Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
#include "ddk750_help.h"
#include "ddk750_reg.h"
#include "ddk750_chip.h"
#include "ddk750_power.h"
typedef struct _pllcalparam {
	unsigned char power;/* d : 0~ 6*/
	unsigned char pod;
	unsigned char od;
	unsigned char value;/* value of  2 power d (2^d) */
}
pllcalparam;


logical_chip_type_t getChipType(void)
{
	unsigned short physicalID;
	char physicalRev;
	logical_chip_type_t chip;

	physicalID = devId750;//either 0x718 or 0x750
	physicalRev = revId750;

	if (physicalID == 0x718)
		chip = SM718;
	else if (physicalID == 0x750) {
		chip = SM750;
		/* SM750 and SM750LE are different in their revision ID only. */
		if (physicalRev == SM750LE_REVISION_ID)
			chip = SM750LE;
	} else
		chip = SM_UNKNOWN;

	return chip;
}


inline unsigned int twoToPowerOfx(unsigned long x)
{
	unsigned long i;
	unsigned long result = 1;

	for (i = 1; i <= x; i++)
		result *= 2;
	return result;
}

inline unsigned int calcPLL(pll_value_t *pPLL)
{
	return (pPLL->inputFreq * pPLL->M / pPLL->N / twoToPowerOfx(pPLL->OD) / twoToPowerOfx(pPLL->POD));
}

unsigned int getPllValue(clock_type_t clockType, pll_value_t *pPLL)
{
	unsigned int ulPllReg = 0;

	pPLL->inputFreq = DEFAULT_INPUT_CLOCK;
	pPLL->clockType = clockType;

	switch (clockType) {
	case MXCLK_PLL:
		ulPllReg = PEEK32(MXCLK_PLL_CTRL);
		break;
	case PRIMARY_PLL:
		ulPllReg = PEEK32(PANEL_PLL_CTRL);
		break;
	case SECONDARY_PLL:
		ulPllReg = PEEK32(CRT_PLL_CTRL);
		break;
	case VGA0_PLL:
		ulPllReg = PEEK32(VGA_PLL0_CTRL);
		break;
	case VGA1_PLL:
		ulPllReg = PEEK32(VGA_PLL1_CTRL);
		break;
	}

	pPLL->M = FIELD_GET(ulPllReg, PANEL_PLL_CTRL, M);
	pPLL->N = FIELD_GET(ulPllReg, PANEL_PLL_CTRL, N);
	pPLL->OD = FIELD_GET(ulPllReg, PANEL_PLL_CTRL, OD);
	pPLL->POD = FIELD_GET(ulPllReg, PANEL_PLL_CTRL, POD);

	return calcPLL(pPLL);
}


unsigned int getChipClock(void)
{
	pll_value_t pll;
#if 1
	if (getChipType() == SM750LE)
		return MHz(130);
#endif

	return getPllValue(MXCLK_PLL, &pll);
}


/*
 * This function set up the main chip clock.
 *
 * Input: Frequency to be set.
 */
void setChipClock(unsigned int frequency)
{
	pll_value_t pll;
	unsigned int ulActualMxClk;
#if 1
	/* Cheok_0509: For SM750LE, the chip clock is fixed. Nothing to set. */
	if (getChipType() == SM750LE)
		return;
#endif

	if (frequency) {
		/*
		* Set up PLL, a structure to hold the value to be set in clocks.
		*/
		pll.inputFreq = DEFAULT_INPUT_CLOCK; /* Defined in CLOCK.H */
		pll.clockType = MXCLK_PLL;

		/*
		* Call calcPllValue() to fill up the other fields for PLL structure.
		* Sometime, the chip cannot set up the exact clock required by User.
		* Return value from calcPllValue() gives the actual possible clock.
		*/
		ulActualMxClk = calcPllValue(frequency, &pll);

		/* Master Clock Control: MXCLK_PLL */
		POKE32(MXCLK_PLL_CTRL, formatPllReg(&pll));
	}
}



void setMemoryClock(unsigned int frequency)
{
	unsigned int ulReg, divisor;
 #if 1
	/* Cheok_0509: For SM750LE, the memory clock is fixed. Nothing to set. */
	if (getChipType() == SM750LE)
		return;
#endif
	if (frequency) {
		/* Set the frequency to the maximum frequency that the DDR Memory can take
		which is 336MHz. */
		if (frequency > MHz(336))
			frequency = MHz(336);

