Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 | /* Common capabilities, needed by capability.o. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * */ #include <linux/capability.h> #include <linux/audit.h> #include <linux/module.h> #include <linux/init.h> #include <linux/kernel.h> #include <linux/security.h> #include <linux/file.h> #include <linux/mm.h> #include <linux/mman.h> #include <linux/pagemap.h> #include <linux/swap.h> #include <linux/skbuff.h> #include <linux/netlink.h> #include <linux/ptrace.h> #include <linux/xattr.h> #include <linux/hugetlb.h> #include <linux/mount.h> #include <linux/sched.h> #include <linux/prctl.h> #include <linux/securebits.h> #include <linux/user_namespace.h> #include <linux/binfmts.h> #include <linux/personality.h> /* * If a non-root user executes a setuid-root binary in * !secure(SECURE_NOROOT) mode, then we raise capabilities. * However if fE is also set, then the intent is for only * the file capabilities to be applied, and the setuid-root * bit is left on either to change the uid (plausible) or * to get full privilege on a kernel without file capabilities * support. So in that case we do not raise capabilities. * * Warn if that happens, once per boot. */ static void warn_setuid_and_fcaps_mixed(const char *fname) { static int warned; if (!warned) { printk(KERN_INFO "warning: `%s' has both setuid-root and" " effective capabilities. Therefore not raising all" " capabilities.\n", fname); warned = 1; } } int cap_netlink_send(struct sock *sk, struct sk_buff *skb) { return 0; } /** * cap_capable - Determine whether a task has a particular effective capability * @cred: The credentials to use * @ns: The user namespace in which we need the capability * @cap: The capability to check for * @audit: Whether to write an audit message or not * * Determine whether the nominated task has the specified capability amongst * its effective set, returning 0 if it does, -ve if it does not. * * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable() * and has_capability() functions. That is, it has the reverse semantics: * cap_has_capability() returns 0 when a task has a capability, but the * kernel's capable() and has_capability() returns 1 for this case. */ int cap_capable(const struct cred *cred, struct user_namespace *targ_ns, int cap, int audit) { struct user_namespace *ns = targ_ns; /* See if cred has the capability in the target user namespace * by examining the target user namespace and all of the target * user namespace's parents. */ for (;;) { /* Do we have the necessary capabilities? */ if (ns == cred->user_ns) return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM; /* Have we tried all of the parent namespaces? */ if (ns == &init_user_ns) return -EPERM; /* * The owner of the user namespace in the parent of the * user namespace has all caps. */ if ((ns->parent == cred->user_ns) && uid_eq(ns->owner, cred->euid)) return 0; /* * If you have a capability in a parent user ns, then you have * it over all children user namespaces as well. */ ns = ns->parent; } /* We never get here */ } /** * cap_settime - Determine whether the current process may set the system clock * @ts: The time to set * @tz: The timezone to set * * Determine whether the current process may set the system clock and timezone * information, returning 0 if permission granted, -ve if denied. */ int cap_settime(const struct timespec *ts, const struct timezone *tz) { if (!capable(CAP_SYS_TIME)) return -EPERM; return 0; } /** * cap_ptrace_access_check - Determine whether the current process may access * another * @child: The process to be accessed * @mode: The mode of attachment. * * If we are in the same or an ancestor user_ns and have all the target * task's capabilities, then ptrace access is allowed. * If we have the ptrace capability to the target user_ns, then ptrace * access is allowed. * Else denied. * * Determine whether a process may access another, returning 0 if permission * granted, -ve if denied. */ int cap_ptrace_access_check(struct task_struct *child, unsigned int mode) { int ret = 0; const struct cred *cred, *child_cred; rcu_read_lock(); cred = current_cred(); child_cred = __task_cred(child); if (cred->user_ns == child_cred->user_ns && cap_issubset(child_cred->cap_permitted, cred->cap_permitted)) goto out; if (ns_capable(child_cred->user_ns, CAP_SYS_PTRACE)) goto out; ret = -EPERM; out: rcu_read_unlock(); return ret; } /** * cap_ptrace_traceme - Determine whether another process