Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * This module enables machines with Intel VT-x extensions to run virtual
 * machines without emulation or binary translation.
 *
 * MMU support
 *
 * Copyright (C) 2006 Qumranet, Inc.
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 *
 * Authors:
 *   Yaniv Kamay  <yaniv@qumranet.com>
 *   Avi Kivity   <avi@qumranet.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2.  See
 * the COPYING file in the top-level directory.
 *
 */

/*
 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
 * so the code in this file is compiled twice, once per pte size.
 */

#if PTTYPE == 64
	#define pt_element_t u64
	#define guest_walker guest_walker64
	#define FNAME(name) paging##64_##name
	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
	#define PT_LEVEL_BITS PT64_LEVEL_BITS
	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
	#ifdef CONFIG_X86_64
	#define PT_MAX_FULL_LEVELS 4
	#define CMPXCHG cmpxchg
	#else
	#define CMPXCHG cmpxchg64
	#define PT_MAX_FULL_LEVELS 2
	#endif
#elif PTTYPE == 32
	#define pt_element_t u32
	#define guest_walker guest_walker32
	#define FNAME(name) paging##32_##name
	#define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
	#define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
	#define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
	#define PT_INDEX(addr, level) PT32_INDEX(addr, level)
	#define PT_LEVEL_BITS PT32_LEVEL_BITS
	#define PT_MAX_FULL_LEVELS 2
	#define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT
	#define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT
	#define PT_HAVE_ACCESSED_DIRTY(mmu) true
	#define CMPXCHG cmpxchg
#elif PTTYPE == PTTYPE_EPT
	#define pt_element_t u64
	#define guest_walker guest_walkerEPT
	#define FNAME(name) ept_##name
	#define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
	#define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
	#define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
	#define PT_INDEX(addr, level) PT64_INDEX(addr, level)
	#define PT_LEVEL_BITS PT64_LEVEL_BITS
	#define PT_GUEST_DIRTY_SHIFT 9
	#define PT_GUEST_ACCESSED_SHIFT 8
	#define PT_HAVE_ACCESSED_DIRTY(mmu) ((mmu)->ept_ad)
	#define CMPXCHG cmpxchg64
	#define PT_MAX_FULL_LEVELS 4
#else
	#error Invalid PTTYPE value
#endif

#define PT_GUEST_DIRTY_MASK    (1 << PT_GUEST_DIRTY_SHIFT)
#define PT_GUEST_ACCESSED_MASK (1 << PT_GUEST_ACCESSED_SHIFT)

#define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
#define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)

/*
 * The guest_walker structure emulates the behavior of the hardware page
 * table walker.
 */
struct guest_walker {
	int level;
	unsigned max_level;
	gfn_t table_gfn[PT_MAX_FULL_LEVELS];
	pt_element_t ptes[PT_MAX_FULL_LEVELS];
	pt_element_t prefetch_ptes[PTE_PREFETCH_NUM];
	gpa_t pte_gpa[PT_MAX_FULL_LEVELS];
	pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS];
	bool pte_writable[PT_MAX_FULL_LEVELS];
	unsigned pt_access;
	unsigned pte_access;
	gfn_t gfn;
	struct x86_exception fault;
};

static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl)
{
	return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT;
}

static inline void FNAME(protect_clean_gpte)(struct kvm_mmu *mmu, unsigned *access,
					     unsigned gpte)
{
	unsigned mask;

	/* dirty bit is not supported, so no need to track it */
	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
		return;

	BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);

	mask = (unsigned)~ACC_WRITE_MASK;
	/* Allow write access to dirty gptes */
	mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) &
		PT_WRITABLE_MASK;
	*access &= mask;
}

static inline int FNAME(is_present_gpte)(unsigned long pte)
{
#if PTTYPE != PTTYPE_EPT
	return pte & PT_PRESENT_MASK;
#else
	return pte & 7;
#endif
}

static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
			       pt_element_t __user *ptep_user, unsigned index,
			       pt_element_t orig_pte, pt_element_t new_pte)
{
	int npages;
	pt_element_t ret;
	pt_element_t *table;
	struct page *page;

	npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page);
	/* Check if the user is doing something meaningless. */
	if (unlikely(npages != 1))
		return -EFAULT;

	table = kmap_atomic(page);
	ret = CMPXCHG(&table[index], orig_pte, new_pte);
	kunmap_atomic(table);

	kvm_release_page_dirty(page);

	return (ret != orig_pte);
}

static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu,
				  struct kvm_mmu_page *sp, u64 *spte,
				  u64 gpte)
{
	if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
		goto no_present;

	if (!FNAME(is_present_gpte)(gpte))
		goto no_present;

	/* if accessed bit is not supported prefetch non accessed gpte */
	if (PT_HAVE_ACCESSED_DIRTY(&vcpu->arch.mmu) && !(gpte & PT_GUEST_ACCESSED_MASK))
		goto no_present;

	return false;

no_present:
	drop_spte(vcpu->kvm, spte);
	return true;
}

/*
 * For PTTYPE_EPT, a page table can be executable but not readable
 * on supported processors. Therefore, set_spte does not automatically
 * set bit 0 if execute only is supported. Here, we repurpose ACC_USER_MASK
 * to signify readability since it isn't used in the EPT case
 */
static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte)
{
	unsigned access;
#if PTTYPE == PTTYPE_EPT
	access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) |
		((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) |
		((gpte & VMX_EPT_READABLE_MASK) ? ACC_USER_MASK : 0);
#else
	BUILD_BUG_ON(ACC_EXEC_MASK != PT_PRESENT_MASK);
	BUILD_BUG_ON(ACC_EXEC_MASK != 1);
	access = gpte & (PT_WRITABLE_MASK | PT_USER_MASK | PT_PRESENT_MASK);
	/* Combine NX with P (which is set here) to get ACC_EXEC_MASK.  */
	access ^= (gpte >> PT64_NX_SHIFT);
#endif

	return access;
}

static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu,
					     struct kvm_mmu *mmu,
					     struct guest_walker *walker,
					     int write_fault)
{
	unsigned level, index;
	pt_element_t pte, orig_pte;
	pt_element_t __user *ptep_user;
	gfn_t table_gfn;
	int ret;

	/* dirty/accessed bits are not supported, so no need to update them */
	if (!PT_HAVE_ACCESSED_DIRTY(mmu))
		return 0;

	for (level = walker->max_level; level >= walker->level; --level) {
		pte = orig_pte = walker->ptes[level - 1];
		table_gfn = walker->table_gfn[level - 1];
		ptep_user = walker->ptep_user[level - 1];
		index = offset_in_page(ptep_user) / sizeof(pt_element_t);
		if (!(pte & PT_GUEST_ACCESSED_MASK)) {
			trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte));
			pte |= PT_GUEST_ACCESSED_MASK;
		}
		if (level == walker->level && write_fault &&
				!(pte & PT_GUEST_DIRTY_MASK)) {
			trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte));
#if PTTYPE == PTTYPE_EPT
			if (kvm_arch_write_log_dirty(vcpu))
				return -EINVAL;
#endif
			pte |= PT_GUEST_DIRTY_MASK;
		}
		if (pte == orig_pte)
			continue;

		/*
		 * If the slot is read-only, simply do not process the accessed
		 * and dirty bits.  This is the correct thing to do if the slot
		 * is ROM, and page tables in read-as-ROM/write-as-MMIO slots
		 * are only supported if the accessed and dirty bits are already
		 * set in the ROM (so that MMIO writes are never needed).
		 *
		 * Note that NPT does not allow this at all and faults, since
		 * it always wants nested page table entries for the guest
		 * page tables to be writable.  And EPT works but will simply
		 * overwrite the read-only memory to set the accessed and dirty
		 * bits.
		 */
		if (unlikely(!walker->pte_writable[level - 1]))
			continue;

		ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte);
		if (ret)
			return ret;

		kvm_vcpu_mark_page_dirty(vcpu, table_gfn);
		walker->ptes[level - 1] = pte;
	}
	return 0;
}

static inline unsigned FNAME(gpte_pkeys)(struct kvm_vcpu *vcpu, u64 gpte)
{
	unsigned pkeys = 0;
#if PTTYPE == 64
	pte_t pte = {.pte = gpte};

	pkeys = pte_flags_pkey(pte_flags(pte));
#endif
	return pkeys;
}

/*
 * Fetch a guest pte for a guest virtual address
 */
static int FNAME(walk_addr_generic)(struct guest_walker *walker,
				    struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
				    gva_t addr, u32 access)
{
	int ret;
	pt_element_t pte;
	pt_element_t __user *uninitialized_var(ptep_user);
	gfn_t table_gfn;
	u64 pt_access, pte_access;
	unsigned index, accessed_dirty, pte_pkey;
	unsigned nested_access;
	gpa_t pte_gpa;
	bool have_ad;
	int offset;
	u64 walk_nx_mask = 0;
	const int write_fault = access & PFERR_WRITE_MASK;
	const int user_fault  = access & PFERR_USER_MASK;
	const int fetch_fault = access & PFERR_FETCH_MASK;
	u16 errcode = 0;
	gpa_t real_gpa;
	gfn_t gfn;

	trace_kvm_mmu_pagetable_walk(addr, access);
retry_walk:
	walker->level = mmu->root_level;
	pte           = mmu->get_cr3(vcpu);
	have_ad       = PT_HAVE_ACCESSED_DIRTY(mmu);

#if PTTYPE == 64
	walk_nx_mask = 1ULL << PT64_NX_SHIFT;
	if (walker->level == PT32E_ROOT_LEVEL) {
		pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3);
		trace_kvm_mmu_paging_element(pte, walker->level);
		if (!FNAME(is_present_gpte)(pte))
			goto error;
		--walker->level;
	}
#endif
	walker->max_level = walker->level;
	ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu)));

	/*
	 * FIXME: on Intel processors, loads of the PDPTE registers for PAE paging
	 * by the MOV to CR instruction are treated as reads and do not cause the
	 * processor to set the dirty flag in any EPT paging-structure entry.
	 */
	nested_access = (have_ad ? PFERR_WRITE_MASK : 0) | PFERR_USER_MASK;

	pte_access = ~0;
	++walker->level;

	do {
		gfn_t real_gfn;
		unsigned long host_addr;

		pt_access = pte_access;
		--walker->level;

		index = PT_INDEX(addr, walker->level);
		table_gfn = gpte_to_gfn(pte);
		offset    = index * sizeof(pt_element_t);
		pte_gpa   = gfn_to_gpa(table_gfn) + offset;

		BUG_ON(walker->level < 1);
		walker->table_gfn[walker->level - 1] = table_gfn;
		walker->pte_gpa[walker->level - 1] = pte_gpa;

		real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn),
					      nested_access,
					      &walker->fault);

		/*
		 * FIXME: This can happen if emulation (for of an INS/OUTS
		 * instruction) triggers a nested page fault.  The exit
		 * qualification / exit info field will incorrectly have
		 * "guest page access" as the nested page fault's cause,
		 * instead of "guest page structure access".  To fix this,
		 * the x86_exception struct should be augmented with enough
		 * information to fix the exit_qualification or exit_info_1
		 * fields.
		 */
		if (unlikely(real_gfn == UNMAPPED_GVA))
			return 0;

		real_gfn = gpa_to_gfn(real_gfn);

		host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn,
					    &walker->pte_writable[walker->level - 1]);
		if (unlikely(kvm_is_error_hva(host_addr)))
			goto error;

		ptep_user = (pt_element_t __user *)((void *)host_addr + offset);
		if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte))))
			goto error;
		walker->ptep_user[walker->level - 1] = ptep_user;

		trace_kvm_mmu_paging_element(pte, walker->level);