		/* Calculate the divisor */
		divisor = (unsigned int) roundedDiv(getChipClock(), frequency);

		/* Set the corresponding divisor in the register. */
		ulReg = PEEK32(CURRENT_GATE);
		switch (divisor) {
		default:
		case 1:
			ulReg = FIELD_SET(ulReg, CURRENT_GATE, M2XCLK, DIV_1);
			break;
		case 2:
			ulReg = FIELD_SET(ulReg, CURRENT_GATE, M2XCLK, DIV_2);
			break;
		case 3:
			ulReg = FIELD_SET(ulReg, CURRENT_GATE, M2XCLK, DIV_3);
			break;
		case 4:
			ulReg = FIELD_SET(ulReg, CURRENT_GATE, M2XCLK, DIV_4);
			break;
		}

		setCurrentGate(ulReg);
	}
}


/*
 * This function set up the master clock (MCLK).
 *
 * Input: Frequency to be set.
 *
 * NOTE:
 *      The maximum frequency the engine can run is 168MHz.
 */
void setMasterClock(unsigned int frequency)
{
	unsigned int ulReg, divisor;
#if 1
	/* Cheok_0509: For SM750LE, the memory clock is fixed. Nothing to set. */
	if (getChipType() == SM750LE)
		return;
#endif
	if (frequency) {
		/* Set the frequency to the maximum frequency that the SM750 engine can
		run, which is about 190 MHz. */
		if (frequency > MHz(190))
			frequency = MHz(190);

		/* Calculate the divisor */
		divisor = (unsigned int) roundedDiv(getChipClock(), frequency);

		/* Set the corresponding divisor in the register. */
		ulReg = PEEK32(CURRENT_GATE);
		switch (divisor) {
		default:
		case 3:
			ulReg = FIELD_SET(ulReg, CURRENT_GATE, MCLK, DIV_3);
			break;
		case 4:
			ulReg = FIELD_SET(ulReg, CURRENT_GATE, MCLK, DIV_4);
			break;
		case 6:
			ulReg = FIELD_SET(ulReg, CURRENT_GATE, MCLK, DIV_6);
			break;
		case 8:
			ulReg = FIELD_SET(ulReg, CURRENT_GATE, MCLK, DIV_8);
			break;
		}

		setCurrentGate(ulReg);
		}
}


unsigned int ddk750_getVMSize(void)
{
	unsigned int reg;
	unsigned int data;

	/* sm750le only use 64 mb memory*/
	if (getChipType() == SM750LE)
		return MB(64);

	/* for 750,always use power mode0*/
	reg = PEEK32(MODE0_GATE);
	reg = FIELD_SET(reg, MODE0_GATE, GPIO, ON);
	POKE32(MODE0_GATE, reg);

	/* get frame buffer size from GPIO */
	reg = FIELD_GET(PEEK32(MISC_CTRL), MISC_CTRL, LOCALMEM_SIZE);
	switch (reg) {
	case MISC_CTRL_LOCALMEM_SIZE_8M:
		data = MB(8);  break; /* 8  Mega byte */
	case MISC_CTRL_LOCALMEM_SIZE_16M:
		data = MB(16); break; /* 16 Mega byte */
	case MISC_CTRL_LOCALMEM_SIZE_32M:
		data = MB(32); break; /* 32 Mega byte */
	case MISC_CTRL_LOCALMEM_SIZE_64M:
		data = MB(64); break; /* 64 Mega byte */
	default:
		data = 0;
		break;
	}
	return data;

}

int ddk750_initHw(initchip_param_t *pInitParam)
{

	unsigned int ulReg;
#if 0
	//move the code to map regiter function.
	if (getChipType() == SM718) {
		/* turn on big endian bit*/
		ulReg = PEEK32(0x74);
		/* now consider register definition in a big endian pattern*/
		POKE32(0x74, ulReg|0x80000000);
	}

#endif


	if (pInitParam->powerMode != 0 )
		pInitParam->powerMode = 0;
	setPowerMode(pInitParam->powerMode);

