Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 | /* * linux/kernel/hrtimer.c * * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner * * High-resolution kernel timers * * In contrast to the low-resolution timeout API implemented in * kernel/timer.c, hrtimers provide finer resolution and accuracy * depending on system configuration and capabilities. * * These timers are currently used for: * - itimers * - POSIX timers * - nanosleep * - precise in-kernel timing * * Started by: Thomas Gleixner and Ingo Molnar * * Credits: * based on kernel/timer.c * * Help, testing, suggestions, bugfixes, improvements were * provided by: * * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel * et. al. * * For licencing details see kernel-base/COPYING */ #include <linux/cpu.h> #include <linux/export.h> #include <linux/percpu.h> #include <linux/hrtimer.h> #include <linux/notifier.h> #include <linux/syscalls.h> #include <linux/kallsyms.h> #include <linux/interrupt.h> #include <linux/tick.h> #include <linux/seq_file.h> #include <linux/err.h> #include <linux/debugobjects.h> #include <linux/sched.h> #include <linux/timer.h> #include <asm/uaccess.h> #include <trace/events/timer.h> /* * The timer bases: * * There are more clockids then hrtimer bases. Thus, we index * into the timer bases by the hrtimer_base_type enum. When trying * to reach a base using a clockid, hrtimer_clockid_to_base() * is used to convert from clockid to the proper hrtimer_base_type. */ DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = { .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), .clock_base = { { .index = HRTIMER_BASE_MONOTONIC, .clockid = CLOCK_MONOTONIC, .get_time = &ktime_get, .resolution = KTIME_LOW_RES, }, { .index = HRTIMER_BASE_REALTIME, .clockid = CLOCK_REALTIME, .get_time = &ktime_get_real, .resolution = KTIME_LOW_RES, }, { .index = HRTIMER_BASE_BOOTTIME, .clockid = CLOCK_BOOTTIME, .get_time = &ktime_get_boottime, .resolution = KTIME_LOW_RES, }, } }; static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = { [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME, [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC, [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME, }; static inline int hrtimer_clockid_to_base(clockid_t clock_id) { return hrtimer_clock_to_base_table[clock_id]; } /* * Get the coarse grained time at the softirq based on xtime and * wall_to_monotonic. */ static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base) { ktime_t xtim, mono, boot; struct timespec xts, tom, slp; get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp); xtim = timespec_to_ktime(xts); mono = ktime_add(xtim, timespec_to_ktime(tom)); boot = ktime_add(mono, timespec_to_ktime(slp)); base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim; base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono; base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot; } /* * Functions and macros which are different for UP/SMP systems are kept in a * single place */ #ifdef CONFIG_SMP /* * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock * means that all timers which are tied to this base via timer->base are * locked, and the base itself is locked too. * * So __run_timers/migrate_timers can safely modify all timers which could * be found on the lists/queues. * * When the timer's base is locked, and the timer removed from list, it is * possible to set timer->base = NULL and drop the lock: the timer remains * locked. */ static struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { struct hrtimer_clock_base *base; for (;;) { base = timer->base; if (likely(base != NULL)) { raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); if (likely(base == timer->base)) return base; /* The timer has migrated to another CPU: */ raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); } cpu_relax(); } } /* * Get the preferred target CPU for NOHZ */ static int hrtimer_get_target(int this_cpu, int pinned) { #ifdef CONFIG_NO_HZ if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) return get_nohz_timer_target(); #endif return this_cpu; } /* * With HIGHRES=y we do not migrate the timer when it is expiring * before the next event on the target cpu because we cannot reprogram * the target cpu