Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
#include <linux/kernel.h>
#include <linux/sizes.h>

#include "ddk750_reg.h"
#include "ddk750_chip.h"
#include "ddk750_power.h"

#define MHz(x) ((x) * 1000000)

static logical_chip_type_t chip;

logical_chip_type_t sm750_get_chip_type(void)
{
	return chip;
}

void sm750_set_chip_type(unsigned short devId, u8 revId)
{
	if (devId == 0x718) {
		chip = SM718;
	} else if (devId == 0x750) {
		chip = SM750;
		/* SM750 and SM750LE are different in their revision ID only. */
		if (revId == SM750LE_REVISION_ID) {
			chip = SM750LE;
			pr_info("found sm750le\n");
		}
	} else {
		chip = SM_UNKNOWN;
	}
}

static unsigned int get_mxclk_freq(void)
{
	unsigned int pll_reg;
	unsigned int M, N, OD, POD;

	if (sm750_get_chip_type() == SM750LE)
		return MHz(130);

	pll_reg = peek32(MXCLK_PLL_CTRL);
	M = (pll_reg & PLL_CTRL_M_MASK) >> PLL_CTRL_M_SHIFT;
	N = (pll_reg & PLL_CTRL_N_MASK) >> PLL_CTRL_N_SHIFT;
	OD = (pll_reg & PLL_CTRL_OD_MASK) >> PLL_CTRL_OD_SHIFT;
	POD = (pll_reg & PLL_CTRL_POD_MASK) >> PLL_CTRL_POD_SHIFT;

	return DEFAULT_INPUT_CLOCK * M / N / (1 << OD) / (1 << POD);
}

/*
 * This function set up the main chip clock.
 *
 * Input: Frequency to be set.
 */
static void set_chip_clock(unsigned int frequency)
{
	struct pll_value pll;
	unsigned int ulActualMxClk;

	/* Cheok_0509: For SM750LE, the chip clock is fixed. Nothing to set. */
	if (sm750_get_chip_type() == SM750LE)
		return;

	if (frequency) {
		/*
		 * Set up PLL structure to hold the value to be set in clocks.
		 */
		pll.inputFreq = DEFAULT_INPUT_CLOCK; /* Defined in CLOCK.H */
		pll.clockType = MXCLK_PLL;

		/*
		 * Call sm750_calc_pll_value() to fill the other fields
		 * of the PLL structure. Sometimes, the chip cannot set
		 * up the exact clock required by the User.
		 * Return value of sm750_calc_pll_value gives the actual
		 * possible clock.
		 */
		ulActualMxClk = sm750_calc_pll_value(frequency, &pll);

		/* Master Clock Control: MXCLK_PLL */
		poke32(MXCLK_PLL_CTRL, sm750_format_pll_reg(&pll));
	}
}

static void set_memory_clock(unsigned int frequency)
{
	unsigned int reg, divisor;

	/*
	 * Cheok_0509: For SM750LE, the memory clock is fixed.
	 * Nothing to set.
	 */
	if (sm750_get_chip_type() == SM750LE)
		return;

	if (frequency) {
		/*
		 * Set the frequency to the maximum frequency
		 * that the DDR Memory can take which is 336MHz.
		 */
		if (frequency > MHz(336))
			frequency = MHz(336);

		/* Calculate the divisor */
		divisor = DIV_ROUND_CLOSEST(get_mxclk_freq(), frequency);

		/* Set the corresponding divisor in the register. */
		reg = peek32(CURRENT_GATE) & ~CURRENT_GATE_M2XCLK_MASK;
		switch (divisor) {
		default:
		case 1:
			reg |= CURRENT_GATE_M2XCLK_DIV_1;
			break;
		case 2:
			reg |= CURRENT_GATE_M2XCLK_DIV_2;
			break;
		case 3:
			reg |= CURRENT_GATE_M2XCLK_DIV_3;
			break;
		case 4:
			reg |= CURRENT_GATE_M2XCLK_DIV_4;
			break;
		}

		sm750_set_current_gate(reg);
	}
}

/*
 * This function set up the master clock (MCLK).
 *
 * Input: Frequency to be set.
 *
 * NOTE:
 *      The maximum frequency the engine can run is 168MHz.
 */
static void set_master_clock(unsigned int frequency)
{
	unsigned int reg, divisor;