	/* Enable display power gate & LOCALMEM power gate*/
	ulReg = PEEK32(CURRENT_GATE);
	ulReg = FIELD_SET(ulReg, CURRENT_GATE, DISPLAY, ON);
	ulReg = FIELD_SET(ulReg, CURRENT_GATE, LOCALMEM, ON);
	setCurrentGate(ulReg);

	if (getChipType() != SM750LE) {
		/*	set panel pll and graphic mode via mmio_88 */
		ulReg = PEEK32(VGA_CONFIGURATION);
		ulReg = FIELD_SET(ulReg, VGA_CONFIGURATION, PLL, PANEL);
		ulReg = FIELD_SET(ulReg, VGA_CONFIGURATION, MODE, GRAPHIC);
		POKE32(VGA_CONFIGURATION, ulReg);
	} else {
#if defined(__i386__) || defined( __x86_64__)
		/* set graphic mode via IO method */
		outb_p(0x88, 0x3d4);
		outb_p(0x06, 0x3d5);
#endif
	}

	/* Set the Main Chip Clock */
	setChipClock(MHz((unsigned int)pInitParam->chipClock));

	/* Set up memory clock. */
	setMemoryClock(MHz(pInitParam->memClock));

	/* Set up master clock */
	setMasterClock(MHz(pInitParam->masterClock));


	/* Reset the memory controller. If the memory controller is not reset in SM750,
	   the system might hang when sw accesses the memory.
	   The memory should be resetted after changing the MXCLK.
	 */
	if (pInitParam->resetMemory == 1) {
		ulReg = PEEK32(MISC_CTRL);
		ulReg = FIELD_SET(ulReg, MISC_CTRL, LOCALMEM_RESET, RESET);
		POKE32(MISC_CTRL, ulReg);

		ulReg = FIELD_SET(ulReg, MISC_CTRL, LOCALMEM_RESET, NORMAL);
		POKE32(MISC_CTRL, ulReg);
	}

	if (pInitParam->setAllEngOff == 1) {
		enable2DEngine(0);

		/* Disable Overlay, if a former application left it on */
		ulReg = PEEK32(VIDEO_DISPLAY_CTRL);
		ulReg = FIELD_SET(ulReg, VIDEO_DISPLAY_CTRL, PLANE, DISABLE);
		POKE32(VIDEO_DISPLAY_CTRL, ulReg);

		/* Disable video alpha, if a former application left it on */
		ulReg = PEEK32(VIDEO_ALPHA_DISPLAY_CTRL);
		ulReg = FIELD_SET(ulReg, VIDEO_ALPHA_DISPLAY_CTRL, PLANE, DISABLE);
		POKE32(VIDEO_ALPHA_DISPLAY_CTRL, ulReg);

		/* Disable alpha plane, if a former application left it on */
		ulReg = PEEK32(ALPHA_DISPLAY_CTRL);
		ulReg = FIELD_SET(ulReg, ALPHA_DISPLAY_CTRL, PLANE, DISABLE);
		POKE32(ALPHA_DISPLAY_CTRL, ulReg);

#if 0
		/* Disable LCD hardware cursor, if a former application left it on */
		ulReg = PEEK32(PANEL_HWC_ADDRESS);
		ulReg = FIELD_SET(ulReg, PANEL_HWC_ADDRESS, ENABLE, DISABLE);
		POKE32(PANEL_HWC_ADDRESS, ulReg);

		/* Disable CRT hardware cursor, if a former application left it on */
		ulReg = PEEK32(CRT_HWC_ADDRESS);
		ulReg = FIELD_SET(ulReg, CRT_HWC_ADDRESS, ENABLE, DISABLE);
		POKE32(CRT_HWC_ADDRESS, ulReg);

		/* Disable ZV Port 0, if a former application left it on */
		ulReg = PEEK32(ZV0_CAPTURE_CTRL);
		ulReg = FIELD_SET(ulReg, ZV0_CAPTURE_CTRL, CAP, DISABLE);
		POKE32(ZV0_CAPTURE_CTRL, ulReg);

		/* Disable ZV Port 1, if a former application left it on */
		ulReg = PEEK32(ZV1_CAPTURE_CTRL);
		ulReg = FIELD_SET(ulReg, ZV1_CAPTURE_CTRL, CAP, DISABLE);
		POKE32(ZV1_CAPTURE_CTRL, ulReg);

		/* Disable ZV Port Power, if a former application left it on */
		enableZVPort(0);
		/* Disable DMA Channel, if a former application left it on */
		ulReg = PEEK32(DMA_ABORT_INTERRUPT);
		ulReg = FIELD_SET(ulReg, DMA_ABORT_INTERRUPT, ABORT_1, ABORT);
		POKE32(DMA_ABORT_INTERRUPT, ulReg);

