset, we can assume the GPU is sufficiently idle to * manually frob these bits. Ideally we could use the ring functions, * except our error handling makes it quite difficult (can't use * intel_ring_begin, ring->flush, or intel_ring_advance) * * FIXME: We should try not to special case reset */ if (synchronous || i915_reset_in_progress(&dev_priv->gpu_error)) { WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt); I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt)); POSTING_READ(RING_PP_DIR_BASE(ring)); return 0; } /* NB: TLBs must be flushed and invalidated before a switch */ ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); if (ret) return ret; ret = intel_ring_begin(ring, 6); if (ret) return ret; intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2)); intel_ring_emit(ring, RING_PP_DIR_DCLV(ring)); intel_ring_emit(ring, PP_DIR_DCLV_2G); intel_ring_emit(ring, RING_PP_DIR_BASE(ring)); intel_ring_emit(ring, get_pd_offset(ppgtt)); intel_ring_emit(ring, MI_NOOP); intel_ring_advance(ring); /* XXX: RCS is the only one to auto invalidate the TLBs? */ if (ring->id != RCS) { ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS); if (ret) return ret; } return 0; } static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt, struct intel_engine_cs *ring, bool synchronous) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; if (!synchronous) return 0; I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G); I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt)); POSTING_READ(RING_PP_DIR_DCLV(ring)); return 0; } static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *ring; int j, ret; for_each_ring(ring, dev_priv, j) { I915_WRITE(RING_MODE_GEN7(ring), _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); /* We promise to do a switch later with FULL PPGTT. If this is * aliasing, this is the one and only switch we'll do */ if (USES_FULL_PPGTT(dev)) continue; ret = ppgtt->switch_mm(ppgtt, ring, true); if (ret) goto err_out; } return 0; err_out: for_each_ring(ring, dev_priv, j) I915_WRITE(RING_MODE_GEN7(ring), _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE)); return ret; } static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *ring; uint32_t ecochk, ecobits; int i; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B); ecochk = I915_READ(GAM_ECOCHK); if (IS_HASWELL(dev)) { ecochk |= ECOCHK_PPGTT_WB_HSW; } else { ecochk |= ECOCHK_PPGTT_LLC_IVB; ecochk &= ~ECOCHK_PPGTT_GFDT_IVB; } I915_WRITE(GAM_ECOCHK, ecochk); for_each_ring(ring, dev_priv, i) { int ret; /* GFX_MODE is per-ring on gen7+ */ I915_WRITE(RING_MODE_GEN7(ring), _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); /* We promise to do a switch later with FULL PPGTT. If this is * aliasing, this is the one and only switch we'll do */ if (USES_FULL_PPGTT(dev)) continue; ret = ppgtt->switch_mm(ppgtt, ring, true); if (ret) return ret; } return 0; } static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *ring; uint32_t ecochk, gab_ctl, ecobits; int i; ecobits = I915_READ(GAC_ECO_BITS); I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT | ECOBITS_PPGTT_CACHE64B); gab_ctl = I915_READ(GAB_CTL); I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT); ecochk = I915_READ(GAM_ECOCHK); I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B); I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE)); for_each_ring(ring, dev_priv, i) { int ret = ppgtt->switch_mm(ppgtt, ring, true); if (ret) return ret; } return 0; } /* PPGTT support for Sandybdrige/Gen6 and later */ static void gen6_ppgtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length, bool use_scratch) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); gen6_gtt_pte_t *pt_vaddr, scratch_pte; unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES; unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES; unsigned last_pte, i; scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true, 0); while (num_entries) { last_pte = first_pte + num_entries; if (last_pte > I915_PPGTT_PT_ENTRIES) last_pte = I915_PPGTT_PT_ENTRIES; pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]); for (i = first_pte; i < last_pte; i++) pt_vaddr[i] = scratch_pte; kunmap_atomic(pt_vaddr); num_entries -= last_pte - first_pte; first_pte = 0; act_pt++; } } static void gen6_ppgtt_insert_entries(struct i915_address_space *vm, struct sg_table *pages, uint64_t start, enum