	/*
	 * Cheok_0509: For SM750LE, the memory clock is fixed.
	 * Nothing to set.
	 */
	if (sm750_get_chip_type() == SM750LE)
		return;

	if (frequency) {
		/*
		 * Set the frequency to the maximum frequency
		 * that the SM750 engine can run, which is about 190 MHz.
		 */
		if (frequency > MHz(190))
			frequency = MHz(190);

		/* Calculate the divisor */
		divisor = DIV_ROUND_CLOSEST(get_mxclk_freq(), frequency);

		/* Set the corresponding divisor in the register. */
		reg = peek32(CURRENT_GATE) & ~CURRENT_GATE_MCLK_MASK;
		switch (divisor) {
		default:
		case 3:
			reg |= CURRENT_GATE_MCLK_DIV_3;
			break;
		case 4:
			reg |= CURRENT_GATE_MCLK_DIV_4;
			break;
		case 6:
			reg |= CURRENT_GATE_MCLK_DIV_6;
			break;
		case 8:
			reg |= CURRENT_GATE_MCLK_DIV_8;
			break;
		}

		sm750_set_current_gate(reg);
	}
}

unsigned int ddk750_get_vm_size(void)
{
	unsigned int reg;
	unsigned int data;

	/* sm750le only use 64 mb memory*/
	if (sm750_get_chip_type() == SM750LE)
		return SZ_64M;

	/* for 750,always use power mode0*/
	reg = peek32(MODE0_GATE);
	reg |= MODE0_GATE_GPIO;
	poke32(MODE0_GATE, reg);

	/* get frame buffer size from GPIO */
	reg = peek32(MISC_CTRL) & MISC_CTRL_LOCALMEM_SIZE_MASK;
	switch (reg) {
	case MISC_CTRL_LOCALMEM_SIZE_8M:
		data = SZ_8M;  break; /* 8  Mega byte */
	case MISC_CTRL_LOCALMEM_SIZE_16M:
		data = SZ_16M; break; /* 16 Mega byte */
	case MISC_CTRL_LOCALMEM_SIZE_32M:
		data = SZ_32M; break; /* 32 Mega byte */
	case MISC_CTRL_LOCALMEM_SIZE_64M:
		data = SZ_64M; break; /* 64 Mega byte */
	default:
		data = 0;
		break;
	}
	return data;
}

int ddk750_init_hw(struct initchip_param *pInitParam)
{
	unsigned int reg;

	if (pInitParam->powerMode != 0)
		pInitParam->powerMode = 0;
	sm750_set_power_mode(pInitParam->powerMode);

	/* Enable display power gate & LOCALMEM power gate*/
	reg = peek32(CURRENT_GATE);
	reg |= (CURRENT_GATE_DISPLAY | CURRENT_GATE_LOCALMEM);
	sm750_set_current_gate(reg);

	if (sm750_get_chip_type() != SM750LE) {
		/* set panel pll and graphic mode via mmio_88 */
		reg = peek32(VGA_CONFIGURATION);
		reg |= (VGA_CONFIGURATION_PLL | VGA_CONFIGURATION_MODE);
		poke32(VGA_CONFIGURATION, reg);
	} else {
#if defined(__i386__) || defined(__x86_64__)
		/* set graphic mode via IO method */
		outb_p(0x88, 0x3d4);
		outb_p(0x06, 0x3d5);
#endif
	}

	/* Set the Main Chip Clock */
	set_chip_clock(MHz((unsigned int)pInitParam->chipClock));

	/* Set up memory clock. */
	set_memory_clock(MHz(pInitParam->memClock));

	/* Set up master clock */
	set_master_clock(MHz(pInitParam->masterClock));

	/*
	 * Reset the memory controller.
	 * If the memory controller is not reset in SM750,
	 * the system might hang when sw accesses the memory.
	 * The memory should be resetted after changing the MXCLK.
	 */
	if (pInitParam->resetMemory == 1) {
		reg = peek32(MISC_CTRL);
		reg &= ~MISC_CTRL_LOCALMEM_RESET;
		poke32(MISC_CTRL, reg);

		reg |= MISC_CTRL_LOCALMEM_RESET;
		poke32(MISC_CTRL, reg);
	}

	if (pInitParam->setAllEngOff == 1) {
		sm750_enable_2d_engine(0);

		/* Disable Overlay, if a former application left it on */
		reg = peek32(VIDEO_DISPLAY_CTRL);
		reg &= ~DISPLAY_CTRL_PLANE;
		poke32(VIDEO_DISPLAY_CTRL, reg);