		/* Disable i2c */
		enableI2C(0);
#endif
		/* Disable DMA Channel, if a former application left it on */
		ulReg = PEEK32(DMA_ABORT_INTERRUPT);
		ulReg = FIELD_SET(ulReg, DMA_ABORT_INTERRUPT, ABORT_1, ABORT);
		POKE32(DMA_ABORT_INTERRUPT, ulReg);

		/* Disable DMA Power, if a former application left it on */
		enableDMA(0);
	}

	/* We can add more initialization as needed. */

	return 0;
}

#if 0

unsigned int absDiff(unsigned int a, unsigned int b)
{
	if ( a > b )
		return(a - b);
	else
		return(b - a);
}

#endif
/*
	monk liu @ 4/6/2011:
		   re-write the calculatePLL function of ddk750.
		   the original version function does not use some mathematics tricks and shortcut
		   when it doing the calculation of the best N,M,D combination
		   I think this version gives a little upgrade in speed

	750 pll clock formular:
	Request Clock = (Input Clock * M )/(N * X)

	Input Clock = 14318181 hz
	X = 2 power D
	D ={0,1,2,3,4,5,6}
	M = {1,...,255}
	N = {2,...,15}
*/
unsigned int calcPllValue(unsigned int request_orig, pll_value_t *pll)
{
	/* used for primary and secondary channel pixel clock pll */
	static pllcalparam xparm_PIXEL[] = {
		/* 2^0 = 1*/			{0, 0, 0, 1},
		/* 2^ 1 =2*/			{1, 0, 1, 2},
		/* 2^ 2  = 4*/		{2, 0, 2, 4},
							{3, 0, 3, 8},
							{4, 1, 3, 16},
							{5, 2, 3, 32},
		/* 2^6 = 64  */		{6, 3, 3, 64},
							};

	/* used for MXCLK (chip clock) */
	static pllcalparam xparm_MXCLK[] = {
		/* 2^0 = 1*/			{0, 0, 0, 1},
		/* 2^ 1 =2*/			{1, 0, 1, 2},
		/* 2^ 2  = 4*/		{2, 0, 2, 4},
							{3, 0, 3, 8},
							};

	/* as sm750 register definition, N located in 2,15 and M located in 1,255	*/
	int N, M, X, d;
	int xcnt;
	int miniDiff;
	unsigned int RN, quo, rem, fl_quo;
	unsigned int input, request;
	unsigned int tmpClock, ret;
	pllcalparam * xparm;

#if 1
	if (getChipType() == SM750LE) {
		/* SM750LE don't have prgrammable PLL and M/N values to work on.
		Just return the requested clock. */
		return request_orig;
	}
#endif

	ret = 0;
	miniDiff = ~0;
	request = request_orig / 1000;
	input = pll->inputFreq / 1000;

	/* for MXCLK register , no POD provided, so need be treated differently	*/

	if (pll->clockType != MXCLK_PLL) {
		xparm = &xparm_PIXEL[0];
		xcnt = sizeof(xparm_PIXEL)/sizeof(xparm_PIXEL[0]);
	} else {
		xparm = &xparm_MXCLK[0];
		xcnt = sizeof(xparm_MXCLK)/sizeof(xparm_MXCLK[0]);
	}


	for (N = 15; N > 1; N--) {
		/* RN will not exceed maximum long if @request <= 285 MHZ (for 32bit cpu) */
		RN = N * request;
		quo = RN / input;
		rem = RN % input;/* rem always small than 14318181 */
		fl_quo = (rem * 10000 /input);

		for (d = xcnt - 1; d >= 0; d--) {
			X = xparm[d].value;
			M = quo*X;
			M += fl_quo * X / 10000;
			/* round step */
			M += (fl_quo*X % 10000)>5000?1:0;
			if (M < 256 && M > 0) {
				unsigned int diff;
				tmpClock = pll->inputFreq *M / N / X;
				diff = absDiff(tmpClock, request_orig);
				if (diff < miniDiff) {
					pll->M = M;
					pll->N = N;
					pll->OD = xparm[d].od;
					pll->POD = xparm[d].pod;
					miniDiff = diff;
					ret = tmpClock;
				}
			}
		}
	}

	//printk("Finally:  pll->n[%lu],m[%lu],od[%lu],pod[%lu]\n",pll->N,pll->M,pll->OD,pll->POD);
	return ret;
}

unsigned int calcPllValue2(
unsigned int ulRequestClk, /* Required pixel clock in Hz unit */
pll_value_t *pPLL           /* Structure to hold the value to be set in PLL */
)
{
	unsigned int M, N, OD, POD = 0, diff, pllClk, odPower, podPower;
	unsigned int bestDiff = 0xffffffff; /* biggest 32 bit unsigned number */
	unsigned int ret;
    /* Init PLL structure to know states */
	pPLL->M = 0;
	pPLL->N = 0;
	pPLL->OD = 0;
	pPLL->POD = 0;