i915_cache_level cache_level, u32 flags) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); gen6_gtt_pte_t *pt_vaddr; unsigned first_entry = start >> PAGE_SHIFT; unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES; unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES; struct sg_page_iter sg_iter; pt_vaddr = NULL; for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) { if (pt_vaddr == NULL) pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]); pt_vaddr[act_pte] = vm->pte_encode(sg_page_iter_dma_address(&sg_iter), cache_level, true, flags); if (++act_pte == I915_PPGTT_PT_ENTRIES) { kunmap_atomic(pt_vaddr); pt_vaddr = NULL; act_pt++; act_pte = 0; } } if (pt_vaddr) kunmap_atomic(pt_vaddr); } static void gen6_ppgtt_unmap_pages(struct i915_hw_ppgtt *ppgtt) { int i; if (ppgtt->pt_dma_addr) { for (i = 0; i < ppgtt->num_pd_entries; i++) pci_unmap_page(ppgtt->base.dev->pdev, ppgtt->pt_dma_addr[i], 4096, PCI_DMA_BIDIRECTIONAL); } } static void gen6_ppgtt_free(struct i915_hw_ppgtt *ppgtt) { int i; kfree(ppgtt->pt_dma_addr); for (i = 0; i < ppgtt->num_pd_entries; i++) __free_page(ppgtt->pt_pages[i]); kfree(ppgtt->pt_pages); } static void gen6_ppgtt_cleanup(struct i915_address_space *vm) { struct i915_hw_ppgtt *ppgtt = container_of(vm, struct i915_hw_ppgtt, base); list_del(&vm->global_link); drm_mm_takedown(&ppgtt->base.mm); drm_mm_remove_node(&ppgtt->node); gen6_ppgtt_unmap_pages(ppgtt); gen6_ppgtt_free(ppgtt); } static int gen6_ppgtt_allocate_page_directories(struct i915_hw_ppgtt *ppgtt) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; bool retried = false; int ret; /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The * allocator works in address space sizes, so it's multiplied by page * size. We allocate at the top of the GTT to avoid fragmentation. */ BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm)); alloc: ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm, &ppgtt->node, GEN6_PD_SIZE, GEN6_PD_ALIGN, 0, 0, dev_priv->gtt.base.total, DRM_MM_TOPDOWN); if (ret == -ENOSPC && !retried) { ret = i915_gem_evict_something(dev, &dev_priv->gtt.base, GEN6_PD_SIZE, GEN6_PD_ALIGN, I915_CACHE_NONE, 0, dev_priv->gtt.base.total, 0); if (ret) return ret; retried = true; goto alloc; } if (ppgtt->node.start < dev_priv->gtt.mappable_end) DRM_DEBUG("Forced to use aperture for PDEs\n"); ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES; return ret; } static int gen6_ppgtt_allocate_page_tables(struct i915_hw_ppgtt *ppgtt) { int i; ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *), GFP_KERNEL); if (!ppgtt->pt_pages) return -ENOMEM; for (i = 0; i < ppgtt->num_pd_entries; i++) { ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL); if (!ppgtt->pt_pages[i]) { gen6_ppgtt_free(ppgtt); return -ENOMEM; } } return 0; } static int gen6_ppgtt_alloc(struct i915_hw_ppgtt *ppgtt) { int ret; ret = gen6_ppgtt_allocate_page_directories(ppgtt); if (ret) return ret; ret = gen6_ppgtt_allocate_page_tables(ppgtt); if (ret) { drm_mm_remove_node(&ppgtt->node); return ret; } ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t), GFP_KERNEL); if (!ppgtt->pt_dma_addr) { drm_mm_remove_node(&ppgtt->node); gen6_ppgtt_free(ppgtt); return -ENOMEM; } return 0; } static int gen6_ppgtt_setup_page_tables(struct i915_hw_ppgtt *ppgtt) { struct drm_device *dev = ppgtt->base.dev; int i; for (i = 0; i < ppgtt->num_pd_entries; i++) { dma_addr_t pt_addr; pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(dev->pdev, pt_addr)) { gen6_ppgtt_unmap_pages(ppgtt); return -EIO; } ppgtt->pt_dma_addr[i] = pt_addr; } return 0; } static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt) { struct drm_device *dev = ppgtt->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; int ret; ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode; if (IS_GEN6(dev)) { ppgtt->enable = gen6_ppgtt_enable; ppgtt->switch_mm = gen6_mm_switch; } else if (IS_HASWELL(dev)) { ppgtt->enable = gen7_ppgtt_enable; ppgtt->switch_mm = hsw_mm_switch; } else if (IS_GEN7(dev)) { ppgtt->enable = gen7_ppgtt_enable; ppgtt->switch_mm = gen7_mm_switch; } else BUG(); ret = gen6_ppgtt_alloc(ppgtt); if (ret) return ret; ret = gen6_ppgtt_setup_page_tables(ppgtt); if (ret) { gen6_ppgtt_free(ppgtt); return ret; } ppgtt->base.clear_range = gen6_ppgtt_clear_range; ppgtt->base.insert_entries = gen6_ppgtt_insert_entries; ppgtt->base.cleanup = gen6_ppgtt_cleanup; ppgtt->base.start = 0; ppgtt->base.total = ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES * PAGE_SIZE; ppgtt->debug_dump = gen6_dump_ppgtt; ppgtt->pd_offset = ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t); ppgtt->base.clear_range(&ppgtt->base, 0, ppgtt->base.total, true); DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n", ppgtt->node.size >> 20, ppgtt->node.start / PAGE_SIZE); return 0; } int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt) { struct drm_i915_private *dev_priv = dev->dev_private; int ret = 0; ppgtt->base.dev = dev; ppgtt->base.scratch = dev_priv->gtt.base.scratch; if (INTEL_INFO(dev)->gen < 8) ret = gen6_ppgtt_init(ppgtt); else if (IS_GEN8(dev)) ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total); else BUG(); if (!ret) { struct drm_i915_private *dev_priv = dev->dev_private; kref_init(&ppgtt->ref); drm_mm_init(&ppgtt->base.mm, ppgtt->base.start, ppgtt->base.total); i915_init_vm(dev_priv, &ppgtt->base); if (INTEL_INFO(dev)->gen < 8) { gen6_write_pdes(ppgtt); DRM_DEBUG("Adding PPGTT at offset %x\n", ppgtt->pd_offset << 10); } } return ret; } static void ppgtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { /* Currently applicable only to VLV */ if (vma->obj->gt_ro) flags |= PTE_READ_ONLY; vma->vm->insert_entries(vma->vm, vma->obj->pages, vma->node.start, cache_level, flags); } static void ppgtt_unbind_vma(struct i915_vma *vma) { vma->vm->clear_range(vma->vm, vma->node.start, vma->obj->base.size, true); } extern int intel_iommu_gfx_mapped; /* Certain Gen5 chipsets require require idling the GPU before * unmapping anything from the GTT when VT-d is enabled. */ static inline bool needs_idle_maps(struct drm_device *dev) { #ifdef CONFIG_INTEL_IOMMU /* Query intel_iommu to see if we need the workaround. Presumably that * was loaded first. */ if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped) return true; #endif return false; } static bool do_idling(struct drm_i915_private *dev_priv) { bool ret = dev_priv->mm.interruptible; if (unlikely(dev_priv->gtt.do_idle_maps)) { dev_priv->mm.interruptible = false; if (i915_gpu_idle(dev_priv->dev)) { DRM_ERROR("Couldn't idle GPU\n"); /* Wait a bit, in hopes it avoids the hang */ udelay(10); } } return ret; } static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible) { if (unlikely(dev_priv->gtt.do_idle_maps)) dev_priv->mm.interruptible = interruptible; } void i915_check_and_clear_faults(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct intel_engine_cs *ring; int i; if (INTEL_INFO(dev)->gen < 6) return; for_each_ring(ring, dev_priv, i) { u32 fault_reg; fault_reg = I915_READ(RING_FAULT_REG(ring)); if (fault_reg & RING_FAULT_VALID) { DRM_DEBUG_DRIVER("Unexpected fault\n" "\tAddr: 0x%08lx\\n" "\tAddress space: %s\n" "\tSource ID: %d\n" "\tType: %d\n", fault_reg & PAGE_MASK, fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT", RING_FAULT_SRCID(fault_reg), RING_FAULT_FAULT_TYPE(fault_reg)); I915_WRITE(RING_FAULT_REG(ring), fault_reg & ~RING_FAULT_VALID); } } POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS])); } static void i915_ggtt_flush(struct drm_i915_private *dev_priv) { if (INTEL_INFO(dev_priv->dev)->gen < 6) { intel_gtt_chipset_flush(); } else { I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } } void i915_gem_suspend_gtt_mappings(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; /* Don't bother messing with faults pre GEN6 as we have little * documentation supporting that it's a good idea. */ if (INTEL_INFO(dev)->gen < 6) return; i915_check_and_clear_faults(dev); dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, dev_priv->gtt.base.start, dev_priv->gtt.base.total, true); i915_ggtt_flush(dev_priv); } void i915_gem_restore_gtt_mappings(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj; struct i915_address_space *vm; i915_check_and_clear_faults(dev); /* First fill our portion of the GTT with scratch pages */ dev_priv->gtt.base.clear_range(&dev_priv->gtt.base, dev_priv->gtt.base.start, dev_priv->gtt.base.total, true); list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { struct i915_vma *vma = i915_gem_obj_to_vma(obj, &dev_priv->gtt.base); if (!vma) continue; i915_gem_clflush_object(obj, obj->pin_display); /* The bind_vma code tries to be smart about tracking mappings. * Unfortunately above, we've just wiped out the mappings * without telling our object about