may trace the current * @parent: The task proposed to be the tracer * * If parent is in the same or an ancestor user_ns and has all current's * capabilities, then ptrace access is allowed. * If parent has the ptrace capability to current's user_ns, then ptrace * access is allowed. * Else denied. * * Determine whether the nominated task is permitted to trace the current * process, returning 0 if permission is granted, -ve if denied. */ int cap_ptrace_traceme(struct task_struct *parent) { int ret = 0; const struct cred *cred, *child_cred; rcu_read_lock(); cred = __task_cred(parent); child_cred = current_cred(); if (cred->user_ns == child_cred->user_ns && cap_issubset(child_cred->cap_permitted, cred->cap_permitted)) goto out; if (has_ns_capability(parent, child_cred->user_ns, CAP_SYS_PTRACE)) goto out; ret = -EPERM; out: rcu_read_unlock(); return ret; } /** * cap_capget - Retrieve a task's capability sets * @target: The task from which to retrieve the capability sets * @effective: The place to record the effective set * @inheritable: The place to record the inheritable set * @permitted: The place to record the permitted set * * This function retrieves the capabilities of the nominated task and returns * them to the caller. */ int cap_capget(struct task_struct *target, kernel_cap_t *effective, kernel_cap_t *inheritable, kernel_cap_t *permitted) { const struct cred *cred; /* Derived from kernel/capability.c:sys_capget. */ rcu_read_lock(); cred = __task_cred(target); *effective = cred->cap_effective; *inheritable = cred->cap_inheritable; *permitted = cred->cap_permitted; rcu_read_unlock(); return 0; } /* * Determine whether the inheritable capabilities are limited to the old * permitted set. Returns 1 if they are limited, 0 if they are not. */ static inline int cap_inh_is_capped(void) { /* they are so limited unless the current task has the CAP_SETPCAP * capability */ if (cap_capable(current_cred(), current_cred()->user_ns, CAP_SETPCAP, SECURITY_CAP_AUDIT) == 0) return 0; return 1; } /** * cap_capset - Validate and apply proposed changes to current's capabilities * @new: The proposed new credentials; alterations should be made here * @old: The current task's current credentials * @effective: A pointer to the proposed new effective capabilities set * @inheritable: A pointer to the proposed new inheritable capabilities set * @permitted: A pointer to the proposed new permitted capabilities set * * This function validates and applies a proposed mass change to the current * process's capability sets. The changes are made to the proposed new * credentials, and assuming no error, will be committed by the caller of LSM. */ int cap_capset(struct cred *new, const struct cred *old, const kernel_cap_t *effective, const kernel_cap_t *inheritable, const kernel_cap_t *permitted) { if (cap_inh_is_capped() && !cap_issubset(*inheritable, cap_combine(old->cap_inheritable, old->cap_permitted))) /* incapable of using this inheritable set */ return -EPERM; if (!cap_issubset(*inheritable, cap_combine(old->cap_inheritable, old->cap_bset))) /* no new pI capabilities outside bounding set */ return -EPERM; /* verify restrictions on target's new Permitted set */ if (!cap_issubset(*permitted, old->cap_permitted)) return -EPERM; /* verify the _new_Effective_ is a subset of the _new_Permitted_ */ if (!cap_issubset(*effective, *permitted)) return -EPERM; new->cap_effective = *effective; new->cap_inheritable = *inheritable; new->cap_permitted = *permitted; return 0; } /* * Clear proposed capability sets for execve(). */ static inline void bprm_clear_caps(struct linux_binprm *bprm) { cap_clear(bprm->cred->cap_permitted); bprm->cap_effective = false; } /** * cap_inode_need_killpriv - Determine if inode change affects privileges * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV * * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV * affects the security markings on that inode, and if it is, should * inode_killpriv() be invoked or the change rejected? * * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and * -ve to deny the change. */ int cap_inode_need_killpriv(struct dentry *dentry) { struct inode *inode = dentry->d_inode; int error; if (!inode->i_op->getxattr) return 0; error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0); if (error <= 0) return 0; return 1; } /** * cap_inode_killpriv - Erase the security markings on an inode * @dentry: The inode/dentry to alter * * Erase the privilege-enhancing security markings