Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
/* Common capabilities, needed by capability.o.
 *
 *	This program is free software; you can redistribute it and/or modify
 *	it under the terms of the GNU General Public License as published by
 *	the Free Software Foundation; either version 2 of the License, or
 *	(at your option) any later version.
 *
 */

#include <linux/capability.h>
#include <linux/audit.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/lsm_hooks.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/skbuff.h>
#include <linux/netlink.h>
#include <linux/ptrace.h>
#include <linux/xattr.h>
#include <linux/hugetlb.h>
#include <linux/mount.h>
#include <linux/sched.h>
#include <linux/prctl.h>
#include <linux/securebits.h>
#include <linux/user_namespace.h>
#include <linux/binfmts.h>
#include <linux/personality.h>

/*
 * If a non-root user executes a setuid-root binary in
 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
 * However if fE is also set, then the intent is for only
 * the file capabilities to be applied, and the setuid-root
 * bit is left on either to change the uid (plausible) or
 * to get full privilege on a kernel without file capabilities
 * support.  So in that case we do not raise capabilities.
 *
 * Warn if that happens, once per boot.
 */
static void warn_setuid_and_fcaps_mixed(const char *fname)
{
	static int warned;
	if (!warned) {
		printk(KERN_INFO "warning: `%s' has both setuid-root and"
			" effective capabilities. Therefore not raising all"
			" capabilities.\n", fname);
		warned = 1;
	}
}

/**
 * cap_capable - Determine whether a task has a particular effective capability
 * @cred: The credentials to use
 * @ns:  The user namespace in which we need the capability
 * @cap: The capability to check for
 * @audit: Whether to write an audit message or not
 *
 * Determine whether the nominated task has the specified capability amongst
 * its effective set, returning 0 if it does, -ve if it does not.
 *
 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
 * and has_capability() functions.  That is, it has the reverse semantics:
 * cap_has_capability() returns 0 when a task has a capability, but the
 * kernel's capable() and has_capability() returns 1 for this case.
 */
int cap_capable(const struct cred *cred, struct user_namespace *targ_ns,
		int cap, int audit)
{
	struct user_namespace *ns = targ_ns;

	/* See if cred has the capability in the target user namespace
	 * by examining the target user namespace and all of the target
	 * user namespace's parents.
	 */
	for (;;) {
		/* Do we have the necessary capabilities? */
		if (ns == cred->user_ns)
			return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;

		/* Have we tried all of the parent namespaces? */
		if (ns == &init_user_ns)
			return -EPERM;

		/* 
		 * The owner of the user namespace in the parent of the
		 * user namespace has all caps.
		 */
		if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid))
			return 0;

		/*
		 * If you have a capability in a parent user ns, then you have
		 * it over all children user namespaces as well.
		 */
		ns = ns->parent;
	}

	/* We never get here */
}

/**
 * cap_settime - Determine whether the current process may set the system clock
 * @ts: The time to set
 * @tz: The timezone to set
 *
 * Determine whether the current process may set the system clock and timezone
 * information, returning 0 if permission granted, -ve if denied.
 */
int cap_settime(const struct timespec64 *ts, const struct timezone *tz)
{
	if (!capable(CAP_SYS_TIME))
		return -EPERM;
	return 0;
}

/**
 * cap_ptrace_access_check - Determine whether the current process may access
 *			   another
 * @child: The process to be accessed
 * @mode: The mode of attachment.
 *
 * If we are in the same or an ancestor user_ns and have all the target
 * task's capabilities, then ptrace access is allowed.
 * If we have the ptrace capability to the target user_ns, then ptrace
 * access is allowed.
 * Else denied.
 *
 * Determine whether a process may access another, returning 0 if permission
 * granted, -ve if denied.
 */
int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
{
	int ret = 0;
	const struct cred *cred, *child_cred;
	const kernel_cap_t *caller_caps;

	rcu_read_lock();
	cred = current_cred();
	child_cred = __task_cred(child);
	if (mode & PTRACE_MODE_FSCREDS)
		caller_caps = &cred->cap_effective;
	else
		caller_caps = &cred->cap_permitted;
	if (cred->user_ns == child_cred->user_ns &&
	    cap_issubset(child_cred->cap_permitted, *caller_caps))
		goto out;
	if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE))
		goto out;
	ret = -EPERM;
out:
	rcu_read_unlock();
	return ret;
}