it. So we need to fake it. */ obj->has_global_gtt_mapping = 0; vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND); } if (INTEL_INFO(dev)->gen >= 8) { if (IS_CHERRYVIEW(dev)) chv_setup_private_ppat(dev_priv); else bdw_setup_private_ppat(dev_priv); return; } list_for_each_entry(vm, &dev_priv->vm_list, global_link) { /* TODO: Perhaps it shouldn't be gen6 specific */ if (i915_is_ggtt(vm)) { if (dev_priv->mm.aliasing_ppgtt) gen6_write_pdes(dev_priv->mm.aliasing_ppgtt); continue; } gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base)); } i915_ggtt_flush(dev_priv); } int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj) { if (obj->has_dma_mapping) return 0; if (!dma_map_sg(&obj->base.dev->pdev->dev, obj->pages->sgl, obj->pages->nents, PCI_DMA_BIDIRECTIONAL)) return -ENOSPC; return 0; } static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte) { #ifdef writeq writeq(pte, addr); #else iowrite32((u32)pte, addr); iowrite32(pte >> 32, addr + 4); #endif } static void gen8_ggtt_insert_entries(struct i915_address_space *vm, struct sg_table *st, uint64_t start, enum i915_cache_level level, u32 unused) { struct drm_i915_private *dev_priv = vm->dev->dev_private; unsigned first_entry = start >> PAGE_SHIFT; gen8_gtt_pte_t __iomem *gtt_entries = (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; int i = 0; struct sg_page_iter sg_iter; dma_addr_t addr = 0; /* shut up gcc */ for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { addr = sg_dma_address(sg_iter.sg) + (sg_iter.sg_pgoffset << PAGE_SHIFT); gen8_set_pte(>t_entries[i], gen8_pte_encode(addr, level, true)); i++; } /* * XXX: This serves as a posting read to make sure that the PTE has * actually been updated. There is some concern that even though * registers and PTEs are within the same BAR that they are potentially * of NUMA access patterns. Therefore, even with the way we assume * hardware should work, we must keep this posting read for paranoia. */ if (i != 0) WARN_ON(readq(>t_entries[i-1]) != gen8_pte_encode(addr, level, true)); /* This next bit makes the above posting read even more important. We * want to flush the TLBs only after we're certain all the PTE updates * have finished. */ I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } /* * Binds an object into the global gtt with the specified cache level. The object * will be accessible to the GPU via commands whose operands reference offsets * within the global GTT as well as accessible by the GPU through the GMADR * mapped BAR (dev_priv->mm.gtt->gtt). */ static void gen6_ggtt_insert_entries(struct i915_address_space *vm, struct sg_table *st, uint64_t start, enum i915_cache_level level, u32 flags) { struct drm_i915_private *dev_priv = vm->dev->dev_private; unsigned first_entry = start >> PAGE_SHIFT; gen6_gtt_pte_t __iomem *gtt_entries = (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry; int i = 0; struct sg_page_iter sg_iter; dma_addr_t addr = 0; for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) { addr = sg_page_iter_dma_address(&sg_iter); iowrite32(vm->pte_encode(addr, level, true, flags), >t_entries[i]); i++; } /* XXX: This serves as a posting read to make sure that the PTE has * actually been updated. There is some concern that even though * registers and PTEs are within the same BAR that they are potentially * of NUMA access patterns. Therefore, even with the way we assume * hardware should work, we must keep this posting read for paranoia. */ if (i != 0) { unsigned long gtt = readl(>t_entries[i-1]); WARN_ON(gtt != vm->pte_encode(addr, level, true, flags)); } /* This next bit makes the above posting read even more important. We * want to flush the TLBs only after we're certain all the PTE updates * have finished. */ I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN); POSTING_READ(GFX_FLSH_CNTL_GEN6); } static void gen8_ggtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length, bool use_scratch) { struct drm_i915_private *dev_priv = vm->dev->dev_private; unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; gen8_gtt_pte_t scratch_pte, __iomem *gtt_base = (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = gen8_pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch); for (i = 0; i < num_entries; i++) gen8_set_pte(>t_base[i], scratch_pte); readl(gtt_base); } static void gen6_ggtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length, bool