		/*
		 * Inverting the NX it lets us AND it like other
		 * permission bits.
		 */
		pte_access = pt_access & (pte ^ walk_nx_mask);

		if (unlikely(!FNAME(is_present_gpte)(pte)))
			goto error;

		if (unlikely(is_rsvd_bits_set(mmu, pte, walker->level))) {
			errcode = PFERR_RSVD_MASK | PFERR_PRESENT_MASK;
			goto error;
		}

		walker->ptes[walker->level - 1] = pte;
	} while (!is_last_gpte(mmu, walker->level, pte));

	pte_pkey = FNAME(gpte_pkeys)(vcpu, pte);
	accessed_dirty = have_ad ? pte_access & PT_GUEST_ACCESSED_MASK : 0;

	/* Convert to ACC_*_MASK flags for struct guest_walker.  */
	walker->pt_access = FNAME(gpte_access)(vcpu, pt_access ^ walk_nx_mask);
	walker->pte_access = FNAME(gpte_access)(vcpu, pte_access ^ walk_nx_mask);
	errcode = permission_fault(vcpu, mmu, walker->pte_access, pte_pkey, access);
	if (unlikely(errcode))
		goto error;

	gfn = gpte_to_gfn_lvl(pte, walker->level);
	gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT;

	if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36())
		gfn += pse36_gfn_delta(pte);

	real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault);
	if (real_gpa == UNMAPPED_GVA)
		return 0;

	walker->gfn = real_gpa >> PAGE_SHIFT;

	if (!write_fault)
		FNAME(protect_clean_gpte)(mmu, &walker->pte_access, pte);
	else
		/*
		 * On a write fault, fold the dirty bit into accessed_dirty.
		 * For modes without A/D bits support accessed_dirty will be
		 * always clear.
		 */
		accessed_dirty &= pte >>
			(PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT);

	if (unlikely(!accessed_dirty)) {
		ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault);
		if (unlikely(ret < 0))
			goto error;
		else if (ret)
			goto retry_walk;
	}

	pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
		 __func__, (u64)pte, walker->pte_access, walker->pt_access);
	return 1;

error:
	errcode |= write_fault | user_fault;
	if (fetch_fault && (mmu->nx ||
			    kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)))
		errcode |= PFERR_FETCH_MASK;

	walker->fault.vector = PF_VECTOR;
	walker->fault.error_code_valid = true;
	walker->fault.error_code = errcode;

#if PTTYPE == PTTYPE_EPT
	/*
	 * Use PFERR_RSVD_MASK in error_code to to tell if EPT
	 * misconfiguration requires to be injected. The detection is
	 * done by is_rsvd_bits_set() above.
	 *
	 * We set up the value of exit_qualification to inject:
	 * [2:0] - Derive from the access bits. The exit_qualification might be
	 *         out of date if it is serving an EPT misconfiguration.
	 * [5:3] - Calculated by the page walk of the guest EPT page tables
	 * [7:8] - Derived from [7:8] of real exit_qualification
	 *
	 * The other bits are set to 0.
	 */
	if (!(errcode & PFERR_RSVD_MASK)) {
		vcpu->arch.exit_qualification &= 0x180;
		if (write_fault)
			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_WRITE;
		if (user_fault)
			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_READ;
		if (fetch_fault)
			vcpu->arch.exit_qualification |= EPT_VIOLATION_ACC_INSTR;
		vcpu->arch.exit_qualification |= (pte_access & 0x7) << 3;
	}
#endif
	walker->fault.address = addr;
	walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu;

	trace_kvm_mmu_walker_error(walker->fault.error_code);
	return 0;
}

static int FNAME(walk_addr)(struct guest_walker *walker,
			    struct kvm_vcpu *vcpu, gva_t addr, u32 access)
{
	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr,
					access);
}