/**
 * cap_ptrace_traceme - Determine whether another process may trace the current
 * @parent: The task proposed to be the tracer
 *
 * If parent is in the same or an ancestor user_ns and has all current's
 * capabilities, then ptrace access is allowed.
 * If parent has the ptrace capability to current's user_ns, then ptrace
 * access is allowed.
 * Else denied.
 *
 * Determine whether the nominated task is permitted to trace the current
 * process, returning 0 if permission is granted, -ve if denied.
 */
int cap_ptrace_traceme(struct task_struct *parent)
{
	int ret = 0;
	const struct cred *cred, *child_cred;

	rcu_read_lock();
	cred = __task_cred(parent);
	child_cred = current_cred();
	if (cred->user_ns == child_cred->user_ns &&
	    cap_issubset(child_cred->cap_permitted, cred->cap_permitted))
		goto out;
	if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE))
		goto out;
	ret = -EPERM;
out:
	rcu_read_unlock();
	return ret;
}

/**
 * cap_capget - Retrieve a task's capability sets
 * @target: The task from which to retrieve the capability sets
 * @effective: The place to record the effective set
 * @inheritable: The place to record the inheritable set
 * @permitted: The place to record the permitted set
 *
 * This function retrieves the capabilities of the nominated task and returns
 * them to the caller.
 */
int cap_capget(struct task_struct *target, kernel_cap_t *effective,
	       kernel_cap_t *inheritable, kernel_cap_t *permitted)
{
	const struct cred *cred;

	/* Derived from kernel/capability.c:sys_capget. */
	rcu_read_lock();
	cred = __task_cred(target);
	*effective   = cred->cap_effective;
	*inheritable = cred->cap_inheritable;
	*permitted   = cred->cap_permitted;
	rcu_read_unlock();
	return 0;
}

/*
 * Determine whether the inheritable capabilities are limited to the old
 * permitted set.  Returns 1 if they are limited, 0 if they are not.
 */
static inline int cap_inh_is_capped(void)
{

	/* they are so limited unless the current task has the CAP_SETPCAP
	 * capability
	 */
	if (cap_capable(current_cred(), current_cred()->user_ns,
			CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0)
		return 0;
	return 1;
}

/**
 * cap_capset - Validate and apply proposed changes to current's capabilities
 * @new: The proposed new credentials; alterations should be made here
 * @old: The current task's current credentials
 * @effective: A pointer to the proposed new effective capabilities set
 * @inheritable: A pointer to the proposed new inheritable capabilities set
 * @permitted: A pointer to the proposed new permitted capabilities set
 *
 * This function validates and applies a proposed mass change to the current
 * process's capability sets.  The changes are made to the proposed new
 * credentials, and assuming no error, will be committed by the caller of LSM.
 */
int cap_capset(struct cred *new,
	       const struct cred *old,
	       const kernel_cap_t *effective,
	       const kernel_cap_t *inheritable,
	       const kernel_cap_t *permitted)
{
	if (cap_inh_is_capped() &&
	    !cap_issubset(*inheritable,
			  cap_combine(old->cap_inheritable,
				      old->cap_permitted)))
		/* incapable of using this inheritable set */
		return -EPERM;

	if (!cap_issubset(*inheritable,
			  cap_combine(old->cap_inheritable,
				      old->cap_bset)))
		/* no new pI capabilities outside bounding set */
		return -EPERM;

	/* verify restrictions on target's new Permitted set */
	if (!cap_issubset(*permitted, old->cap_permitted))
		return -EPERM;

	/* verify the _new_Effective_ is a subset of the _new_Permitted_ */
	if (!cap_issubset(*effective, *permitted))
		return -EPERM;

	new->cap_effective   = *effective;
	new->cap_inheritable = *inheritable;
	new->cap_permitted   = *permitted;

	/*
	 * Mask off ambient bits that are no longer both permitted and
	 * inheritable.
	 */
	new->cap_ambient = cap_intersect(new->cap_ambient,
					 cap_intersect(*permitted,
						       *inheritable));
	if (WARN_ON(!cap_ambient_invariant_ok(new)))
		return -EINVAL;
	return 0;
}