		/* Disable video alpha, if a former application left it on */
		reg = peek32(VIDEO_ALPHA_DISPLAY_CTRL);
		reg &= ~DISPLAY_CTRL_PLANE;
		poke32(VIDEO_ALPHA_DISPLAY_CTRL, reg);

		/* Disable alpha plane, if a former application left it on */
		reg = peek32(ALPHA_DISPLAY_CTRL);
		reg &= ~DISPLAY_CTRL_PLANE;
		poke32(ALPHA_DISPLAY_CTRL, reg);

		/* Disable DMA Channel, if a former application left it on */
		reg = peek32(DMA_ABORT_INTERRUPT);
		reg |= DMA_ABORT_INTERRUPT_ABORT_1;
		poke32(DMA_ABORT_INTERRUPT, reg);

		/* Disable DMA Power, if a former application left it on */
		sm750_enable_dma(0);
	}

	/* We can add more initialization as needed. */

	return 0;
}

/*
 * monk liu @ 4/6/2011:
 *	re-write the calculatePLL function of ddk750.
 *	the original version function does not use
 *	some mathematics tricks and shortcut
 *	when it doing the calculation of the best N,M,D combination
 *	I think this version gives a little upgrade in speed
 *
 * 750 pll clock formular:
 * Request Clock = (Input Clock * M )/(N * X)
 *
 * Input Clock = 14318181 hz
 * X = 2 power D
 * D ={0,1,2,3,4,5,6}
 * M = {1,...,255}
 * N = {2,...,15}
 */
unsigned int sm750_calc_pll_value(unsigned int request_orig,
				  struct pll_value *pll)
{
	/*
	 * as sm750 register definition,
	 * N located in 2,15 and M located in 1,255
	 */
	int N, M, X, d;
	int mini_diff;
	unsigned int RN, quo, rem, fl_quo;
	unsigned int input, request;
	unsigned int tmpClock, ret;
	const int max_OD = 3;
	int max_d = 6;

	if (sm750_get_chip_type() == SM750LE) {
		/*
		 * SM750LE don't have
		 * programmable PLL and M/N values to work on.
		 * Just return the requested clock.
		 */
		return request_orig;
	}

	ret = 0;
	mini_diff = ~0;
	request = request_orig / 1000;
	input = pll->inputFreq / 1000;

	/*
	 * for MXCLK register,
	 * no POD provided, so need be treated differently
	 */
	if (pll->clockType == MXCLK_PLL)
		max_d = 3;

	for (N = 15; N > 1; N--) {
		/*
		 * RN will not exceed maximum long
		 * if @request <= 285 MHZ (for 32bit cpu)
		 */
		RN = N * request;
		quo = RN / input;
		rem = RN % input;/* rem always small than 14318181 */
		fl_quo = rem * 10000 / input;

		for (d = max_d; d >= 0; d--) {
			X = BIT(d);
			M = quo * X;
			M += fl_quo * X / 10000;
			/* round step */
			M += (fl_quo * X % 10000) > 5000 ? 1 : 0;
			if (M < 256 && M > 0) {
				unsigned int diff;

				tmpClock = pll->inputFreq * M / N / X;
				diff = abs(tmpClock - request_orig);
				if (diff < mini_diff) {
					pll->M = M;
					pll->N = N;
					pll->POD = 0;
					if (d > max_OD)
						pll->POD = d - max_OD;
					pll->OD = d - pll->POD;
					mini_diff = diff;
					ret = tmpClock;
				}
			}
		}
	}
	return ret;
}

unsigned int sm750_format_pll_reg(struct pll_value *pPLL)
{
#ifndef VALIDATION_CHIP
	unsigned int POD = pPLL->POD;
#endif
	unsigned int OD = pPLL->OD;
	unsigned int M = pPLL->M;
	unsigned int N = pPLL->N;
	unsigned int reg = 0;

	/*
	 * Note that all PLL's have the same format. Here, we just use
	 * Panel PLL parameter to work out the bit fields in the
	 * register. On returning a 32 bit number, the value can be
	 * applied to any PLL in the calling function.
	 */
	reg = PLL_CTRL_POWER |
#ifndef VALIDATION_CHIP
		((POD << PLL_CTRL_POD_SHIFT) & PLL_CTRL_POD_MASK) |
#endif
		((OD << PLL_CTRL_OD_SHIFT) & PLL_CTRL_OD_MASK) |
		((N << PLL_CTRL_N_SHIFT) & PLL_CTRL_N_MASK) |
		((M << PLL_CTRL_M_SHIFT) & PLL_CTRL_M_MASK);

	return reg;
}