hardware and we would cause it to fire late. * * Called with cpu_base->lock of target cpu held. */ static int hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base) { #ifdef CONFIG_HIGH_RES_TIMERS ktime_t expires; if (!new_base->cpu_base->hres_active) return 0; expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); return expires.tv64 <= new_base->cpu_base->expires_next.tv64; #else return 0; #endif } /* * Switch the timer base to the current CPU when possible. */ static inline struct hrtimer_clock_base * switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, int pinned) { struct hrtimer_clock_base *new_base; struct hrtimer_cpu_base *new_cpu_base; int this_cpu = smp_processor_id(); int cpu = hrtimer_get_target(this_cpu, pinned); int basenum = base->index; again: new_cpu_base = &per_cpu(hrtimer_bases, cpu); new_base = &new_cpu_base->clock_base[basenum]; if (base != new_base) { /* * We are trying to move timer to new_base. * However we can't change timer's base while it is running, * so we keep it on the same CPU. No hassle vs. reprogramming * the event source in the high resolution case. The softirq * code will take care of this when the timer function has * completed. There is no conflict as we hold the lock until * the timer is enqueued. */ if (unlikely(hrtimer_callback_running(timer))) return base; /* See the comment in lock_timer_base() */ timer->base = NULL; raw_spin_unlock(&base->cpu_base->lock); raw_spin_lock(&new_base->cpu_base->lock); if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { cpu = this_cpu; raw_spin_unlock(&new_base->cpu_base->lock); raw_spin_lock(&base->cpu_base->lock); timer->base = base; goto again; } timer->base = new_base; } else { if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) { cpu = this_cpu; goto again; } } return new_base; } #else /* CONFIG_SMP */ static inline struct hrtimer_clock_base * lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { struct hrtimer_clock_base *base = timer->base; raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); return base; } # define switch_hrtimer_base(t, b, p) (b) #endif /* !CONFIG_SMP */ /* * Functions for the union type storage format of ktime_t which are * too large for inlining: */ #if BITS_PER_LONG < 64 # ifndef CONFIG_KTIME_SCALAR /** * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable * @kt: addend * @nsec: the scalar nsec value to add * * Returns the sum of kt and nsec in ktime_t format */ ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) { ktime_t tmp; if (likely(nsec < NSEC_PER_SEC)) { tmp.tv64 = nsec; } else { unsigned long rem = do_div(nsec, NSEC_PER_SEC); tmp = ktime_set((long)nsec, rem); } return ktime_add(kt, tmp); } EXPORT_SYMBOL_GPL(ktime_add_ns); /** * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable * @kt: minuend * @nsec: the scalar nsec value to subtract * * Returns the subtraction of @nsec from @kt in ktime_t format */ ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec) { ktime_t tmp; if (likely(nsec < NSEC_PER_SEC)) { tmp.tv64 = nsec; } else { unsigned long rem = do_div(nsec, NSEC_PER_SEC); /* Make sure nsec fits into long */ if (unlikely(nsec > KTIME_SEC_MAX)) return (ktime_t){ .tv64 = KTIME_MAX }; tmp = ktime_set((long)nsec, rem); } return ktime_sub(kt, tmp); } EXPORT_SYMBOL_GPL(ktime_sub_ns); # endif /* !CONFIG_KTIME_SCALAR */ /* * Divide a ktime value by a nanosecond value */ u64 ktime_divns(const ktime_t kt, s64 div) { u64 dclc; int sft = 0; dclc = ktime_to_ns(kt); /* Make sure the divisor is less than 2^32: */ while (div >> 32) { sft++; div >>= 1; } dclc >>= sft; do_div(dclc, (unsigned long) div); return dclc; } #endif /* BITS_PER_LONG >= 64 */ /* * Add two ktime values and do a safety check for overflow: */ ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) { ktime_t res = ktime_add(lhs, rhs); /* * We use KTIME_SEC_MAX here, the maximum timeout which we can * return to user space in a timespec: */ if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64) res = ktime_set(KTIME_SEC_MAX, 0); return res; } EXPORT_SYMBOL_GPL(ktime_add_safe); #ifdef CONFIG_DEBUG_OBJECTS_TIMERS static struct debug_obj_descr hrtimer_debug_descr; static void *hrtimer_debug_hint(void *addr) { return ((struct hrtimer *) addr)->function; } /* * fixup_init is