/*
 * Clear proposed capability sets for execve().
 */
static inline void bprm_clear_caps(struct linux_binprm *bprm)
{
	cap_clear(bprm->cred->cap_permitted);
	bprm->cap_effective = false;
}

/**
 * cap_inode_need_killpriv - Determine if inode change affects privileges
 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
 *
 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
 * affects the security markings on that inode, and if it is, should
 * inode_killpriv() be invoked or the change rejected?
 *
 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
 * -ve to deny the change.
 */
int cap_inode_need_killpriv(struct dentry *dentry)
{
	struct inode *inode = d_backing_inode(dentry);
	int error;

	error = __vfs_getxattr(dentry, inode, XATTR_NAME_CAPS, NULL, 0);
	return error > 0;
}

/**
 * cap_inode_killpriv - Erase the security markings on an inode
 * @dentry: The inode/dentry to alter
 *
 * Erase the privilege-enhancing security markings on an inode.
 *
 * Returns 0 if successful, -ve on error.
 */
int cap_inode_killpriv(struct dentry *dentry)
{
	int error;

	error = __vfs_removexattr(dentry, XATTR_NAME_CAPS);
	if (error == -EOPNOTSUPP)
		error = 0;
	return error;
}

/*
 * Calculate the new process capability sets from the capability sets attached
 * to a file.
 */
static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
					  struct linux_binprm *bprm,
					  bool *effective,
					  bool *has_cap)
{
	struct cred *new = bprm->cred;
	unsigned i;
	int ret = 0;

	if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
		*effective = true;

	if (caps->magic_etc & VFS_CAP_REVISION_MASK)
		*has_cap = true;

	CAP_FOR_EACH_U32(i) {
		__u32 permitted = caps->permitted.cap[i];
		__u32 inheritable = caps->inheritable.cap[i];

		/*
		 * pP' = (X & fP) | (pI & fI)
		 * The addition of pA' is handled later.
		 */
		new->cap_permitted.cap[i] =
			(new->cap_bset.cap[i] & permitted) |
			(new->cap_inheritable.cap[i] & inheritable);

		if (permitted & ~new->cap_permitted.cap[i])
			/* insufficient to execute correctly */
			ret = -EPERM;
	}

	/*
	 * For legacy apps, with no internal support for recognizing they
	 * do not have enough capabilities, we return an error if they are
	 * missing some "forced" (aka file-permitted) capabilities.
	 */
	return *effective ? ret : 0;
}

/*
 * Extract the on-exec-apply capability sets for an executable file.
 */
int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
{
	struct inode *inode = d_backing_inode(dentry);
	__u32 magic_etc;
	unsigned tocopy, i;
	int size;
	struct vfs_cap_data caps;

	memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));

	if (!inode)
		return -ENODATA;

	size = __vfs_getxattr((struct dentry *)dentry, inode,
			      XATTR_NAME_CAPS, &caps, XATTR_CAPS_SZ);
	if (size == -ENODATA || size == -EOPNOTSUPP)
		/* no data, that's ok */
		return -ENODATA;
	if (size < 0)
		return size;

	if (size < sizeof(magic_etc))
		return -EINVAL;

	cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);

	switch (magic_etc & VFS_CAP_REVISION_MASK) {
	case VFS_CAP_REVISION_1:
		if (size != XATTR_CAPS_SZ_1)
			return -EINVAL;
		tocopy = VFS_CAP_U32_1;
		break;
	case VFS_CAP_REVISION_2:
		if (size != XATTR_CAPS_SZ_2)
			return -EINVAL;
		tocopy = VFS_CAP_U32_2;
		break;
	default:
		return -EINVAL;
	}

	CAP_FOR_EACH_U32(i) {
		if (i >= tocopy)
			break;
		cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
		cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
	}

	cpu_caps->permitted.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;
	cpu_caps->inheritable.cap[CAP_LAST_U32] &= CAP_LAST_U32_VALID_MASK;

	return 0;
}

/*
 * Attempt to get the on-exec apply capability sets for an executable file from
 * its xattrs and, if present, apply them to the proposed credentials being
 * constructed by execve().
 */
static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap)
{
	int rc = 0;
	struct cpu_vfs_cap_data vcaps;

	bprm_clear_caps(bprm);

	if (!file_caps_enabled)
		return 0;

	if (!mnt_may_suid(bprm->file->f_path.mnt))
		return 0;