use_scratch) { struct drm_i915_private *dev_priv = vm->dev->dev_private; unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; gen6_gtt_pte_t scratch_pte, __iomem *gtt_base = (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry; const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry; int i; if (WARN(num_entries > max_entries, "First entry = %d; Num entries = %d (max=%d)\n", first_entry, num_entries, max_entries)) num_entries = max_entries; scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch, 0); for (i = 0; i < num_entries; i++) iowrite32(scratch_pte, >t_base[i]); readl(gtt_base); } static void i915_ggtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 unused) { const unsigned long entry = vma->node.start >> PAGE_SHIFT; unsigned int flags = (cache_level == I915_CACHE_NONE) ? AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY; BUG_ON(!i915_is_ggtt(vma->vm)); intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags); vma->obj->has_global_gtt_mapping = 1; } static void i915_ggtt_clear_range(struct i915_address_space *vm, uint64_t start, uint64_t length, bool unused) { unsigned first_entry = start >> PAGE_SHIFT; unsigned num_entries = length >> PAGE_SHIFT; intel_gtt_clear_range(first_entry, num_entries); } static void i915_ggtt_unbind_vma(struct i915_vma *vma) { const unsigned int first = vma->node.start >> PAGE_SHIFT; const unsigned int size = vma->obj->base.size >> PAGE_SHIFT; BUG_ON(!i915_is_ggtt(vma->vm)); vma->obj->has_global_gtt_mapping = 0; intel_gtt_clear_range(first, size); } static void ggtt_bind_vma(struct i915_vma *vma, enum i915_cache_level cache_level, u32 flags) { struct drm_device *dev = vma->vm->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj = vma->obj; /* Currently applicable only to VLV */ if (obj->gt_ro) flags |= PTE_READ_ONLY; /* If there is no aliasing PPGTT, or the caller needs a global mapping, * or we have a global mapping already but the cacheability flags have * changed, set the global PTEs. * * If there is an aliasing PPGTT it is anecdotally faster, so use that * instead if none of the above hold true. * * NB: A global mapping should only be needed for special regions like * "gtt mappable", SNB errata, or if specified via special execbuf * flags. At all other times, the GPU will use the aliasing PPGTT. */ if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) { if (!obj->has_global_gtt_mapping || (cache_level != obj->cache_level)) { vma->vm->insert_entries(vma->vm, obj->pages, vma->node.start, cache_level, flags); obj->has_global_gtt_mapping = 1; } } if (dev_priv->mm.aliasing_ppgtt && (!obj->has_aliasing_ppgtt_mapping || (cache_level != obj->cache_level))) { struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt; appgtt->base.insert_entries(&appgtt->base, vma->obj->pages, vma->node.start, cache_level, flags); vma->obj->has_aliasing_ppgtt_mapping = 1; } } static void ggtt_unbind_vma(struct i915_vma *vma) { struct drm_device *dev = vma->vm->dev; struct drm_i915_private *dev_priv = dev->dev_private; struct drm_i915_gem_object *obj = vma->obj; if (obj->has_global_gtt_mapping) { vma->vm->clear_range(vma->vm, vma->node.start, obj->base.size, true); obj->has_global_gtt_mapping = 0; } if (obj->has_aliasing_ppgtt_mapping) { struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt; appgtt->base.clear_range(&appgtt->base, vma->node.start, obj->base.size, true); obj->has_aliasing_ppgtt_mapping = 0; } } void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj) { struct drm_device *dev = obj->base.dev; struct drm_i915_private *dev_priv = dev->dev_private; bool interruptible; interruptible = do_idling(dev_priv); if (!obj->has_dma_mapping) dma_unmap_sg(&dev->pdev->dev, obj->pages->sgl, obj->pages->nents, PCI_DMA_BIDIRECTIONAL); undo_idling(dev_priv, interruptible); } static void i915_gtt_color_adjust(struct drm_mm_node *node, unsigned long color, unsigned long *start, unsigned long *end) { if (node->color != color) *start += 4096; if (!list_empty(&node->node_list)) { node = list_entry(node->node_list.next, struct drm_mm_node, node_list); if (node->allocated && node->color != color) *end -= 4096; } } void i915_gem_setup_global_gtt(struct drm_device *dev, unsigned long start, unsigned long mappable_end, unsigned long end) { /* Let GEM Manage all of the aperture. * * However, leave one page at the end still bound to the scratch page. * There are a