#if PTTYPE != PTTYPE_EPT
static int FNAME(walk_addr_nested)(struct guest_walker *walker,
				   struct kvm_vcpu *vcpu, gva_t addr,
				   u32 access)
{
	return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu,
					addr, access);
}
#endif

static bool
FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
		     u64 *spte, pt_element_t gpte, bool no_dirty_log)
{
	unsigned pte_access;
	gfn_t gfn;
	kvm_pfn_t pfn;

	if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte))
		return false;

	pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte);

	gfn = gpte_to_gfn(gpte);
	pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte);
	FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);
	pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn,
			no_dirty_log && (pte_access & ACC_WRITE_MASK));
	if (is_error_pfn(pfn))
		return false;

	/*
	 * we call mmu_set_spte() with host_writable = true because
	 * pte_prefetch_gfn_to_pfn always gets a writable pfn.
	 */
	mmu_set_spte(vcpu, spte, pte_access, 0, PT_PAGE_TABLE_LEVEL, gfn, pfn,
		     true, true);

	return true;
}

static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
			      u64 *spte, const void *pte)
{
	pt_element_t gpte = *(const pt_element_t *)pte;

	FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false);
}

static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu,
				struct guest_walker *gw, int level)
{
	pt_element_t curr_pte;
	gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1];
	u64 mask;
	int r, index;

	if (level == PT_PAGE_TABLE_LEVEL) {
		mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1;
		base_gpa = pte_gpa & ~mask;
		index = (pte_gpa - base_gpa) / sizeof(pt_element_t);

		r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa,
				gw->prefetch_ptes, sizeof(gw->prefetch_ptes));
		curr_pte = gw->prefetch_ptes[index];
	} else
		r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa,
				  &curr_pte, sizeof(curr_pte));

	return r || curr_pte != gw->ptes[level - 1];
}

static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw,
				u64 *sptep)
{
	struct kvm_mmu_page *sp;
	pt_element_t *gptep = gw->prefetch_ptes;
	u64 *spte;
	int i;

	sp = page_header(__pa(sptep));

	if (sp->role.level > PT_PAGE_TABLE_LEVEL)
		return;

	if (sp->role.direct)
		return __direct_pte_prefetch(vcpu, sp, sptep);

	i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
	spte = sp->spt + i;

	for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
		if (spte == sptep)
			continue;

		if (is_shadow_present_pte(*spte))
			continue;

		if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true))
			break;
	}
}

/*
 * Fetch a shadow pte for a specific level in the paging hierarchy.
 * If the guest tries to write a write-protected page, we need to
 * emulate this operation, return 1 to indicate this case.
 */
static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr,
			 struct guest_walker *gw,
			 int write_fault, int hlevel,
			 kvm_pfn_t pfn, bool map_writable, bool prefault)
{
	struct kvm_mmu_page *sp = NULL;
	struct kvm_shadow_walk_iterator it;
	unsigned direct_access, access = gw->pt_access;
	int top_level, ret;

	direct_access = gw->pte_access;

	top_level = vcpu->arch.mmu.root_level;
	if (top_level == PT32E_ROOT_LEVEL)
		top_level = PT32_ROOT_LEVEL;
	/*
	 * Verify that the top-level gpte is still there.  Since the page
	 * is a root page, it is either write protected (and cannot be
	 * changed from now on) or it is invalid (in which case, we don't
	 * really care if it changes underneath us after this point).
	 */
	if (FNAME(gpte_changed)(vcpu, gw, top_level))
		goto out_gpte_changed;

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
		goto out_gpte_changed;

	for (shadow_walk_init(&it, vcpu, addr);
	     shadow_walk_okay(&it) && it.level > gw->level;
	     shadow_walk_next(&it)) {
		gfn_t table_gfn;

		clear_sp_write_flooding_count(it.sptep);
		drop_large_spte(vcpu, it.sptep);

		sp = NULL;
		if (!is_shadow_present_pte(*it.sptep)) {
			table_gfn = gw->table_gfn[it.level - 2];
			sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1,
					      false, access);
		}