	/*
	 * This check is redundant with mnt_may_suid() but is kept to make
	 * explicit that capability bits are limited to s_user_ns and its
	 * descendants.
	 */
	if (!current_in_userns(bprm->file->f_path.mnt->mnt_sb->s_user_ns))
		return 0;

	rc = get_vfs_caps_from_disk(bprm->file->f_path.dentry, &vcaps);
	if (rc < 0) {
		if (rc == -EINVAL)
			printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
				__func__, rc, bprm->filename);
		else if (rc == -ENODATA)
			rc = 0;
		goto out;
	}

	rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap);
	if (rc == -EINVAL)
		printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
		       __func__, rc, bprm->filename);

out:
	if (rc)
		bprm_clear_caps(bprm);

	return rc;
}

/**
 * cap_bprm_set_creds - Set up the proposed credentials for execve().
 * @bprm: The execution parameters, including the proposed creds
 *
 * Set up the proposed credentials for a new execution context being
 * constructed by execve().  The proposed creds in @bprm->cred is altered,
 * which won't take effect immediately.  Returns 0 if successful, -ve on error.
 */
int cap_bprm_set_creds(struct linux_binprm *bprm)
{
	const struct cred *old = current_cred();
	struct cred *new = bprm->cred;
	bool effective, has_cap = false, is_setid;
	int ret;
	kuid_t root_uid;

	if (WARN_ON(!cap_ambient_invariant_ok(old)))
		return -EPERM;

	effective = false;
	ret = get_file_caps(bprm, &effective, &has_cap);
	if (ret < 0)
		return ret;

	root_uid = make_kuid(new->user_ns, 0);

	if (!issecure(SECURE_NOROOT)) {
		/*
		 * If the legacy file capability is set, then don't set privs
		 * for a setuid root binary run by a non-root user.  Do set it
		 * for a root user just to cause least surprise to an admin.
		 */
		if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) {
			warn_setuid_and_fcaps_mixed(bprm->filename);
			goto skip;
		}
		/*
		 * To support inheritance of root-permissions and suid-root
		 * executables under compatibility mode, we override the
		 * capability sets for the file.
		 *
		 * If only the real uid is 0, we do not set the effective bit.
		 */
		if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) {
			/* pP' = (cap_bset & ~0) | (pI & ~0) */
			new->cap_permitted = cap_combine(old->cap_bset,
							 old->cap_inheritable);
		}
		if (uid_eq(new->euid, root_uid))
			effective = true;
	}
skip:

	/* if we have fs caps, clear dangerous personality flags */
	if (!cap_issubset(new->cap_permitted, old->cap_permitted))
		bprm->per_clear |= PER_CLEAR_ON_SETID;


	/* Don't let someone trace a set[ug]id/setpcap binary with the revised
	 * credentials unless they have the appropriate permit.
	 *
	 * In addition, if NO_NEW_PRIVS, then ensure we get no new privs.
	 */
	is_setid = !uid_eq(new->euid, old->uid) || !gid_eq(new->egid, old->gid);

	if ((is_setid ||
	     !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
	    ((bprm->unsafe & ~LSM_UNSAFE_PTRACE) ||
	     !ptracer_capable(current, new->user_ns))) {
		/* downgrade; they get no more than they had, and maybe less */
		if (!ns_capable(new->user_ns, CAP_SETUID) ||
		    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) {
			new->euid = new->uid;
			new->egid = new->gid;
		}
		new->cap_permitted = cap_intersect(new->cap_permitted,
						   old->cap_permitted);
	}

	new->suid = new->fsuid = new->euid;
	new->sgid = new->fsgid = new->egid;

	/* File caps or setid cancels ambient. */
	if (has_cap || is_setid)
		cap_clear(new->cap_ambient);

	/*
	 * Now that we've computed pA', update pP' to give:
	 *   pP' = (X & fP) | (pI & fI) | pA'
	 */
	new->cap_permitted = cap_combine(new->cap_permitted, new->cap_ambient);

