Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 | /* * Kernel-based Virtual Machine driver for Linux * * This module enables machines with Intel VT-x extensions to run virtual * machines without emulation or binary translation. * * MMU support * * Copyright (C) 2006 Qumranet, Inc. * Copyright 2010 Red Hat, Inc. and/or its affiliates. * * Authors: * Yaniv Kamay <yaniv@qumranet.com> * Avi Kivity <avi@qumranet.com> * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ /* * We need the mmu code to access both 32-bit and 64-bit guest ptes, * so the code in this file is compiled twice, once per pte size. */ /* * This is used to catch non optimized PT_GUEST_(DIRTY|ACCESS)_SHIFT macro * uses for EPT without A/D paging type. */ extern u64 __pure __using_nonexistent_pte_bit(void) __compiletime_error("wrong use of PT_GUEST_(DIRTY|ACCESS)_SHIFT"); #if PTTYPE == 64 #define pt_element_t u64 #define guest_walker guest_walker64 #define FNAME(name) paging##64_##name #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) #define PT_INDEX(addr, level) PT64_INDEX(addr, level) #define PT_LEVEL_BITS PT64_LEVEL_BITS #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT #ifdef CONFIG_X86_64 #define PT_MAX_FULL_LEVELS 4 #define CMPXCHG cmpxchg #else #define CMPXCHG cmpxchg64 #define PT_MAX_FULL_LEVELS 2 #endif #elif PTTYPE == 32 #define pt_element_t u32 #define guest_walker guest_walker32 #define FNAME(name) paging##32_##name #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl) #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl) #define PT_INDEX(addr, level) PT32_INDEX(addr, level) #define PT_LEVEL_BITS PT32_LEVEL_BITS #define PT_MAX_FULL_LEVELS 2 #define PT_GUEST_ACCESSED_MASK PT_ACCESSED_MASK #define PT_GUEST_DIRTY_MASK PT_DIRTY_MASK #define PT_GUEST_DIRTY_SHIFT PT_DIRTY_SHIFT #define PT_GUEST_ACCESSED_SHIFT PT_ACCESSED_SHIFT #define CMPXCHG cmpxchg #elif PTTYPE == PTTYPE_EPT #define pt_element_t u64 #define guest_walker guest_walkerEPT #define FNAME(name) ept_##name #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl) #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl) #define PT_INDEX(addr, level) PT64_INDEX(addr, level) #define PT_LEVEL_BITS PT64_LEVEL_BITS #define PT_GUEST_ACCESSED_MASK 0 #define PT_GUEST_DIRTY_MASK 0 #define PT_GUEST_DIRTY_SHIFT __using_nonexistent_pte_bit() #define PT_GUEST_ACCESSED_SHIFT __using_nonexistent_pte_bit() #define CMPXCHG cmpxchg64 #define PT_MAX_FULL_LEVELS 4 #else #error Invalid PTTYPE value #endif #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl) #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL) /* * The guest_walker structure emulates the behavior of the hardware page * table walker. */ struct guest_walker { int level; unsigned max_level; gfn_t table_gfn[PT_MAX_FULL_LEVELS]; pt_element_t ptes[PT_MAX_FULL_LEVELS]; pt_element_t prefetch_ptes[PTE_PREFETCH_NUM]; gpa_t pte_gpa[PT_MAX_FULL_LEVELS]; pt_element_t __user *ptep_user[PT_MAX_FULL_LEVELS]; bool pte_writable[PT_MAX_FULL_LEVELS]; unsigned pt_access; unsigned pte_access; gfn_t gfn; struct x86_exception fault; }; static gfn_t gpte_to_gfn_lvl(pt_element_t gpte, int lvl) { return (gpte & PT_LVL_ADDR_MASK(lvl)) >> PAGE_SHIFT; } static inline void FNAME(protect_clean_gpte)(unsigned *access, unsigned gpte) { unsigned mask; /* dirty