on an inode. * * Returns 0 if successful, -ve on error. */ int cap_inode_killpriv(struct dentry *dentry) { struct inode *inode = dentry->d_inode; if (!inode->i_op->removexattr) return 0; return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS); } /* * Calculate the new process capability sets from the capability sets attached * to a file. */ static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps, struct linux_binprm *bprm, bool *effective, bool *has_cap) { struct cred *new = bprm->cred; unsigned i; int ret = 0; if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE) *effective = true; if (caps->magic_etc & VFS_CAP_REVISION_MASK) *has_cap = true; CAP_FOR_EACH_U32(i) { __u32 permitted = caps->permitted.cap[i]; __u32 inheritable = caps->inheritable.cap[i]; /* * pP' = (X & fP) | (pI & fI) */ new->cap_permitted.cap[i] = (new->cap_bset.cap[i] & permitted) | (new->cap_inheritable.cap[i] & inheritable); if (permitted & ~new->cap_permitted.cap[i]) /* insufficient to execute correctly */ ret = -EPERM; } /* * For legacy apps, with no internal support for recognizing they * do not have enough capabilities, we return an error if they are * missing some "forced" (aka file-permitted) capabilities. */ return *effective ? ret : 0; } /* * Extract the on-exec-apply capability sets for an executable file. */ int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps) { struct inode *inode = dentry->d_inode; __u32 magic_etc; unsigned tocopy, i; int size; struct vfs_cap_data caps; memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data)); if (!inode || !inode->i_op->getxattr) return -ENODATA; size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps, XATTR_CAPS_SZ); if (size == -ENODATA || size == -EOPNOTSUPP) /* no data, that's ok */ return -ENODATA; if (size < 0) return size; if (size < sizeof(magic_etc)) return -EINVAL; cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc); switch (magic_etc & VFS_CAP_REVISION_MASK) { case VFS_CAP_REVISION_1: if (size != XATTR_CAPS_SZ_1) return -EINVAL; tocopy = VFS_CAP_U32_1; break; case VFS_CAP_REVISION_2: if (size != XATTR_CAPS_SZ_2) return -EINVAL; tocopy = VFS_CAP_U32_2; break; default: return -EINVAL; } CAP_FOR_EACH_U32(i) { if (i >= tocopy) break; cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted); cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable); } return 0; } /* * Attempt to get the on-exec apply capability sets for an executable file from * its xattrs and, if present, apply them to the proposed credentials being * constructed by execve(). */ static int get_file_caps(struct linux_binprm *bprm, bool *effective, bool *has_cap) { struct dentry *dentry; int rc = 0; struct cpu_vfs_cap_data vcaps; bprm_clear_caps(bprm); if (!file_caps_enabled) return 0; if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) return 0; dentry = dget(bprm->file->f_dentry); rc = get_vfs_caps_from_disk(dentry, &vcaps); if (rc < 0) { if (rc == -EINVAL) printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n", __func__, rc, bprm->filename); else if (rc == -ENODATA) rc = 0; goto out; } rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective, has_cap); if (rc == -EINVAL) printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n", __func__, rc, bprm->filename); out: dput(dentry); if (rc) bprm_clear_caps(bprm); return rc; } /** * cap_bprm_set_creds - Set up the proposed credentials for execve(). * @bprm: The execution parameters, including the proposed creds * * Set up the proposed credentials for a new execution context being * constructed by execve(). The proposed creds in @bprm->cred is altered, * which won't take effect immediately. Returns 0 if successful, -ve on error. */ int cap_bprm_set_creds(struct linux_binprm *bprm) { const struct cred *old = current_cred(); struct cred *new = bprm->cred; bool effective, has_cap = false; int ret; kuid_t root_uid; effective = false; ret = get_file_caps(bprm, &effective, &has_cap); if (ret < 0) return ret; root_uid = make_kuid(new->user_ns, 0); if (!issecure(SECURE_NOROOT)) { /* * If the legacy file capability is set, then don't set privs * for a setuid root binary run by a non-root user. Do set it * for a root user just to cause least surprise to an admin. */ if (has_cap && !uid_eq(new->uid, root_uid) && uid_eq(new->euid, root_uid)) { warn_setuid_and_fcaps_mixed(bprm->filename); goto skip; } /* * To support inheritance of root-permissions and suid-root * executables under compatibility mode, we override