	/*
	 * Set pE' = (fE ? pP' : pA').  Because pA' is zero if fE is set,
	 * this is the same as pE' = (fE ? pP' : 0) | pA'.
	 */
	if (effective)
		new->cap_effective = new->cap_permitted;
	else
		new->cap_effective = new->cap_ambient;

	if (WARN_ON(!cap_ambient_invariant_ok(new)))
		return -EPERM;

	bprm->cap_effective = effective;

	/*
	 * Audit candidate if current->cap_effective is set
	 *
	 * We do not bother to audit if 3 things are true:
	 *   1) cap_effective has all caps
	 *   2) we are root
	 *   3) root is supposed to have all caps (SECURE_NOROOT)
	 * Since this is just a normal root execing a process.
	 *
	 * Number 1 above might fail if you don't have a full bset, but I think
	 * that is interesting information to audit.
	 */
	if (!cap_issubset(new->cap_effective, new->cap_ambient)) {
		if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
		    !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) ||
		    issecure(SECURE_NOROOT)) {
			ret = audit_log_bprm_fcaps(bprm, new, old);
			if (ret < 0)
				return ret;
		}
	}

	new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);

	if (WARN_ON(!cap_ambient_invariant_ok(new)))
		return -EPERM;

	return 0;
}

/**
 * cap_bprm_secureexec - Determine whether a secure execution is required
 * @bprm: The execution parameters
 *
 * Determine whether a secure execution is required, return 1 if it is, and 0
 * if it is not.
 *
 * The credentials have been committed by this point, and so are no longer
 * available through @bprm->cred.
 */
int cap_bprm_secureexec(struct linux_binprm *bprm)
{
	const struct cred *cred = current_cred();
	kuid_t root_uid = make_kuid(cred->user_ns, 0);

	if (!uid_eq(cred->uid, root_uid)) {
		if (bprm->cap_effective)
			return 1;
		if (!cap_issubset(cred->cap_permitted, cred->cap_ambient))
			return 1;
	}

	return (!uid_eq(cred->euid, cred->uid) ||
		!gid_eq(cred->egid, cred->gid));
}

/**
 * cap_inode_setxattr - Determine whether an xattr may be altered
 * @dentry: The inode/dentry being altered
 * @name: The name of the xattr to be changed
 * @value: The value that the xattr will be changed to
 * @size: The size of value
 * @flags: The replacement flag
 *
 * Determine whether an xattr may be altered or set on an inode, returning 0 if
 * permission is granted, -ve if denied.
 *
 * This is used to make sure security xattrs don't get updated or set by those
 * who aren't privileged to do so.
 */
int cap_inode_setxattr(struct dentry *dentry, const char *name,
		       const void *value, size_t size, int flags)
{
	if (!strcmp(name, XATTR_NAME_CAPS)) {
		if (!capable(CAP_SETFCAP))
			return -EPERM;
		return 0;
	}

	if (!strncmp(name, XATTR_SECURITY_PREFIX,
		     sizeof(XATTR_SECURITY_PREFIX) - 1) &&
	    !capable(CAP_SYS_ADMIN))
		return -EPERM;
	return 0;
}

/**
 * cap_inode_removexattr - Determine whether an xattr may be removed
 * @dentry: The inode/dentry being altered
 * @name: The name of the xattr to be changed
 *
 * Determine whether an xattr may be removed from an inode, returning 0 if
 * permission is granted, -ve if denied.
 *
 * This is used to make sure security xattrs don't get removed by those who
 * aren't privileged to remove them.
 */
int cap_inode_removexattr(struct dentry *dentry, const char *name)
{
	if (!strcmp(name, XATTR_NAME_CAPS)) {
		if (!capable(CAP_SETFCAP))
			return -EPERM;
		return 0;
	}

	if (!strncmp(name, XATTR_SECURITY_PREFIX,
		     sizeof(XATTR_SECURITY_PREFIX) - 1) &&
	    !capable(CAP_SYS_ADMIN))
		return -EPERM;
	return 0;
}