called when: * - an active object is initialized */ static int hrtimer_fixup_init(void *addr, enum debug_obj_state state) { struct hrtimer *timer = addr; switch (state) { case ODEBUG_STATE_ACTIVE: hrtimer_cancel(timer); debug_object_init(timer, &hrtimer_debug_descr); return 1; default: return 0; } } /* * fixup_activate is called when: * - an active object is activated * - an unknown object is activated (might be a statically initialized object) */ static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state) { switch (state) { case ODEBUG_STATE_NOTAVAILABLE: WARN_ON_ONCE(1); return 0; case ODEBUG_STATE_ACTIVE: WARN_ON(1); default: return 0; } } /* * fixup_free is called when: * - an active object is freed */ static int hrtimer_fixup_free(void *addr, enum debug_obj_state state) { struct hrtimer *timer = addr; switch (state) { case ODEBUG_STATE_ACTIVE: hrtimer_cancel(timer); debug_object_free(timer, &hrtimer_debug_descr); return 1; default: return 0; } } static struct debug_obj_descr hrtimer_debug_descr = { .name = "hrtimer", .debug_hint = hrtimer_debug_hint, .fixup_init = hrtimer_fixup_init, .fixup_activate = hrtimer_fixup_activate, .fixup_free = hrtimer_fixup_free, }; static inline void debug_hrtimer_init(struct hrtimer *timer) { debug_object_init(timer, &hrtimer_debug_descr); } static inline void debug_hrtimer_activate(struct hrtimer *timer) { debug_object_activate(timer, &hrtimer_debug_descr); } static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { debug_object_deactivate(timer, &hrtimer_debug_descr); } static inline void debug_hrtimer_free(struct hrtimer *timer) { debug_object_free(timer, &hrtimer_debug_descr); } static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode); void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode) { debug_object_init_on_stack(timer, &hrtimer_debug_descr); __hrtimer_init(timer, clock_id, mode); } EXPORT_SYMBOL_GPL(hrtimer_init_on_stack); void destroy_hrtimer_on_stack(struct hrtimer *timer) { debug_object_free(timer, &hrtimer_debug_descr); } #else static inline void debug_hrtimer_init(struct hrtimer *timer) { } static inline void debug_hrtimer_activate(struct hrtimer *timer) { } static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } #endif static inline void debug_init(struct hrtimer *timer, clockid_t clockid, enum hrtimer_mode mode) { debug_hrtimer_init(timer); trace_hrtimer_init(timer, clockid, mode); } static inline void debug_activate(struct hrtimer *timer) { debug_hrtimer_activate(timer); trace_hrtimer_start(timer); } static inline void debug_deactivate(struct hrtimer *timer) { debug_hrtimer_deactivate(timer); trace_hrtimer_cancel(timer); } /* High resolution timer related functions */ #ifdef CONFIG_HIGH_RES_TIMERS /* * High resolution timer enabled ? */ static int hrtimer_hres_enabled __read_mostly = 1; /* * Enable / Disable high resolution mode */ static int __init setup_hrtimer_hres(char *str) { if (!strcmp(str, "off")) hrtimer_hres_enabled = 0; else if (!strcmp(str, "on")) hrtimer_hres_enabled = 1; else return 0; return 1; } __setup("highres=", setup_hrtimer_hres); /* * hrtimer_high_res_enabled - query, if the highres mode is enabled */ static inline int hrtimer_is_hres_enabled(void) { return hrtimer_hres_enabled; } /* * Is the high resolution mode active ? */ static inline int hrtimer_hres_active(void) { return __this_cpu_read(hrtimer_bases.hres_active); } /* * Reprogram the event source with checking both queues for the * next event * Called with interrupts disabled and base->lock held */ static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) { int i; struct hrtimer_clock_base *base = cpu_base->clock_base; ktime_t expires, expires_next; expires_next.tv64 = KTIME_MAX; for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { struct hrtimer *timer; struct timerqueue_node *next; next = timerqueue_getnext(&base->active); if (!next) continue; timer = container_of(next, struct hrtimer, node); expires = ktime_sub(hrtimer_get_expires(timer), base->offset); /* * clock_was_set() has changed base->offset so the * result might be negative. Fix it up to prevent a * false positive in clockevents_program_event() */ if (expires.tv64 < 0) expires.tv64 = 0; if (expires.tv64 < expires_next.tv64) expires_next = expires; } if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64) return; cpu_base->expires_next.tv64 = expires_next.tv64; /* * If a hang was detected in the last timer interrupt then we * leave the hang delay active in the hardware. We want the * system to make progress. That also prevents the following * scenario: * T1 expires 50ms from now * T2 expires 5s from now * * T1 is removed, so this code is called and would reprogram * the hardware to 5s from now. Any hrtimer_start after that * will not reprogram the hardware due to hang_detected being * set. So we'd effectivly block all timers until the T2 event * fires. */ if (cpu_base->hang_detected) return; if (cpu_base->expires_next.tv64 != KTIME_MAX) tick_program_event(cpu_base->expires_next, 1); } /* * Shared reprogramming for clock_realtime and clock_monotonic * * When a timer is enqueued and expires earlier than the already enqueued * timers, we have to check, whether it expires earlier than the timer for * which the clock event device was armed. * * Called with interrupts disabled and base->cpu_base.lock held */ static int hrtimer_reprogram(struct hrtimer *timer, struct hrtimer_clock_base *base) { struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); int res; WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); /* * When the callback is running, we do not reprogram the clock event * device. The timer callback is either running on a different CPU or * the callback is executed in the hrtimer_interrupt context. The * reprogramming is handled either by the softirq, which called the * callback or at the end of the hrtimer_interrupt. */ if (hrtimer_callback_running(timer)) return 0; /* * CLOCK_REALTIME timer might be requested with an absolute * expiry time which is less than base->offset. Nothing wrong * about that, just avoid to call into the tick code, which * has now objections against negative expiry values. */ if (expires.tv64 < 0) return -ETIME; if (expires.tv64 >= cpu_base->expires_next.tv64) return 0; /* * If a hang was detected in the last timer interrupt then we * do not schedule a timer which is earlier than the expiry * which we enforced in the hang detection. We want the system * to make progress. */ if (cpu_base->hang_detected) return 0; /* * Clockevents returns -ETIME, when the event was in the past. */ res = tick_program_event(expires, 0); if (!IS_ERR_VALUE(res)) cpu_base->expires_next = expires; return res; } /* * Initialize the high resolution related parts of cpu_base */ static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { base->expires_next.tv64 = KTIME_MAX; base->hres_active = 0; } /* * When High resolution timers are active, try to reprogram. Note, that in case * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry * check happens. The timer gets enqueued into the rbtree. The reprogramming * and expiry check is done in the hrtimer_interrupt or in the softirq. */ static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, struct hrtimer_clock_base *base) { return base->cpu_base->hres_active && hrtimer_reprogram(timer, base); } static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) { ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; return ktime_get_update_offsets(offs_real, offs_boot); } /* * Retrigger next event is called after clock was set * * Called with interrupts disabled via on_each_cpu() */ static void retrigger_next_event(void *arg) { struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases); if (!hrtimer_hres_active()) return; raw_spin_lock(&base->lock); hrtimer_update_base(base); hrtimer_force_reprogram(base, 0); raw_spin_unlock(&base->lock); } /* * Switch to high resolution mode */ static int hrtimer_switch_to_hres(void) { int i, cpu = smp_processor_id(); struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu); unsigned long flags; if (base->hres_active) return 1; local_irq_save(flags); if (tick_init_highres()) { local_irq_restore(flags); printk(KERN_WARNING "Could not switch to high resolution " "mode on CPU %d\n", cpu); return 0; } base->hres_active = 1; for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) base->clock_base[i].resolution = KTIME_HIGH_RES; tick_setup_sched_timer(); /* "Retrigger" the interrupt to get things going */ retrigger_next_event(NULL); local_irq_restore(flags); return 