		/*
		 * Verify that the gpte in the page we've just write
		 * protected is still there.
		 */
		if (FNAME(gpte_changed)(vcpu, gw, it.level - 1))
			goto out_gpte_changed;

		if (sp)
			link_shadow_page(vcpu, it.sptep, sp);
	}

	for (;
	     shadow_walk_okay(&it) && it.level > hlevel;
	     shadow_walk_next(&it)) {
		gfn_t direct_gfn;

		clear_sp_write_flooding_count(it.sptep);
		validate_direct_spte(vcpu, it.sptep, direct_access);

		drop_large_spte(vcpu, it.sptep);

		if (is_shadow_present_pte(*it.sptep))
			continue;

		direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);

		sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1,
				      true, direct_access);
		link_shadow_page(vcpu, it.sptep, sp);
	}

	clear_sp_write_flooding_count(it.sptep);
	ret = mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault,
			   it.level, gw->gfn, pfn, prefault, map_writable);
	FNAME(pte_prefetch)(vcpu, gw, it.sptep);

	return ret;

out_gpte_changed:
	kvm_release_pfn_clean(pfn);
	return RET_PF_RETRY;
}

 /*
 * To see whether the mapped gfn can write its page table in the current
 * mapping.
 *
 * It is the helper function of FNAME(page_fault). When guest uses large page
 * size to map the writable gfn which is used as current page table, we should
 * force kvm to use small page size to map it because new shadow page will be
 * created when kvm establishes shadow page table that stop kvm using large
 * page size. Do it early can avoid unnecessary #PF and emulation.
 *
 * @write_fault_to_shadow_pgtable will return true if the fault gfn is
 * currently used as its page table.
 *
 * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok
 * since the PDPT is always shadowed, that means, we can not use large page
 * size to map the gfn which is used as PDPT.
 */
static bool
FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu,
			      struct guest_walker *walker, int user_fault,
			      bool *write_fault_to_shadow_pgtable)
{
	int level;
	gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1);
	bool self_changed = false;

	if (!(walker->pte_access & ACC_WRITE_MASK ||
	      (!is_write_protection(vcpu) && !user_fault)))
		return false;

	for (level = walker->level; level <= walker->max_level; level++) {
		gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1];

		self_changed |= !(gfn & mask);
		*write_fault_to_shadow_pgtable |= !gfn;
	}

	return self_changed;
}

/*
 * Page fault handler.  There are several causes for a page fault:
 *   - there is no shadow pte for the guest pte
 *   - write access through a shadow pte marked read only so that we can set
 *     the dirty bit
 *   - write access to a shadow pte marked read only so we can update the page
 *     dirty bitmap, when userspace requests it
 *   - mmio access; in this case we will never install a present shadow pte
 *   - normal guest page fault due to the guest pte marked not present, not
 *     writable, or not executable
 *
 *  Returns: 1 if we need to emulate the instruction, 0 otherwise, or
 *           a negative value on error.
 */
static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code,
			     bool prefault)
{
	int write_fault = error_code & PFERR_WRITE_MASK;
	int user_fault = error_code & PFERR_USER_MASK;
	struct guest_walker walker;
	int r;
	kvm_pfn_t pfn;
	int level = PT_PAGE_TABLE_LEVEL;
	bool force_pt_level = false;
	unsigned long mmu_seq;
	bool map_writable, is_self_change_mapping;

	pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code);

	r = mmu_topup_memory_caches(vcpu);
	if (r)
		return r;

	/*
	 * If PFEC.RSVD is set, this is a shadow page fault.
	 * The bit needs to be cleared before walking guest page tables.
	 */
	error_code &= ~PFERR_RSVD_MASK;

	/*
	 * Look up the guest pte for the faulting address.
	 */
	r = FNAME(walk_addr)(&walker, vcpu, addr, error_code);