number of places where the hardware apparently prefetches * past the end of the object, and we've seen multiple hangs with the * GPU head pointer stuck in a batchbuffer bound at the last page of the * aperture. One page should be enough to keep any prefetching inside * of the aperture. */ struct drm_i915_private *dev_priv = dev->dev_private; struct i915_address_space *ggtt_vm = &dev_priv->gtt.base; struct drm_mm_node *entry; struct drm_i915_gem_object *obj; unsigned long hole_start, hole_end; BUG_ON(mappable_end > end); /* Subtract the guard page ... */ drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE); if (!HAS_LLC(dev)) dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust; /* Mark any preallocated objects as occupied */ list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) { struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm); int ret; DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n", i915_gem_obj_ggtt_offset(obj), obj->base.size); WARN_ON(i915_gem_obj_ggtt_bound(obj)); ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node); if (ret) DRM_DEBUG_KMS("Reservation failed\n"); obj->has_global_gtt_mapping = 1; } dev_priv->gtt.base.start = start; dev_priv->gtt.base.total = end - start; /* Clear any non-preallocated blocks */ drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) { DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n", hole_start, hole_end); ggtt_vm->clear_range(ggtt_vm, hole_start, hole_end - hole_start, true); } /* And finally clear the reserved guard page */ ggtt_vm->clear_range(ggtt_vm, end - PAGE_SIZE, PAGE_SIZE, true); } void i915_gem_init_global_gtt(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned long gtt_size, mappable_size; gtt_size = dev_priv->gtt.base.total; mappable_size = dev_priv->gtt.mappable_end; i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size); } static int setup_scratch_page(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct page *page; dma_addr_t dma_addr; page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO); if (page == NULL) return -ENOMEM; get_page(page); set_pages_uc(page, 1); #ifdef CONFIG_INTEL_IOMMU dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); if (pci_dma_mapping_error(dev->pdev, dma_addr)) return -EINVAL; #else dma_addr = page_to_phys(page); #endif dev_priv->gtt.base.scratch.page = page; dev_priv->gtt.base.scratch.addr = dma_addr; return 0; } static void teardown_scratch_page(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct page *page = dev_priv->gtt.base.scratch.page; set_pages_wb(page, 1); pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL); put_page(page); __free_page(page); } static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GGMS_MASK; return snb_gmch_ctl << 20; } static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK; if (bdw_gmch_ctl) bdw_gmch_ctl = 1 << bdw_gmch_ctl; #ifdef CONFIG_X86_32 /* Limit 32b platforms to a 2GB GGTT: 4 << 20 / pte size * PAGE_SIZE */ if (bdw_gmch_ctl > 4) bdw_gmch_ctl = 4; #endif return bdw_gmch_ctl << 20; } static inline unsigned int chv_get_total_gtt_size(u16 gmch_ctrl) { gmch_ctrl >>= SNB_GMCH_GGMS_SHIFT; gmch_ctrl &= SNB_GMCH_GGMS_MASK; if (gmch_ctrl) return 1 << (20 + gmch_ctrl); return 0; } static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl) { snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT; snb_gmch_ctl &= SNB_GMCH_GMS_MASK; return snb_gmch_ctl << 25; /* 32 MB units */ } static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl) { bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT; bdw_gmch_ctl &= BDW_GMCH_GMS_MASK; return bdw_gmch_ctl << 25; /* 32 MB units */ } static size_t chv_get_stolen_size(u16 gmch_ctrl) { gmch_ctrl >>= SNB_GMCH_GMS_SHIFT; gmch_ctrl &= SNB_GMCH_GMS_MASK; /* * 0x0 to 0x10: 32MB increments starting at 0MB * 0x11 to 0x16: 4MB increments starting at 8MB * 0x17 to 0x1d: 4MB increments start at 36MB */ if (gmch_ctrl < 0x11) return gmch_ctrl << 25; else if (gmch_ctrl < 0x17) return (gmch_ctrl - 0x11 + 2) << 22; else return (gmch_ctrl - 0x17 + 9) << 22; } static int ggtt_probe_common(struct drm_device *dev, size_t gtt_size) { struct drm_i915_private *dev_priv = dev->dev_private; phys_addr_t gtt_phys_addr; int ret; /* For Modern GENs the PTEs and register space are split in the BAR */ gtt_phys_addr = pci_resource_start(dev->pdev, 0) + (pci_resource_len(dev->pdev, 0) / 