1; } static void clock_was_set_work(struct work_struct *work) { clock_was_set(); } static DECLARE_WORK(hrtimer_work, clock_was_set_work); /* * Called from timekeeping and resume code to reprogramm the hrtimer * interrupt device on all cpus. */ void clock_was_set_delayed(void) { schedule_work(&hrtimer_work); } #else static inline int hrtimer_hres_active(void) { return 0; } static inline int hrtimer_is_hres_enabled(void) { return 0; } static inline int hrtimer_switch_to_hres(void) { return 0; } static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { } static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer, struct hrtimer_clock_base *base) { return 0; } static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { } static inline void retrigger_next_event(void *arg) { } #endif /* CONFIG_HIGH_RES_TIMERS */ /* * Clock realtime was set * * Change the offset of the realtime clock vs. the monotonic * clock. * * We might have to reprogram the high resolution timer interrupt. On * SMP we call the architecture specific code to retrigger _all_ high * resolution timer interrupts. On UP we just disable interrupts and * call the high resolution interrupt code. */ void clock_was_set(void) { #ifdef CONFIG_HIGH_RES_TIMERS /* Retrigger the CPU local events everywhere */ on_each_cpu(retrigger_next_event, NULL, 1); #endif timerfd_clock_was_set(); } /* * During resume we might have to reprogram the high resolution timer * interrupt (on the local CPU): */ void hrtimers_resume(void) { WARN_ONCE(!irqs_disabled(), KERN_INFO "hrtimers_resume() called with IRQs enabled!"); /* Retrigger on the local CPU */ retrigger_next_event(NULL); /* And schedule a retrigger for all others */ clock_was_set_delayed(); } static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer) { #ifdef CONFIG_TIMER_STATS if (timer->start_site) return; timer->start_site = __builtin_return_address(0); memcpy(timer->start_comm, current->comm, TASK_COMM_LEN); timer->start_pid = current->pid; #endif } static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer) { #ifdef CONFIG_TIMER_STATS timer->start_site = NULL; #endif } static inline void timer_stats_account_hrtimer(struct hrtimer *timer) { #ifdef CONFIG_TIMER_STATS if (likely(!timer_stats_active)) return; timer_stats_update_stats(timer, timer->start_pid, timer->start_site, timer->function, timer->start_comm, 0); #endif } /* * Counterpart to lock_hrtimer_base above: */ static inline void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); } /** * hrtimer_forward - forward the timer expiry * @timer: hrtimer to forward * @now: forward past this time * @interval: the interval to forward * * Forward the timer expiry so it will expire in the future. * Returns the number of overruns. */ u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) { u64 orun = 1; ktime_t delta; delta = ktime_sub(now, hrtimer_get_expires(timer)); if (delta.tv64 < 0) return 0; if (interval.tv64 < timer->base->resolution.tv64) interval.tv64 = timer->base->resolution.tv64; if (unlikely(delta.tv64 >= interval.tv64)) { s64 incr = ktime_to_ns(interval); orun = ktime_divns(delta, incr); hrtimer_add_expires_ns(timer, incr * orun); if (hrtimer_get_expires_tv64(timer) > now.tv64) return orun; /* * This (and the ktime_add() below) is the * correction for exact: */ orun++; } hrtimer_add_expires(timer, interval); return orun; } EXPORT_SYMBOL_GPL(hrtimer_forward); /* * enqueue_hrtimer - internal function to (re)start a timer * * The timer is inserted in expiry order. Insertion into the * red black tree is O(log(n)). Must hold the base lock. * * Returns 1 when the new timer is the leftmost timer in the tree. */ static int enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) { debug_activate(timer); timerqueue_add(&base->active, &timer->node); base->cpu_base->active_bases |= 1 << base->index; /* * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the * state of a possibly running callback. */ timer->state |= HRTIMER_STATE_ENQUEUED; return (&timer->node == base->active.next); } /* * __remove_hrtimer - internal function to remove a timer * * Caller must hold the base lock. * * High resolution timer mode reprograms the clock event device when the * timer is the one which expires next. The caller can disable this by setting * reprogram to zero. This is useful, when the context does a reprogramming * anyway (e.g. timer interrupt) */ static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, unsigned long newstate, int reprogram) { struct timerqueue_node *next_timer; if (!