bit is not supported, so no need to track it */ if (!PT_GUEST_DIRTY_MASK) return; BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK); mask = (unsigned)~ACC_WRITE_MASK; /* Allow write access to dirty gptes */ mask |= (gpte >> (PT_GUEST_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK; *access &= mask; } static bool FNAME(is_rsvd_bits_set)(struct kvm_mmu *mmu, u64 gpte, int level) { int bit7 = (gpte >> 7) & 1, low6 = gpte & 0x3f; return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) | ((mmu->bad_mt_xwr & (1ull << low6)) != 0); } static inline int FNAME(is_present_gpte)(unsigned long pte) { #if PTTYPE != PTTYPE_EPT return is_present_gpte(pte); #else return pte & 7; #endif } static int FNAME(cmpxchg_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, pt_element_t __user *ptep_user, unsigned index, pt_element_t orig_pte, pt_element_t new_pte) { int npages; pt_element_t ret; pt_element_t *table; struct page *page; npages = get_user_pages_fast((unsigned long)ptep_user, 1, 1, &page); /* Check if the user is doing something meaningless. */ if (unlikely(npages != 1)) return -EFAULT; table = kmap_atomic(page); ret = CMPXCHG(&table[index], orig_pte, new_pte); kunmap_atomic(table); kvm_release_page_dirty(page); return (ret != orig_pte); } static bool FNAME(prefetch_invalid_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, u64 gpte) { if (FNAME(is_rsvd_bits_set)(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL)) goto no_present; if (!FNAME(is_present_gpte)(gpte)) goto no_present; /* if accessed bit is not supported prefetch non accessed gpte */ if (PT_GUEST_ACCESSED_MASK && !(gpte & PT_GUEST_ACCESSED_MASK)) goto no_present; return false; no_present: drop_spte(vcpu->kvm, spte); return true; } static inline unsigned FNAME(gpte_access)(struct kvm_vcpu *vcpu, u64 gpte) { unsigned access; #if PTTYPE == PTTYPE_EPT access = ((gpte & VMX_EPT_WRITABLE_MASK) ? ACC_WRITE_MASK : 0) | ((gpte & VMX_EPT_EXECUTABLE_MASK) ? ACC_EXEC_MASK : 0) | ACC_USER_MASK; #else access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK; access &= ~(gpte >> PT64_NX_SHIFT); #endif return access; } static int FNAME(update_accessed_dirty_bits)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, struct guest_walker *walker, int write_fault) { unsigned level, index; pt_element_t pte, orig_pte; pt_element_t __user *ptep_user; gfn_t table_gfn; int ret; /* dirty/accessed bits are not supported, so no need to update them */ if (!PT_GUEST_DIRTY_MASK) return 0; for (level = walker->max_level; level >= walker->level; --level) { pte = orig_pte = walker->ptes[level - 1]; table_gfn = walker->table_gfn[level - 1]; ptep_user = walker->ptep_user[level - 1]; index = offset_in_page(ptep_user) / sizeof(pt_element_t); if (!(pte & PT_GUEST_ACCESSED_MASK)) { trace_kvm_mmu_set_accessed_bit(table_gfn, index, sizeof(pte)); pte |= PT_GUEST_ACCESSED_MASK; } if (level == walker->level && write_fault && !