2); dev_priv->gtt.gsm = ioremap_wc(gtt_phys_addr, gtt_size); if (!dev_priv->gtt.gsm) { DRM_ERROR("Failed to map the gtt page table\n"); return -ENOMEM; } ret = setup_scratch_page(dev); if (ret) { DRM_ERROR("Scratch setup failed\n"); /* iounmap will also get called at remove, but meh */ iounmap(dev_priv->gtt.gsm); } return ret; } /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability * bits. When using advanced contexts each context stores its own PAT, but * writing this data shouldn't be harmful even in those cases. */ static void bdw_setup_private_ppat(struct drm_i915_private *dev_priv) { uint64_t pat; pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) | /* for normal objects, no eLLC */ GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */ GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */ GEN8_PPAT(3, GEN8_PPAT_UC) | /* Uncached objects, mostly for scanout */ GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) | GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) | GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) | GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3)); if (!USES_PPGTT(dev_priv->dev)) /* Spec: "For GGTT, there is NO pat_sel[2:0] from the entry, * so RTL will always use the value corresponding to * pat_sel = 000". * So let's disable cache for GGTT to avoid screen corruptions. * MOCS still can be used though. * - System agent ggtt writes (i.e. cpu gtt mmaps) already work * before this patch, i.e. the same uncached + snooping access * like on gen6/7 seems to be in effect. * - So this just fixes blitter/render access. Again it looks * like it's not just uncached access, but uncached + snooping. * So we can still hold onto all our assumptions wrt cpu * clflushing on LLC machines. */ pat = GEN8_PPAT(0, GEN8_PPAT_UC); /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b * write would work. */ I915_WRITE(GEN8_PRIVATE_PAT, pat); I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32); } static void chv_setup_private_ppat(struct drm_i915_private *dev_priv) { uint64_t pat; /* * Map WB on BDW to snooped on CHV. * * Only the snoop bit has meaning for CHV, the rest is * ignored. * * Note that the harware enforces snooping for all page * table accesses. The snoop bit is actually ignored for * PDEs. */ pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) | GEN8_PPAT(1, 0) | GEN8_PPAT(2, 0) | GEN8_PPAT(3, 0) | GEN8_PPAT(4, CHV_PPAT_SNOOP) | GEN8_PPAT(5, CHV_PPAT_SNOOP) | GEN8_PPAT(6, CHV_PPAT_SNOOP) | GEN8_PPAT(7, CHV_PPAT_SNOOP); I915_WRITE(GEN8_PRIVATE_PAT, pat); I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32); } static int gen8_gmch_probe(struct drm_device *dev, size_t *gtt_total, size_t *stolen, phys_addr_t *mappable_base, unsigned long *mappable_end) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned int gtt_size; u16 snb_gmch_ctl; int ret; /* TODO: We're not aware of mappable constraints on gen8 yet */ *mappable_base = pci_resource_start(dev->pdev, 2); *mappable_end = pci_resource_len(dev->pdev, 2); if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39))) pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39)); pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); if (IS_CHERRYVIEW(dev)) { *stolen = chv_get_stolen_size(snb_gmch_ctl); gtt_size = chv_get_total_gtt_size(snb_gmch_ctl); } else { *stolen = gen8_get_stolen_size(snb_gmch_ctl); gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl); } *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT; if (IS_CHERRYVIEW(dev)) chv_setup_private_ppat(dev_priv); else bdw_setup_private_ppat(dev_priv); ret = ggtt_probe_common(dev, gtt_size); dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range; dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries; return ret; } static int gen6_gmch_probe(struct drm_device *dev, size_t *gtt_total, size_t *stolen, phys_addr_t *mappable_base, unsigned long *mappable_end) { struct drm_i915_private *dev_priv = dev->dev_private; unsigned int gtt_size; u16 snb_gmch_ctl; int ret; *mappable_base = pci_resource_start(dev->pdev, 2); *mappable_end = pci_resource_len(dev->pdev, 2); /* 64/512MB is the current min/max we actually know of, but this is just * a coarse sanity check. */ if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) { DRM_ERROR("Unknown GMADR size (%lx)\n", dev_priv->gtt.mappable_end); return -ENXIO; } if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40))) pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40)); pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl); *stolen = gen6_get_stolen_size(snb_gmch_ctl); gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl); *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT; ret = ggtt_probe_common(dev, gtt_size); dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range; dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries; return ret; } static void gen6_gmch_remove(struct i915_address_space *vm) { struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base); if (drm_mm_initialized(&vm->mm)) { drm_mm_takedown(&vm->mm); list_del(&vm->global_link); } iounmap(gtt->gsm); teardown_scratch_page(vm->dev); } static int i915_gmch_probe(struct drm_device *dev, size_t *gtt_total, size_t *stolen, phys_addr_t *mappable_base, unsigned long *mappable_end) { struct drm_i915_private *dev_priv = dev->dev_private; int ret; ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL); if (!ret) { DRM_ERROR("failed to set up gmch\n"); return -EIO; } intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end); dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev); dev_priv->gtt.base.clear_range = i915_ggtt_clear_range; if (unlikely(dev_priv->gtt.do_idle_maps)) DRM_INFO("applying Ironlake quirks for intel_iommu\n"); return 0; } static void i915_gmch_remove(struct i915_address_space *vm) { if (drm_mm_initialized(&vm->mm)) { drm_mm_takedown(&vm->mm); list_del(&vm->global_link); } intel_gmch_remove(); } int i915_gem_gtt_init(struct drm_device *dev) { struct drm_i915_private *dev_priv = dev->dev_private; struct i915_gtt *gtt = &dev_priv->gtt; int ret; if (INTEL_INFO(dev)->gen <= 5) { gtt->gtt_probe = i915_gmch_probe; gtt->base.cleanup = i915_gmch_remove; } else if (INTEL_INFO(dev)->gen < 8) { gtt->gtt_probe = gen6_gmch_probe; gtt->base.cleanup = gen6_gmch_remove; if (IS_HASWELL(dev) && dev_priv->ellc_size) gtt->base.pte_encode = iris_pte_encode; else if (IS_HASWELL(dev)) gtt->base.pte_encode = hsw_pte_encode; else if (IS_VALLEYVIEW(dev)) gtt->base.pte_encode = byt_pte_encode; else if (INTEL_INFO(dev)->gen >= 7) gtt->base.pte_encode = ivb_pte_encode; else gtt->base.pte_encode = snb_pte_encode; } else { dev_priv->gtt.gtt_probe = gen8_gmch_probe; dev_priv->gtt.base.cleanup = gen6_gmch_remove; } ret = gtt->gtt_probe(dev, >t->base.total, >t->stolen_size, >t->mappable_base, >t->mappable_end); if (ret) return ret; gtt->base.dev = dev; /* GMADR is the PCI mmio aperture into the global GTT. */ DRM_INFO("Memory usable by graphics device = %zdM\n", gtt->base.total >> 20); DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20); DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20); #ifdef CONFIG_INTEL_IOMMU if (intel_iommu_gfx_mapped) DRM_INFO("VT-d active for gfx access\n"); #endif /* * i915.enable_ppgtt is read-only, so do an early pass to validate the * user's requested state against the hardware/driver capabilities. We * do this now so that we can print out any log messages once rather * than every time we check intel_enable_ppgtt(). */ i915.enable_ppgtt = sanitize_enable_ppgtt(dev, i915.enable_ppgtt); DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt); return 0; } static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj, struct i915_address_space *vm) { struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL); if (vma == NULL) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&vma->vma_link); INIT_LIST_HEAD(&vma->mm_list); INIT_LIST_HEAD(&vma->exec_list); vma->vm = vm; vma->obj = obj; switch (INTEL_INFO(vm->dev)->gen) { case 8: case 7: case 6: if (i915_is_ggtt(vm)) { vma->unbind_vma = ggtt_unbind_vma; vma->bind_vma = ggtt_bind_vma; } else { vma->unbind_vma = ppgtt_unbind_vma; vma->bind_vma = ppgtt_bind_vma; } break; case 5: case 4: case 3: case 2: BUG_ON(!i915_is_ggtt(vm)); vma->unbind_vma = i915_ggtt_unbind_vma; vma->bind_vma = i915_ggtt_bind_vma; break; default: BUG(); } /* Keep GGTT vmas first to make debug easier */ if (i915_is_ggtt(vm)) list_add(&vma->vma_link, &obj->vma_list); else list_add_tail(&vma->vma_link, &obj->vma_list); return vma; } struct i915_vma * i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj, struct i915_address_space *vm) { struct i915_vma *vma; vma = i915_gem_obj_to_vma(obj, vm); if (!vma) vma = __i915_gem_vma_create(obj, vm); return vma; } |