/*
 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
 * a process after a call to setuid, setreuid, or setresuid.
 *
 *  1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
 *  {r,e,s}uid != 0, the permitted and effective capabilities are
 *  cleared.
 *
 *  2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
 *  capabilities of the process are cleared.
 *
 *  3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
 *  capabilities are set to the permitted capabilities.
 *
 *  fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
 *  never happen.
 *
 *  -astor
 *
 * cevans - New behaviour, Oct '99
 * A process may, via prctl(), elect to keep its capabilities when it
 * calls setuid() and switches away from uid==0. Both permitted and
 * effective sets will be retained.
 * Without this change, it was impossible for a daemon to drop only some
 * of its privilege. The call to setuid(!=0) would drop all privileges!
 * Keeping uid 0 is not an option because uid 0 owns too many vital
 * files..
 * Thanks to Olaf Kirch and Peter Benie for spotting this.
 */
static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
{
	kuid_t root_uid = make_kuid(old->user_ns, 0);

	if ((uid_eq(old->uid, root_uid) ||
	     uid_eq(old->euid, root_uid) ||
	     uid_eq(old->suid, root_uid)) &&
	    (!uid_eq(new->uid, root_uid) &&
	     !uid_eq(new->euid, root_uid) &&
	     !uid_eq(new->suid, root_uid))) {
		if (!issecure(SECURE_KEEP_CAPS)) {
			cap_clear(new->cap_permitted);
			cap_clear(new->cap_effective);
		}

		/*
		 * Pre-ambient programs expect setresuid to nonroot followed
		 * by exec to drop capabilities.  We should make sure that
		 * this remains the case.
		 */
		cap_clear(new->cap_ambient);
	}
	if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid))
		cap_clear(new->cap_effective);
	if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid))
		new->cap_effective = new->cap_permitted;
}

/**
 * cap_task_fix_setuid - Fix up the results of setuid() call
 * @new: The proposed credentials
 * @old: The current task's current credentials
 * @flags: Indications of what has changed
 *
 * Fix up the results of setuid() call before the credential changes are
 * actually applied, returning 0 to grant the changes, -ve to deny them.
 */
int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
{
	switch (flags) {
	case LSM_SETID_RE:
	case LSM_SETID_ID:
	case LSM_SETID_RES:
		/* juggle the capabilities to follow [RES]UID changes unless
		 * otherwise suppressed */
		if (!issecure(SECURE_NO_SETUID_FIXUP))
			cap_emulate_setxuid(new, old);
		break;

	case LSM_SETID_FS:
		/* juggle the capabilties to follow FSUID changes, unless
		 * otherwise suppressed
		 *
		 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
		 *          if not, we might be a bit too harsh here.
		 */
		if (!issecure(SECURE_NO_SETUID_FIXUP)) {
			kuid_t root_uid = make_kuid(old->user_ns, 0);
			if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid))
				new->cap_effective =
					cap_drop_fs_set(new->cap_effective);

			if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid))
				new->cap_effective =
					cap_raise_fs_set(new->cap_effective,
							 new->cap_permitted);
		}
		break;

	default:
		return -EINVAL;
	}

	return 0;
}

/*
 * Rationale: code calling task_setscheduler, task_setioprio, and
 * task_setnice, assumes that
 *   . if capable(cap_sys_nice), then those actions should be allowed
 *   . if not capable(cap_sys_nice), but acting on your own processes,
 *   	then those actions should be allowed
 * This is insufficient now since you can call code without suid, but
 * yet with increased caps.
 * So we check for increased caps on the target process.
 */
static int cap_safe_nice(struct task_struct *p)
{
	int is_subset, ret = 0;

	rcu_read_lock();
	is_subset = cap_issubset(__task_cred(p)->cap_permitted,
				 current_cred()->cap_permitted);
	if (!is_subset && !ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE))
		ret = -EPERM;
	rcu_read_unlock();

	return ret;
}

/**
 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
 * @p: The task to affect
 *
 * Detemine if the requested scheduler policy change is permitted for the
 * specified task, returning 0 if permission is granted, -ve if denied.
 */
int cap_task_setscheduler(struct task_struct *p)
{
	return cap_safe_nice(p);
}

/**
 * cap_task_ioprio - Detemine if I/O priority change is permitted
 * @p: The task to affect
 * @ioprio: The I/O priority to set
 *
 * Detemine if the requested I/O priority change is permitted for the specified
 * task, returning 0 if permission is granted, -ve if denied.
 */
int cap_task_setioprio(struct task_struct *p, int ioprio)
{
	return cap_safe_nice(p);
}