	/*
	 * The page is not mapped by the guest.  Let the guest handle it.
	 */
	if (!r) {
		pgprintk("%s: guest page fault\n", __func__);
		if (!prefault)
			inject_page_fault(vcpu, &walker.fault);

		return RET_PF_RETRY;
	}

	if (page_fault_handle_page_track(vcpu, error_code, walker.gfn)) {
		shadow_page_table_clear_flood(vcpu, addr);
		return RET_PF_EMULATE;
	}

	vcpu->arch.write_fault_to_shadow_pgtable = false;

	is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu,
	      &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable);

	if (walker.level >= PT_DIRECTORY_LEVEL && !is_self_change_mapping) {
		level = mapping_level(vcpu, walker.gfn, &force_pt_level);
		if (likely(!force_pt_level)) {
			level = min(walker.level, level);
			walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1);
		}
	} else
		force_pt_level = true;

	mmu_seq = vcpu->kvm->mmu_notifier_seq;
	smp_rmb();

	if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault,
			 &map_writable))
		return RET_PF_RETRY;

	if (handle_abnormal_pfn(vcpu, addr, walker.gfn, pfn, walker.pte_access, &r))
		return r;

	/*
	 * Do not change pte_access if the pfn is a mmio page, otherwise
	 * we will cache the incorrect access into mmio spte.
	 */
	if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) &&
	     !is_write_protection(vcpu) && !user_fault &&
	      !is_noslot_pfn(pfn)) {
		walker.pte_access |= ACC_WRITE_MASK;
		walker.pte_access &= ~ACC_USER_MASK;

		/*
		 * If we converted a user page to a kernel page,
		 * so that the kernel can write to it when cr0.wp=0,
		 * then we should prevent the kernel from executing it
		 * if SMEP is enabled.
		 */
		if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
			walker.pte_access &= ~ACC_EXEC_MASK;
	}

	spin_lock(&vcpu->kvm->mmu_lock);
	if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
		goto out_unlock;

	kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT);
	if (make_mmu_pages_available(vcpu) < 0)
		goto out_unlock;
	if (!force_pt_level)
		transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level);
	r = FNAME(fetch)(vcpu, addr, &walker, write_fault,
			 level, pfn, map_writable, prefault);
	++vcpu->stat.pf_fixed;
	kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT);
	spin_unlock(&vcpu->kvm->mmu_lock);

	return r;

out_unlock:
	spin_unlock(&vcpu->kvm->mmu_lock);
	kvm_release_pfn_clean(pfn);
	return RET_PF_RETRY;
}

static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp)
{
	int offset = 0;

	WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);

	if (PTTYPE == 32)
		offset = sp->role.quadrant << PT64_LEVEL_BITS;

	return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t);
}

static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva)
{
	struct kvm_shadow_walk_iterator iterator;
	struct kvm_mmu_page *sp;
	int level;
	u64 *sptep;

	vcpu_clear_mmio_info(vcpu, gva);

	/*
	 * No need to check return value here, rmap_can_add() can
	 * help us to skip pte prefetch later.
	 */
	mmu_topup_memory_caches(vcpu);

	if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) {
		WARN_ON(1);
		return;
	}

	spin_lock(&vcpu->kvm->mmu_lock);
	for_each_shadow_entry(vcpu, gva, iterator) {
		level = iterator.level;
		sptep = iterator.sptep;

		sp = page_header(__pa(sptep));
		if (is_last_spte(*sptep, level)) {
			pt_element_t gpte;
			gpa_t pte_gpa;

			if (!sp->unsync)
				break;

			pte_gpa = FNAME(get_level1_sp_gpa)(sp);
			pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t);

			if (mmu_page_zap_pte(vcpu->kvm, sp, sptep))
				kvm_flush_remote_tlbs(vcpu->kvm);

			if (!rmap_can_add(vcpu))
				break;

			if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
						       sizeof(pt_element_t)))
				break;