(pte & PT_GUEST_DIRTY_MASK)) { trace_kvm_mmu_set_dirty_bit(table_gfn, index, sizeof(pte)); pte |= PT_GUEST_DIRTY_MASK; } if (pte == orig_pte) continue; /* * If the slot is read-only, simply do not process the accessed * and dirty bits. This is the correct thing to do if the slot * is ROM, and page tables in read-as-ROM/write-as-MMIO slots * are only supported if the accessed and dirty bits are already * set in the ROM (so that MMIO writes are never needed). * * Note that NPT does not allow this at all and faults, since * it always wants nested page table entries for the guest * page tables to be writable. And EPT works but will simply * overwrite the read-only memory to set the accessed and dirty * bits. */ if (unlikely(!walker->pte_writable[level - 1])) continue; ret = FNAME(cmpxchg_gpte)(vcpu, mmu, ptep_user, index, orig_pte, pte); if (ret) return ret; kvm_vcpu_mark_page_dirty(vcpu, table_gfn); walker->ptes[level] = pte; } return 0; } /* * Fetch a guest pte for a guest virtual address */ static int FNAME(walk_addr_generic)(struct guest_walker *walker, struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, gva_t addr, u32 access) { int ret; pt_element_t pte; pt_element_t __user *uninitialized_var(ptep_user); gfn_t table_gfn; unsigned index, pt_access, pte_access, accessed_dirty; gpa_t pte_gpa; int offset; const int write_fault = access & PFERR_WRITE_MASK; const int user_fault = access & PFERR_USER_MASK; const int fetch_fault = access & PFERR_FETCH_MASK; u16 errcode = 0; gpa_t real_gpa; gfn_t gfn; trace_kvm_mmu_pagetable_walk(addr, access); retry_walk: walker->level = mmu->root_level; pte = mmu->get_cr3(vcpu); #if PTTYPE == 64 if (walker->level == PT32E_ROOT_LEVEL) { pte = mmu->get_pdptr(vcpu, (addr >> 30) & 3); trace_kvm_mmu_paging_element(pte, walker->level); if (!FNAME(is_present_gpte)(pte)) goto error; --walker->level; } #endif walker->max_level = walker->level; ASSERT(!(is_long_mode(vcpu) && !is_pae(vcpu))); accessed_dirty = PT_GUEST_ACCESSED_MASK; pt_access = pte_access = ACC_ALL; ++walker->level; do { gfn_t real_gfn; unsigned long host_addr; pt_access &= pte_access; --walker->level; index = PT_INDEX(addr, walker->level); table_gfn = gpte_to_gfn(pte); offset = index * sizeof(pt_element_t); pte_gpa = gfn_to_gpa(table_gfn) + offset; walker->table_gfn[walker->level - 1] = table_gfn; walker->pte_gpa[walker->level - 1] = pte_gpa; real_gfn = mmu->translate_gpa(vcpu, gfn_to_gpa(table_gfn), PFERR_USER_MASK|PFERR_WRITE_MASK, &walker->fault); /* * FIXME: This can happen if emulation (for of an INS/OUTS * instruction) triggers a nested page fault. The exit * qualification / exit info field will incorrectly have * "guest page access" as the nested page fault's cause, * instead of "guest page structure access". To fix this, * the x86_exception struct should be augmented with enough * information to fix the exit_qualification or exit_info_1 * fields. */ if (unlikely(real_gfn == UNMAPPED_GVA)) return 0; real_gfn = gpa_to_gfn(real_gfn); host_addr = kvm_vcpu_gfn_to_hva_prot(vcpu, real_gfn, &walker->pte_writable[walker->level - 1]); if (unlikely(kvm_is_error_hva(host_addr))) goto error; ptep_user = (pt_element_t __user *)((void *)host_addr + offset); if (unlikely(__copy_from_user(&pte, ptep_user, sizeof(pte)))) goto error; walker->ptep_user[walker->level - 1] = ptep_user; trace_kvm_mmu_paging_element(pte, walker->level); if (unlikely(!FNAME(is_present_gpte)(pte))) goto error; if (unlikely(FNAME(is_rsvd_bits_set)(mmu, pte, walker->level))) { errcode |= PFERR_RSVD_MASK | PFERR_PRESENT_MASK; goto error; } accessed_dirty &= pte; pte_access = pt_access & FNAME(gpte_access)(vcpu, pte); walker->ptes[walker->level - 1] = pte; } while (!is_last_gpte(mmu, walker->level, pte)); if (unlikely(permission_fault(vcpu, mmu, pte_access, access))) { errcode |= PFERR_PRESENT_MASK; goto error; } gfn = gpte_to_gfn_lvl(pte, walker->level); gfn += (addr & PT_LVL_OFFSET_MASK(walker->level)) >> PAGE_SHIFT; if (PTTYPE == 32 && walker->level == PT_DIRECTORY_LEVEL && is_cpuid_PSE36()) gfn += pse36_gfn_delta(pte); real_gpa = mmu->translate_gpa(vcpu, gfn_to_gpa(gfn), access, &walker->fault); if (real_gpa == UNMAPPED_GVA) return 0; walker->gfn = real_gpa >> PAGE_SHIFT; if (!write_fault) FNAME(protect_clean_gpte)(&pte_access, pte); else /* * On a write fault, fold the dirty bit into accessed_dirty. * For modes without A/D bits support accessed_dirty will be * always clear. */ accessed_dirty &= pte >> (PT_GUEST_DIRTY_SHIFT - PT_GUEST_ACCESSED_SHIFT); if (unlikely(!accessed_dirty)) { ret = FNAME(update_accessed_dirty_bits)(vcpu, mmu, walker, write_fault); if (unlikely(ret < 0)) goto error; else if (ret) goto retry_walk; } walker->pt_access = pt_access; walker->pte_access = pte_access; pgprintk("%s: pte %llx pte_access %x pt_access %x\n", __func__, (u64)pte, pte_access, pt_access); return 1; error: errcode |= write_fault | user_fault; if (fetch_fault && (mmu->nx || kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))) errcode |= PFERR_FETCH_MASK; walker->fault.vector = PF_VECTOR; walker->fault.error_code_valid = true; walker->fault.error_code = errcode; #if PTTYPE == PTTYPE_EPT /* * Use PFERR_RSVD_MASK in error_code to to tell if EPT * misconfiguration requires to be injected. The detection is * done by is_rsvd_bits_set() above. * * We set up the value of exit_qualification to inject: * [2:0] - Derive from [2:0] of real exit_qualification at EPT violation * [5:3] - Calculated by the page walk of the guest EPT page tables * [7:8] - Derived from [7:8] of real exit_qualification * * The other bits are set to 0. */ if (!(errcode & PFERR_RSVD_MASK)) { vcpu->arch.exit_qualification &= 0x187; vcpu->arch.exit_qualification |= ((pt_access & pte) & 0x7) << 3; } #endif walker->fault.address = addr; walker->fault.nested_page_fault = mmu != vcpu->arch.walk_mmu; trace_kvm_mmu_walker_error(walker->fault.error_code); return 0; } static int FNAME(walk_addr)(struct guest_walker *walker, struct kvm_vcpu *vcpu, gva_t addr, u32 access) { return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.mmu, addr, access); } #if PTTYPE != PTTYPE_EPT static int FNAME(walk_addr_nested)(struct guest_walker *walker, struct kvm_vcpu *vcpu, gva_t addr, u32 access) { return FNAME(walk_addr_generic)(walker, vcpu, &vcpu->arch.nested_mmu, addr, access); } #endif static bool FNAME(prefetch_gpte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, pt_element_t gpte, bool no_dirty_log) { unsigned pte_access; gfn_t gfn; pfn_t pfn; if (FNAME(prefetch_invalid_gpte)(vcpu, sp, spte, gpte)) return false; pgprintk("%s: gpte %llx spte %p\n", __func__, (u64)gpte, spte); gfn = gpte_to_gfn(gpte); pte_access = sp->role.access & FNAME(gpte_access)(vcpu, gpte); FNAME(protect_clean_gpte)(&pte_access, gpte); pfn = pte_prefetch_gfn_to_pfn(vcpu, gfn, no_dirty_log && (pte_access & ACC_WRITE_MASK)); if (is_error_pfn(pfn)) return false; /* * we call mmu_set_spte() with host_writable = true because * pte_prefetch_gfn_to_pfn always gets a writable pfn. */ mmu_set_spte(vcpu, spte, pte_access, 0, NULL, PT_PAGE_TABLE_LEVEL, gfn, pfn, true, true); return true; } static void FNAME(update_pte)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp, u64 *spte, const void *pte) { pt_element_t gpte = *(const pt_element_t *)pte; FNAME(prefetch_gpte)(vcpu, sp, spte, gpte, false); } static bool FNAME(gpte_changed)(struct kvm_vcpu *vcpu, struct guest_walker *gw, int level) { pt_element_t curr_pte; gpa_t base_gpa, pte_gpa = gw->pte_gpa[level - 1]; u64 mask; int r, index; if (level == PT_PAGE_TABLE_LEVEL) { mask = PTE_PREFETCH_NUM * sizeof(pt_element_t) - 1; base_gpa = pte_gpa & ~mask; index = (pte_gpa - base_gpa) / sizeof(pt_element_t); r = kvm_vcpu_read_guest_atomic(vcpu, base_gpa, gw->prefetch_ptes, sizeof(gw->prefetch_ptes)); curr_pte = gw->prefetch_ptes[index]; } else r = kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &curr_pte, sizeof(curr_pte)); return r || curr_pte != gw->ptes[level - 1]; } static void FNAME(pte_prefetch)(struct kvm_vcpu *vcpu, struct guest_walker *gw, u64 *sptep) { struct kvm_mmu_page *sp; pt_element_t *gptep = gw->prefetch_ptes; u64 *spte; int i; sp = page_header(__pa(sptep)); if (sp->role.level > PT_PAGE_TABLE_LEVEL) return; if (sp->role.direct) return __direct_pte_prefetch(vcpu, sp, sptep); i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1); spte = sp->spt + i; for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) { if (spte == sptep) continue; if (is_shadow_present_pte(*spte)) continue; if (!FNAME(prefetch_gpte)(vcpu, sp, spte, gptep[i], true)) break; } } /* * Fetch a shadow pte for a specific level in the paging hierarchy. * If the guest tries to write a write-protected page, we need to * emulate this operation, return 1 to indicate this case. */ static int FNAME(fetch)(struct kvm_vcpu *vcpu, gva_t addr, struct guest_walker *gw, int write_fault, int hlevel, pfn_t pfn, bool map_writable, bool prefault) { struct kvm_mmu_page *sp = NULL; struct kvm_shadow_walk_iterator it; unsigned direct_access, access = gw->pt_access; int top_level, emulate = 0; direct_access = gw->pte_access; top_level = vcpu->arch.mmu.root_level; if (top_level == PT32E_ROOT_LEVEL) top_level = PT32_ROOT_LEVEL; /* * Verify that the top-level gpte is still there. Since the page * is a root page, it is either write protected (and cannot be * changed from now on) or it is invalid (in which case, we don't * really care if it changes underneath us after this point). */ if (FNAME(gpte_changed)(vcpu, gw, top_level)) goto out_gpte_changed; if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) goto out_gpte_changed; for (shadow_walk_init(&it, vcpu, addr); shadow_walk_okay(&it) && it.level > gw->level; shadow_walk_next(&it)) { gfn_t table_gfn; clear_sp_write_flooding_count(it.sptep); drop_large_spte(vcpu, it.sptep); sp = NULL; if (!is_shadow_present_pte(*it.sptep)) { table_gfn = gw->table_gfn[it.level - 2]; sp = kvm_mmu_get_page(vcpu, table_gfn, addr, it.level-1, false, access, it.sptep); } /* * Verify that the gpte in the page we've just write * protected is still there. */ if (FNAME(gpte_changed)(vcpu, gw, it.level - 1)) goto out_gpte_changed; if (sp) link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK); } for (; shadow_walk_okay(&it) && it.level > hlevel; shadow_walk_next(&it)) { gfn_t direct_gfn; clear_sp_write_flooding_count(it.sptep); validate_direct_spte(vcpu, it.sptep, direct_access); drop_large_spte(vcpu, it.sptep); if (is_shadow_present_pte(*it.sptep)) continue; direct_gfn = gw->gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1); sp = kvm_mmu_get_page(vcpu, direct_gfn, addr, it.level-1, true, direct_access, it.sptep); link_shadow_page(it.sptep, sp, PT_GUEST_ACCESSED_MASK); } clear_sp_write_flooding_count(it.sptep); mmu_set_spte(vcpu, it.sptep, gw->pte_access, write_fault, &emulate, it.level, gw->gfn, pfn, prefault, map_writable); FNAME(pte_prefetch)(vcpu, gw, it.sptep); return emulate; out_gpte_changed: if (sp) kvm_mmu_put_page(sp, it.sptep); kvm_release_pfn_clean(pfn); return 0; } /* * To see whether the mapped gfn can write its page table in the current * mapping. * * It is the helper function of FNAME(page_fault). When guest uses large page * size to map the writable gfn which is used as current page table, we should * force kvm to use small page size to map it because new shadow page will be * created when kvm establishes shadow page table that stop kvm using large * page size. Do it early can avoid unnecessary #PF and emulation. * * @write_fault_to_shadow_pgtable will return true if the fault gfn is * currently used as its page table. * * Note: the PDPT page table is not checked for PAE-32 bit guest. It is ok * since the PDPT is always shadowed, that means, we can not use large page * size to map the gfn which is used as PDPT. */ static bool FNAME(is_self_change_mapping)(struct kvm_vcpu *vcpu, struct guest_walker *walker, int user_fault, bool *write_fault_to_shadow_pgtable) { int level; gfn_t mask = ~(KVM_PAGES_PER_HPAGE(walker->level) - 1); bool self_changed = false; if (!(walker->pte_access & ACC_WRITE_MASK || (!is_write_protection(vcpu) && !user_fault))) return false; for (level = walker->level; level <= walker->max_level; level++) { gfn_t gfn = walker->gfn ^ walker->table_gfn[level - 1]; self_changed |= !(gfn & mask); *write_fault_to_shadow_pgtable |= !gfn; } return self_changed; } /* * Page fault handler. There are several causes for a page fault: * - there is no shadow pte for the guest pte * - write access through a shadow pte marked read only so that we can set * the dirty bit * - write access to a shadow pte marked read only so we can update the page * dirty bitmap, when userspace requests it * - mmio access; in this case we will never install a present shadow pte * - normal guest page fault due to the guest pte marked not present, not * writable, or not executable * * Returns: 1 if we need to emulate the instruction, 0 otherwise, or * a negative value on error. */ static int FNAME(page_fault)(struct kvm_vcpu *vcpu, gva_t addr, u32 error_code, bool prefault) { int write_fault = error_code & PFERR_WRITE_MASK; int user_fault = error_code & PFERR_USER_MASK; struct guest_walker walker; int r; pfn_t pfn; int level = PT_PAGE_TABLE_LEVEL; int force_pt_level; unsigned long mmu_seq; bool map_writable, is_self_change_mapping; pgprintk("%s: addr %lx err %x\n", __func__, addr, error_code); if (unlikely(error_code & PFERR_RSVD_MASK)) { r = handle_mmio_page_fault(vcpu, addr, error_code, mmu_is_nested(vcpu)); if (likely(r != RET_MMIO_PF_INVALID)) return r; /* * page fault with PFEC.RSVD = 1 is caused by shadow * page fault, should not be used to walk guest page * table. */ error_code &= ~PFERR_RSVD_MASK; }; r = mmu_topup_memory_caches(vcpu); if (r) return r; /* * Look up the guest pte for the faulting address. */ r = FNAME(walk_addr)(&walker, vcpu, addr, error_code); /* * The page is not mapped by the guest. Let the guest handle it. */ if (!r) { pgprintk("%s: guest page fault\n", __func__); if (!prefault) inject_page_fault(vcpu, &walker.fault); return 0; } vcpu->arch.write_fault_to_shadow_pgtable = false; is_self_change_mapping = FNAME(is_self_change_mapping)(vcpu, &walker, user_fault, &vcpu->arch.write_fault_to_shadow_pgtable); if (walker.level >= PT_DIRECTORY_LEVEL) force_pt_level = mapping_level_dirty_bitmap(vcpu, walker.gfn) || is_self_change_mapping; else force_pt_level = 1; if (!force_pt_level) { level = min(walker.level, mapping_level(vcpu, walker.gfn)); walker.gfn = walker.gfn & ~(KVM_PAGES_PER_HPAGE(level) - 1); } mmu_seq = vcpu->kvm->mmu_notifier_seq; smp_rmb(); if (try_async_pf(vcpu, prefault, walker.gfn, addr, &pfn, write_fault, &map_writable)) return 0; if (handle_abnormal_pfn(vcpu, mmu_is_nested(vcpu) ? 0 : addr, walker.gfn, pfn, walker.pte_access, &r)) return r; /* * Do not change pte_access if the pfn is a mmio page, otherwise * we will cache the incorrect access into mmio spte. */ if (write_fault && !(walker.pte_access & ACC_WRITE_MASK) && !is_write_protection(vcpu) && !user_fault && !is_noslot_pfn(pfn)) { walker.pte_access |= ACC_WRITE_MASK; walker.pte_access &= ~ACC_USER_MASK; /* * If we converted a user page to a kernel page, * so that the kernel can write to it when cr0.wp=0, * then we should prevent the kernel from executing it * if SMEP is enabled. */ if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP)) walker.pte_access &= ~ACC_EXEC_MASK; } spin_lock(&vcpu->kvm->mmu_lock); if (mmu_notifier_retry(vcpu->kvm, mmu_seq)) goto out_unlock; kvm_mmu_audit(vcpu, AUDIT_PRE_PAGE_FAULT); make_mmu_pages_available(vcpu); if (!force_pt_level) transparent_hugepage_adjust(vcpu, &walker.gfn, &pfn, &level); r = FNAME(fetch)(vcpu, addr, &walker, write_fault, level, pfn, map_writable, prefault); ++vcpu->stat.pf_fixed; kvm_mmu_audit(vcpu, AUDIT_POST_PAGE_FAULT); spin_unlock(&vcpu->kvm->mmu_lock); return r; out_unlock: spin_unlock(&vcpu->kvm->mmu_lock); kvm_release_pfn_clean(pfn); return 0; } static gpa_t FNAME(get_level1_sp_gpa)(struct kvm_mmu_page *sp) { int offset = 0; WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL); if (PTTYPE == 32) offset = sp->role.quadrant << PT64_LEVEL_BITS; return gfn_to_gpa(sp->gfn) + offset * sizeof(pt_element_t); } static void FNAME(invlpg)(struct kvm_vcpu *vcpu, gva_t gva) { struct kvm_shadow_walk_iterator iterator; struct kvm_mmu_page *sp; int level; u64 *sptep; vcpu_clear_mmio_info(vcpu, gva); /* * No need to check return value here, rmap_can_add() can * help us to skip pte prefetch later. */ mmu_topup_memory_caches(vcpu); if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) { WARN_ON(1); return; } spin_lock(&vcpu->kvm->mmu_lock); for_each_shadow_entry(vcpu, gva, iterator) { level = iterator.level; sptep = iterator.sptep; sp = page_header(__pa(sptep)); if (is_last_spte(*sptep, level)) { pt_element_t gpte; gpa_t