the * capability sets for the file. * * If only the real uid is 0, we do not set the effective bit. */ if (uid_eq(new->euid, root_uid) || uid_eq(new->uid, root_uid)) { /* pP' = (cap_bset & ~0) | (pI & ~0) */ new->cap_permitted = cap_combine(old->cap_bset, old->cap_inheritable); } if (uid_eq(new->euid, root_uid)) effective = true; } skip: /* if we have fs caps, clear dangerous personality flags */ if (!cap_issubset(new->cap_permitted, old->cap_permitted)) bprm->per_clear |= PER_CLEAR_ON_SETID; /* Don't let someone trace a set[ug]id/setpcap binary with the revised * credentials unless they have the appropriate permit. * * In addition, if NO_NEW_PRIVS, then ensure we get no new privs. */ if ((!uid_eq(new->euid, old->uid) || !gid_eq(new->egid, old->gid) || !cap_issubset(new->cap_permitted, old->cap_permitted)) && bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) { /* downgrade; they get no more than they had, and maybe less */ if (!capable(CAP_SETUID) || (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)) { new->euid = new->uid; new->egid = new->gid; } new->cap_permitted = cap_intersect(new->cap_permitted, old->cap_permitted); } new->suid = new->fsuid = new->euid; new->sgid = new->fsgid = new->egid; if (effective) new->cap_effective = new->cap_permitted; else cap_clear(new->cap_effective); bprm->cap_effective = effective; /* * Audit candidate if current->cap_effective is set * * We do not bother to audit if 3 things are true: * 1) cap_effective has all caps * 2) we are root * 3) root is supposed to have all caps (SECURE_NOROOT) * Since this is just a normal root execing a process. * * Number 1 above might fail if you don't have a full bset, but I think * that is interesting information to audit. */ if (!cap_isclear(new->cap_effective)) { if (!cap_issubset(CAP_FULL_SET, new->cap_effective) || !uid_eq(new->euid, root_uid) || !uid_eq(new->uid, root_uid) || issecure(SECURE_NOROOT)) { ret = audit_log_bprm_fcaps(bprm, new, old); if (ret < 0) return ret; } } new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); return 0; } /** * cap_bprm_secureexec - Determine whether a secure execution is required * @bprm: The execution parameters * * Determine whether a secure execution is required, return 1 if it is, and 0 * if it is not. * * The credentials have been committed by this point, and so are no longer * available through @bprm->cred. */ int cap_bprm_secureexec(struct linux_binprm *bprm) { const struct cred *cred = current_cred(); kuid_t root_uid = make_kuid(cred->user_ns, 0); if (!uid_eq(cred->uid, root_uid)) { if (bprm->cap_effective) return 1; if (!cap_isclear(cred->cap_permitted)) return 1; } return (!uid_eq(cred->euid, cred->uid) || !gid_eq(cred->egid, cred->gid)); } /** * cap_inode_setxattr - Determine whether an xattr may be altered * @dentry: The inode/dentry being altered * @name: The name of the xattr to be changed * @value: The value that the xattr will be changed to * @size: The size of value * @flags: The replacement flag * * Determine whether an xattr may be altered or set on an inode, returning 0 if * permission is granted, -ve if denied. * * This is used to make sure security xattrs don't get updated or set by those * who aren't privileged to do so. */ int cap_inode_setxattr(struct dentry *dentry, const char *name, const void *value, size_t size, int flags) { if (!strcmp(name, XATTR_NAME_CAPS)) { if (!capable(CAP_SETFCAP)) return -EPERM; return 0; } if (!strncmp(name, XATTR_SECURITY_PREFIX, sizeof(XATTR_SECURITY_PREFIX) - 1) && !capable(CAP_SYS_ADMIN)) return -EPERM; return 0; } /** * cap_inode_removexattr - Determine whether an xattr may be removed * @dentry: The inode/dentry being altered * @name: The name of the xattr to be changed * * Determine whether an xattr may be removed from an inode, returning 0 if * permission is granted, -ve if denied. * * This is used to make sure security xattrs don't get removed by those who * aren't privileged to remove them. */ int cap_inode_removexattr(struct dentry *dentry, const char *name) { if (!strcmp(name, XATTR_NAME_CAPS)) { if (!capable(CAP_SETFCAP)) return -EPERM; return 0; } if (!strncmp(name, XATTR_SECURITY_PREFIX, sizeof(XATTR_SECURITY_PREFIX) - 1) && !capable(CAP_SYS_ADMIN)) return -EPERM; return 0; } /* * cap_emulate_setxuid() fixes the effective / permitted capabilities of * a process after a call to setuid, setreuid, or setresuid. * * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of * {r,e,s}uid != 0, the permitted and effective capabilities are * cleared. * * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective * capabilities of the process are cleared. * * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective * capabilities are set to the permitted capabilities. * * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should * never happen. * * -astor * * cevans - New behaviour, Oct '99 * A process may, via prctl(), elect to keep its capabilities when it * calls setuid() and switches away from uid==0. Both permitted and * effective sets will be retained. * Without this change, it was impossible for a daemon to drop only some * of its privilege. The call to setuid(!