    /* Sanity check: None at the moment */

    /* Convert everything in Khz range in order to avoid calculation overflow */
	pPLL->inputFreq /= 1000;
	ulRequestClk /= 1000;

#ifndef VALIDATION_CHIP
    /* The maximum of post divider is 8. */
	for (POD = 0; POD <= 3; POD++)
#endif
		{

#ifndef VALIDATION_CHIP
	/* MXCLK_PLL does not have post divider. */
	if ((POD > 0) && (pPLL->clockType == MXCLK_PLL))
		break;
#endif

	/* Work out 2 to the power of POD */
	podPower = twoToPowerOfx(POD);

	/* OD has only 2 bits [15:14] and its value must between 0 to 3 */
	for (OD = 0; OD <= 3; OD++) {
		/* Work out 2 to the power of OD */
		odPower = twoToPowerOfx(OD);

#ifdef VALIDATION_CHIP
	if (odPower > 4)
		podPower = 4;
	else
		podPower = odPower;
#endif

		/* N has 4 bits [11:8] and its value must between 2 and 15.
		The N == 1 will behave differently --> Result is not correct. */
	for (N = 2; N <= 15; N++) {
		/* The formula for PLL is ulRequestClk = inputFreq * M / N / (2^OD)
		In the following steps, we try to work out a best M value given the others are known.
		To avoid decimal calculation, we use 1000 as multiplier for up to 3 decimal places of accuracy.
		*/
		M = ulRequestClk * N * odPower * 1000 / pPLL->inputFreq;
		M = roundedDiv(M, 1000);

		/* M field has only 8 bits, reject value bigger than 8 bits */
		if (M < 256) {
			/* Calculate the actual clock for a given M & N */
			pllClk = pPLL->inputFreq * M / N / odPower / podPower;

			/* How much are we different from the requirement */
			diff = absDiff(pllClk, ulRequestClk);

			if (diff < bestDiff) {
				bestDiff = diff;

				/* Store M and N values */
				pPLL->M  = M;
				pPLL->N  = N;
				pPLL->OD = OD;

#ifdef VALIDATION_CHIP
			if (OD > 2)
				POD = 2;
			else
				POD = OD;
#endif

			pPLL->POD = POD;
			}
		}
	}
	}
	}

    /* Restore input frequency from Khz to hz unit */
//    pPLL->inputFreq *= 1000;
	ulRequestClk *= 1000;
	pPLL->inputFreq = DEFAULT_INPUT_CLOCK; /* Default reference clock */

    /* Output debug information */
	//DDKDEBUGPRINT((DISPLAY_LEVEL, "calcPllValue: Requested Frequency = %d\n", ulRequestClk));
	//DDKDEBUGPRINT((DISPLAY_LEVEL, "calcPllValue: Input CLK = %dHz, M=%d, N=%d, OD=%d, POD=%d\n", pPLL->inputFreq, pPLL->M, pPLL->N, pPLL->OD, pPLL->POD));

    /* Return actual frequency that the PLL can set */
	ret = calcPLL(pPLL);
	return ret;
}





unsigned int formatPllReg(pll_value_t *pPLL)
{
	unsigned int ulPllReg = 0;

    /* Note that all PLL's have the same format. Here, we just use Panel PLL parameter
       to work out the bit fields in the register.
       On returning a 32 bit number, the value can be applied to any PLL in the calling function.
    */
	ulPllReg =
	FIELD_SET(  0, PANEL_PLL_CTRL, BYPASS, OFF)
	| FIELD_SET(  0, PANEL_PLL_CTRL, POWER,  ON)
	| FIELD_SET(  0, PANEL_PLL_CTRL, INPUT,  OSC)
#ifndef VALIDATION_CHIP
	| FIELD_VALUE(0, PANEL_PLL_CTRL, POD,    pPLL->POD)
#endif
	| FIELD_VALUE(0, PANEL_PLL_CTRL, OD,     pPLL->OD)
	| FIELD_VALUE(0, PANEL_PLL_CTRL, N,      pPLL->N)
	| FIELD_VALUE(0, PANEL_PLL_CTRL, M,      pPLL->M);

    return ulPllReg;
}