pte_gpa; if (!sp->unsync) break; pte_gpa = FNAME(get_level1_sp_gpa)(sp); pte_gpa += (sptep - sp->spt) * sizeof(pt_element_t); if (mmu_page_zap_pte(vcpu->kvm, sp, sptep)) kvm_flush_remote_tlbs(vcpu->kvm); if (!rmap_can_add(vcpu)) break; if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, sizeof(pt_element_t))) break; FNAME(update_pte)(vcpu, sp, sptep, &gpte); } if (!is_shadow_present_pte(*sptep) || !sp->unsync_children) break; } spin_unlock(&vcpu->kvm->mmu_lock); } static gpa_t FNAME(gva_to_gpa)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, struct x86_exception *exception) { struct guest_walker walker; gpa_t gpa = UNMAPPED_GVA; int r; r = FNAME(walk_addr)(&walker, vcpu, vaddr, access); if (r) { gpa = gfn_to_gpa(walker.gfn); gpa |= vaddr & ~PAGE_MASK; } else if (exception) *exception = walker.fault; return gpa; } #if PTTYPE != PTTYPE_EPT static gpa_t FNAME(gva_to_gpa_nested)(struct kvm_vcpu *vcpu, gva_t vaddr, u32 access, struct x86_exception *exception) { struct guest_walker walker; gpa_t gpa = UNMAPPED_GVA; int r; r = FNAME(walk_addr_nested)(&walker, vcpu, vaddr, access); if (r) { gpa = gfn_to_gpa(walker.gfn); gpa |= vaddr & ~PAGE_MASK; } else if (exception) *exception = walker.fault; return gpa; } #endif /* * Using the cached information from sp->gfns is safe because: * - The spte has a reference to the struct page, so the pfn for a given gfn * can't change unless all sptes pointing to it are nuked first. * * Note: * We should flush all tlbs if spte is dropped even though guest is * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't * used by guest then tlbs are not flushed, so guest is allowed to access the * freed pages. * And we increase kvm->tlbs_dirty to delay tlbs flush in this case. */ static int FNAME(sync_page)(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp) { int i, nr_present = 0; bool host_writable; gpa_t first_pte_gpa; /* direct kvm_mmu_page can not be unsync. */ BUG_ON(sp->role.direct); first_pte_gpa = FNAME(get_level1_sp_gpa)(sp); for (i = 0; i < PT64_ENT_PER_PAGE; i++) { unsigned pte_access; pt_element_t gpte; gpa_t pte_gpa; gfn_t gfn; if (!sp->spt[i]) continue; pte_gpa = first_pte_gpa + i * sizeof(pt_element_t); if (kvm_vcpu_read_guest_atomic(vcpu, pte_gpa, &gpte, sizeof(pt_element_t))) return -EINVAL; if (FNAME(prefetch_invalid_gpte)(vcpu, sp, &sp->spt[i], gpte)) { vcpu->kvm->tlbs_dirty++; continue; } gfn = gpte_to_gfn(gpte); pte_access = sp->role.access; pte_access &= FNAME(gpte_access)(vcpu, gpte); FNAME(protect_clean_gpte)(&pte_access, gpte); if (sync_mmio_spte(vcpu, &sp->spt[i], gfn, pte_access, &nr_present)) continue; if (gfn != sp->gfns[i]) { drop_spte(vcpu->kvm, &sp->spt[i]); vcpu->kvm->tlbs_dirty++; continue; } nr_present++; host_writable = sp->spt[i] & SPTE_HOST_WRITEABLE; set_spte(vcpu, &sp->spt[i], pte_access, PT_PAGE_TABLE_LEVEL, gfn, spte_to_pfn(sp->spt[i]), true, false, host_writable); } return !nr_present; } #undef pt_element_t #undef guest_walker #undef FNAME #undef PT_BASE_ADDR_MASK #undef PT_INDEX #undef PT_LVL_ADDR_MASK #undef PT_LVL_OFFSET_MASK #undef PT_LEVEL_BITS #undef PT_MAX_FULL_LEVELS #undef gpte_to_gfn #undef gpte_to_gfn_lvl #undef CMPXCHG #undef PT_GUEST_ACCESSED_MASK #undef PT_GUEST_DIRTY_MASK #undef PT_GUEST_DIRTY_SHIFT #undef PT_GUEST_ACCESSED_SHIFT |