/**
 * cap_task_ioprio - Detemine if task priority change is permitted
 * @p: The task to affect
 * @nice: The nice value to set
 *
 * Detemine if the requested task priority change is permitted for the
 * specified task, returning 0 if permission is granted, -ve if denied.
 */
int cap_task_setnice(struct task_struct *p, int nice)
{
	return cap_safe_nice(p);
}

/*
 * Implement PR_CAPBSET_DROP.  Attempt to remove the specified capability from
 * the current task's bounding set.  Returns 0 on success, -ve on error.
 */
static int cap_prctl_drop(unsigned long cap)
{
	struct cred *new;

	if (!ns_capable(current_user_ns(), CAP_SETPCAP))
		return -EPERM;
	if (!cap_valid(cap))
		return -EINVAL;

	new = prepare_creds();
	if (!new)
		return -ENOMEM;
	cap_lower(new->cap_bset, cap);
	return commit_creds(new);
}

/**
 * cap_task_prctl - Implement process control functions for this security module
 * @option: The process control function requested
 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
 *
 * Allow process control functions (sys_prctl()) to alter capabilities; may
 * also deny access to other functions not otherwise implemented here.
 *
 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
 * here, other -ve on error.  If -ENOSYS is returned, sys_prctl() and other LSM
 * modules will consider performing the function.
 */
int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
		   unsigned long arg4, unsigned long arg5)
{
	const struct cred *old = current_cred();
	struct cred *new;

	switch (option) {
	case PR_CAPBSET_READ:
		if (!cap_valid(arg2))
			return -EINVAL;
		return !!cap_raised(old->cap_bset, arg2);

	case PR_CAPBSET_DROP:
		return cap_prctl_drop(arg2);

	/*
	 * The next four prctl's remain to assist with transitioning a
	 * system from legacy UID=0 based privilege (when filesystem
	 * capabilities are not in use) to a system using filesystem
	 * capabilities only - as the POSIX.1e draft intended.
	 *
	 * Note:
	 *
	 *  PR_SET_SECUREBITS =
	 *      issecure_mask(SECURE_KEEP_CAPS_LOCKED)
	 *    | issecure_mask(SECURE_NOROOT)
	 *    | issecure_mask(SECURE_NOROOT_LOCKED)
	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP)
	 *    | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
	 *
	 * will ensure that the current process and all of its
	 * children will be locked into a pure
	 * capability-based-privilege environment.
	 */
	case PR_SET_SECUREBITS:
		if ((((old->securebits & SECURE_ALL_LOCKS) >> 1)
		     & (old->securebits ^ arg2))			/*[1]*/
		    || ((old->securebits & SECURE_ALL_LOCKS & ~arg2))	/*[2]*/
		    || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS))	/*[3]*/
		    || (cap_capable(current_cred(),
				    current_cred()->user_ns, CAP_SETPCAP,
				    SECURITY_CAP_AUDIT) != 0)		/*[4]*/
			/*
			 * [1] no changing of bits that are locked
			 * [2] no unlocking of locks
			 * [3] no setting of unsupported bits
			 * [4] doing anything requires privilege (go read about
			 *     the "sendmail capabilities bug")
			 */
		    )
			/* cannot change a locked bit */
			return -EPERM;

		new = prepare_creds();
		if (!new)
			return -ENOMEM;
		new->securebits = arg2;
		return commit_creds(new);

	case PR_GET_SECUREBITS:
		return old->securebits;

	case PR_GET_KEEPCAPS:
		return !!issecure(SECURE_KEEP_CAPS);

	case PR_SET_KEEPCAPS:
		if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
			return -EINVAL;
		if (issecure(SECURE_KEEP_CAPS_LOCKED))
			return -EPERM;

		new = prepare_creds();
		if (!new)
			return -ENOMEM;
		if (arg2)
			new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
		else
			new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
		return commit_creds(new);

	case PR_CAP_AMBIENT:
		if (arg2 == PR_CAP_AMBIENT_CLEAR_ALL) {
			if (arg3 | arg4 | arg5)
				return -EINVAL;

			new = prepare_creds();
			if (!new)
				return -ENOMEM;
			cap_clear(new->cap_ambient);
			return commit_creds(new);
		}