			FNAME(update_pte)(vcpu, sp, sptep, &gpte);
		}

		if (!is_shadow_present_pte(*sptep) || !sp->unsync_children)
			break;
	}
	spin_unlock(&vcpu->kvm->mmu_lock);
}

static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access,
			       struct x86_exception *exception)
{
	struct guest_walker walker;
	gpa_t gpa = UNMAPPED_GVA;
	int r;

	r = FNAME(walk_addr)(&walker, vcpu, vaddr, access);

	if (r) {
		gpa = gfn_to_gpa(walker.gfn);
		gpa |= vaddr & ~PAGE_MASK;
	} else if (exception)
		*exception = walker.fault;

	return gpa;
}

#if PTTYPE != PTTYPE_EPT
static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr,
				      u32 access,
				      struct x86_exception *exception)
{
	struct guest_walker walker;
	gpa_t gpa = UNMAPPED_GVA;
	int r;

	r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access);

	if (r) {
		gpa = gfn_to_gpa(walker.gfn);
		gpa |= vaddr & ~PAGE_MASK;
	} else if (exception)
		*exception = walker.fault;

	return gpa;
}
#endif

/*
 * Using the cached information from sp->gfns is safe because:
 * - The spte has a reference to the struct page, so the pfn for a given gfn
 *   can't change unless all sptes pointing to it are nuked first.
 *
 * Note:
 *   We should flush all tlbs if spte is dropped even though guest is
 *   responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
 *   and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
 *   used by guest then tlbs are not flushed, so guest is allowed to access the
 *   freed pages.
 *   And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
 */
static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
{
	int i, nr_present = 0;
	bool host_writable;
	gpa_t first_pte_gpa;

	/* direct kvm_mmu_page can not be unsync. */
	BUG_ON(sp->role.direct);

	first_pte_gpa = FNAME(get_level1_sp_gpa)(sp);

	for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
		unsigned pte_access;
		pt_element_t gpte;
		gpa_t pte_gpa;
		gfn_t gfn;

		if (!sp->spt[i])
			continue;

		pte_gpa = first_pte_gpa + i * sizeof(pt_element_t);

		if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte,
					       sizeof(pt_element_t)))
			return 0;

		if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) {
			/*
			 * Update spte before increasing tlbs_dirty to make
			 * sure no tlb flush is lost after spte is zapped; see
			 * the comments in kvm_flush_remote_tlbs().
			 */
			smp_wmb();
			vcpu->kvm->tlbs_dirty++;
			continue;
		}

		gfn = gpte_to_gfn(gpte);
		pte_access = sp->role.access;
		pte_access &= FNAME(gpte_access)(vcpu, gpte);
		FNAME(protect_clean_gpte)(&vcpu->arch.mmu, &pte_access, gpte);

		if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access,
		      &nr_present))
			continue;

		if (gfn != sp->gfns[i]) {
			drop_spte(vcpu->kvm, &sp->spt[i]);
			/*
			 * The same as above where we are doing
			 * prefetch_invalid_gpte().
			 */
			smp_wmb();
			vcpu->kvm->tlbs_dirty++;
			continue;
		}

		nr_present++;

		host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE;

		set_spte(vcpu, &sp->spt[i], pte_access,
			 PT_PAGE_TABLE_LEVEL, gfn,
			 spte_to_pfn(sp->spt[i]), true, false,
			 host_writable);
	}

	return nr_present;
}

#undef pt_element_t
#undef guest_walker
#undef FNAME
#undef PT_BASE_ADDR_MASK
#undef PT_INDEX
#undef PT_LVL_ADDR_MASK
#undef PT_LVL_OFFSET_MASK
#undef PT_LEVEL_BITS
#undef PT_MAX_FULL_LEVELS
#undef gpte_to_gfn
#undef gpte_to_gfn_lvl
#undef CMPXCHG
#undef PT_GUEST_ACCESSED_MASK
#undef PT_GUEST_DIRTY_MASK
#undef PT_GUEST_DIRTY_SHIFT
#undef PT_GUEST_ACCESSED_SHIFT
#undef PT_HAVE_ACCESSED_DIRTY