=0) would drop all privileges! * Keeping uid 0 is not an option because uid 0 owns too many vital * files.. * Thanks to Olaf Kirch and Peter Benie for spotting this. */ static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old) { kuid_t root_uid = make_kuid(old->user_ns, 0); if ((uid_eq(old->uid, root_uid) || uid_eq(old->euid, root_uid) || uid_eq(old->suid, root_uid)) && (!uid_eq(new->uid, root_uid) && !uid_eq(new->euid, root_uid) && !uid_eq(new->suid, root_uid)) && !issecure(SECURE_KEEP_CAPS)) { cap_clear(new->cap_permitted); cap_clear(new->cap_effective); } if (uid_eq(old->euid, root_uid) && !uid_eq(new->euid, root_uid)) cap_clear(new->cap_effective); if (!uid_eq(old->euid, root_uid) && uid_eq(new->euid, root_uid)) new->cap_effective = new->cap_permitted; } /** * cap_task_fix_setuid - Fix up the results of setuid() call * @new: The proposed credentials * @old: The current task's current credentials * @flags: Indications of what has changed * * Fix up the results of setuid() call before the credential changes are * actually applied, returning 0 to grant the changes, -ve to deny them. */ int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags) { switch (flags) { case LSM_SETID_RE: case LSM_SETID_ID: case LSM_SETID_RES: /* juggle the capabilities to follow [RES]UID changes unless * otherwise suppressed */ if (!issecure(SECURE_NO_SETUID_FIXUP)) cap_emulate_setxuid(new, old); break; case LSM_SETID_FS: /* juggle the capabilties to follow FSUID changes, unless * otherwise suppressed * * FIXME - is fsuser used for all CAP_FS_MASK capabilities? * if not, we might be a bit too harsh here. */ if (!issecure(SECURE_NO_SETUID_FIXUP)) { kuid_t root_uid = make_kuid(old->user_ns, 0); if (uid_eq(old->fsuid, root_uid) && !uid_eq(new->fsuid, root_uid)) new->cap_effective = cap_drop_fs_set(new->cap_effective); if (!uid_eq(old->fsuid, root_uid) && uid_eq(new->fsuid, root_uid)) new->cap_effective = cap_raise_fs_set(new->cap_effective, new->cap_permitted); } break; default: return -EINVAL; } return 0; } /* * Rationale: code calling task_setscheduler, task_setioprio, and * task_setnice, assumes that * . if capable(cap_sys_nice), then those actions should be allowed * . if not capable(cap_sys_nice), but acting on your own processes, * then those actions should be allowed * This is insufficient now since you can call code without suid, but * yet with increased caps. * So we check for increased caps on the target process. */ static int cap_safe_nice(struct task_struct *p) { int is_subset; rcu_read_lock(); is_subset = cap_issubset(__task_cred(p)->cap_permitted, current_cred()->cap_permitted); rcu_read_unlock(); if (!is_subset && !capable(CAP_SYS_NICE)) return -EPERM; return 0; } /** * cap_task_setscheduler - Detemine if scheduler policy change is permitted * @p: The task to affect * * Detemine if the requested scheduler policy change is permitted for the * specified task, returning 0 if permission is granted, -ve if denied. */ int cap_task_setscheduler(struct task_struct *p) { return cap_safe_nice(p); } /** * cap_task_ioprio - Detemine if I/O priority change is permitted * @p: The task to affect * @ioprio: The I/O priority to set * * Detemine if the requested I/O priority change is permitted for the specified * task, returning 0 if permission is granted, -ve if denied. */ int cap_task_setioprio(struct task_struct *p, int ioprio) { return cap_safe_nice(p); } /** * cap_task_ioprio - Detemine if task priority change is permitted * @p: The task to affect * @nice: The nice value to set * * Detemine if the requested task priority change is permitted for the * specified task, returning 0 if permission is granted, -ve if denied. */ int cap_task_setnice(struct task_struct *p, int nice) { return cap_safe_nice(p); } /* * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from * the current task's bounding set. Returns 0 on success, -ve on error. */ static long cap_prctl_drop(struct cred *new, unsigned long cap) { if (!capable(CAP_SETPCAP)) return -EPERM; if (!cap_valid(cap)) return -EINVAL; cap_lower(new->cap_bset, cap); return 0; } /** * cap_task_prctl - Implement process control functions for this security module * @option: The process control function requested * @arg2, @arg3, @arg4, @arg5: The argument data for this function * * Allow process control functions (sys_prctl()) to alter capabilities; may * also deny access to other functions not otherwise implemented here. * * Returns 0 or +ve on success, -ENOSYS if this function is not implemented * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM * modules will consider performing the function. */ int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3, unsigned long arg4, unsigned long arg5) { struct cred *new; long error = 0; new = prepare_creds(); if (!new) return -ENOMEM; switch (option) { case PR_CAPBSET_READ: error = -EINVAL; if (!cap_valid(arg2)) goto error; error = !!cap_raised(new->cap_bset, arg2); goto no_change; case PR_CAPBSET_DROP: error = cap_prctl_drop(new, arg2); if (error < 0) goto error; goto changed; /* * The next four prctl's remain to assist with transitioning a * system from legacy UID=0 based privilege (when filesystem * capabilities are not in use) to a system using filesystem * capabilities only - as the POSIX.1e draft intended. * * Note: * * PR_SET_SECUREBITS = * issecure_mask(SECURE_KEEP_CAPS_LOCKED) * | issecure_mask(SECURE_NOROOT) * | issecure_mask(SECURE_NOROOT_LOCKED) * | issecure_mask(SECURE_NO_SETUID_FIXUP) * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED) * * will ensure that the current process and all of its * children will be locked into a pure * capability-based-privilege environment. */ case PR_SET_SECUREBITS: error = -EPERM; if ((((new->securebits & SECURE_ALL_LOCKS) >> 1) & (new->securebits ^ arg2)) /*[1]*/ || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/ || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/ || (cap_capable(current_cred(), current_cred()->user_ns, CAP_SETPCAP, SECURITY_CAP_AUDIT) != 0) /*[4]*/ /* * [1] no changing of bits that are locked * [2] no unlocking of locks * [3] no setting of unsupported bits * [4] doing anything requires privilege (go read about * the "sendmail capabilities bug") */ ) /* cannot change a locked bit */ goto error; new->securebits = arg2; goto changed; case PR_GET_SECUREBITS: error = new->securebits; goto no_change; case PR_GET_KEEPCAPS: if (issecure(SECURE_KEEP_CAPS)) error = 1; goto no_change; case PR_SET_KEEPCAPS: error = -EINVAL; if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */ goto error; error = -EPERM; if (issecure(SECURE_KEEP_CAPS_LOCKED)) goto error; if (arg2) new->securebits |= issecure_mask(SECURE_KEEP_CAPS); else new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS); goto changed; default: /* No functionality available - continue with default */ error = -ENOSYS; goto error; } /* Functionality provided */ changed: return commit_creds(new); no_change: error: abort_creds(new); return error; } /** * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted * @mm: The VM space in which the new mapping is to be made * @pages: The size of the mapping * * Determine whether the allocation of a new virtual mapping by the current * task is permitted, returning 0 if permission is granted, -ve if not. */ int cap_vm_enough_memory(struct mm_struct *mm, long pages) { int cap_sys_admin = 0; if (cap_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN, SECURITY_CAP_NOAUDIT) == 0) cap_sys_admin = 1; return __vm_enough_memory(mm, pages, cap_sys_admin); } /* * cap_mmap_addr - check if able to map given addr * @addr: address attempting to be mapped * * If the process is attempting to map memory below dac_mmap_min_addr they need * CAP_SYS_RAWIO. The other parameters to this function are unused by the * capability security module. Returns 0 if this mapping should be allowed * -EPERM if not. */ int cap_mmap_addr(unsigned long addr) { int ret = 0; if (addr < dac_mmap_min_addr) { ret = cap_capable(current_cred(), &init_user_ns, CAP_SYS_RAWIO, SECURITY_CAP_AUDIT); /* set PF_SUPERPRIV if it turns out we allow the low mmap */ if (ret == 0) current->flags |= PF_SUPERPRIV; } return ret; } int cap_mmap_file(struct file *file, unsigned long reqprot, unsigned long prot, unsigned long flags) { return 0; } |