		if (((!cap_valid(arg3)) | arg4 | arg5))
			return -EINVAL;

		if (arg2 == PR_CAP_AMBIENT_IS_SET) {
			return !!cap_raised(current_cred()->cap_ambient, arg3);
		} else if (arg2 != PR_CAP_AMBIENT_RAISE &&
			   arg2 != PR_CAP_AMBIENT_LOWER) {
			return -EINVAL;
		} else {
			if (arg2 == PR_CAP_AMBIENT_RAISE &&
			    (!cap_raised(current_cred()->cap_permitted, arg3) ||
			     !cap_raised(current_cred()->cap_inheritable,
					 arg3) ||
			     issecure(SECURE_NO_CAP_AMBIENT_RAISE)))
				return -EPERM;

			new = prepare_creds();
			if (!new)
				return -ENOMEM;
			if (arg2 == PR_CAP_AMBIENT_RAISE)
				cap_raise(new->cap_ambient, arg3);
			else
				cap_lower(new->cap_ambient, arg3);
			return commit_creds(new);
		}

	default:
		/* No functionality available - continue with default */
		return -ENOSYS;
	}
}

/**
 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
 * @mm: The VM space in which the new mapping is to be made
 * @pages: The size of the mapping
 *
 * Determine whether the allocation of a new virtual mapping by the current
 * task is permitted, returning 1 if permission is granted, 0 if not.
 */
int cap_vm_enough_memory(struct mm_struct *mm, long pages)
{
	int cap_sys_admin = 0;

	if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
			SECURITY_CAP_NOAUDIT) == 0)
		cap_sys_admin = 1;
	return cap_sys_admin;
}

/*
 * cap_mmap_addr - check if able to map given addr
 * @addr: address attempting to be mapped
 *
 * If the process is attempting to map memory below dac_mmap_min_addr they need
 * CAP_SYS_RAWIO.  The other parameters to this function are unused by the
 * capability security module.  Returns 0 if this mapping should be allowed
 * -EPERM if not.
 */
int cap_mmap_addr(unsigned long addr)
{
	int ret = 0;

	if (addr < dac_mmap_min_addr) {
		ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO,
				  SECURITY_CAP_AUDIT);
		/* set PF_SUPERPRIV if it turns out we allow the low mmap */
		if (ret == 0)
			current->flags |= PF_SUPERPRIV;
	}
	return ret;
}

int cap_mmap_file(struct file *file, unsigned long reqprot,
		  unsigned long prot, unsigned long flags)
{
	return 0;
}

#ifdef CONFIG_SECURITY

struct security_hook_list capability_hooks[] = {
	LSM_HOOK_INIT(capable, cap_capable),
	LSM_HOOK_INIT(settime, cap_settime),
	LSM_HOOK_INIT(ptrace_access_check, cap_ptrace_access_check),
	LSM_HOOK_INIT(ptrace_traceme, cap_ptrace_traceme),
	LSM_HOOK_INIT(capget, cap_capget),
	LSM_HOOK_INIT(capset, cap_capset),
	LSM_HOOK_INIT(bprm_set_creds, cap_bprm_set_creds),
	LSM_HOOK_INIT(bprm_secureexec, cap_bprm_secureexec),
	LSM_HOOK_INIT(inode_need_killpriv, cap_inode_need_killpriv),
	LSM_HOOK_INIT(inode_killpriv, cap_inode_killpriv),
	LSM_HOOK_INIT(mmap_addr, cap_mmap_addr),
	LSM_HOOK_INIT(mmap_file, cap_mmap_file),
	LSM_HOOK_INIT(task_fix_setuid, cap_task_fix_setuid),
	LSM_HOOK_INIT(task_prctl, cap_task_prctl),
	LSM_HOOK_INIT(task_setscheduler, cap_task_setscheduler),
	LSM_HOOK_INIT(task_setioprio, cap_task_setioprio),
	LSM_HOOK_INIT(task_setnice, cap_task_setnice),
	LSM_HOOK_INIT(vm_enough_memory, cap_vm_enough_memory),
};

void __init capability_add_hooks(void)
{
	security_add_hooks(capability_hooks, ARRAY_SIZE(capability_hooks),
				"capability");
}

#endif /* CONFIG_SECURITY */