(timer->state & HRTIMER_STATE_ENQUEUED)) goto out; next_timer = timerqueue_getnext(&base->active); timerqueue_del(&base->active, &timer->node); if (&timer->node == next_timer) { #ifdef CONFIG_HIGH_RES_TIMERS /* Reprogram the clock event device. if enabled */ if (reprogram && hrtimer_hres_active()) { ktime_t expires; expires = ktime_sub(hrtimer_get_expires(timer), base->offset); if (base->cpu_base->expires_next.tv64 == expires.tv64) hrtimer_force_reprogram(base->cpu_base, 1); } #endif } if (!timerqueue_getnext(&base->active)) base->cpu_base->active_bases &= ~(1 << base->index); out: timer->state = newstate; } /* * remove hrtimer, called with base lock held */ static inline int remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base) { if (hrtimer_is_queued(timer)) { unsigned long state; int reprogram; /* * Remove the timer and force reprogramming when high * resolution mode is active and the timer is on the current * CPU. If we remove a timer on another CPU, reprogramming is * skipped. The interrupt event on this CPU is fired and * reprogramming happens in the interrupt handler. This is a * rare case and less expensive than a smp call. */ debug_deactivate(timer); timer_stats_hrtimer_clear_start_info(timer); reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases); /* * We must preserve the CALLBACK state flag here, * otherwise we could move the timer base in * switch_hrtimer_base. */ state = timer->state & HRTIMER_STATE_CALLBACK; __remove_hrtimer(timer, base, state, reprogram); return 1; } return 0; } int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns, const enum hrtimer_mode mode, int wakeup) { struct hrtimer_clock_base *base, *new_base; unsigned long flags; int ret, leftmost; base = lock_hrtimer_base(timer, &flags); /* Remove an active timer from the queue: */ ret = remove_hrtimer(timer, base); if (mode & HRTIMER_MODE_REL) { tim = ktime_add_safe(tim, base->get_time()); /* * CONFIG_TIME_LOW_RES is a temporary way for architectures * to signal that they simply return xtime in * do_gettimeoffset(). In this case we want to round up by * resolution when starting a relative timer, to avoid short * timeouts. This will go away with the GTOD framework. */ #ifdef CONFIG_TIME_LOW_RES tim = ktime_add_safe(tim, base->resolution); #endif } hrtimer_set_expires_range_ns(timer, tim, delta_ns); /* Switch the timer base, if necessary: */ new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED); timer_stats_hrtimer_set_start_info(timer); leftmost = enqueue_hrtimer(timer, new_base); /* * Only allow reprogramming if the new base is on this CPU. * (it might still be on another CPU if the timer was pending) * * XXX send_remote_softirq() ? */ if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases) && hrtimer_enqueue_reprogram(timer, new_base)) { if (wakeup) { /* * We need to drop cpu_base->lock to avoid a * lock ordering issue vs. rq->lock. */ raw_spin_unlock(&new_base->cpu_base->lock); raise_softirq_irqoff(HRTIMER_SOFTIRQ); local_irq_restore(flags); return ret; } else { __raise_softirq_irqoff(HRTIMER_SOFTIRQ); } } unlock_hrtimer_base(timer, &flags); return ret; } /** * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU * @timer: the timer to be added * @tim: expiry time * @delta_ns: "slack" range for the timer * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) * * Returns: * 0 on success * 1 when the timer was active */ int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, unsigned long delta_ns, const enum hrtimer_mode mode) { return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1); } EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); /** * hrtimer_start - (re)start an hrtimer on the current CPU * @timer: the timer to be added * @tim: expiry time * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) * * Returns: * 0 on success * 1 when the timer was active */ int hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) { return __hrtimer_start_range_ns(timer, tim, 0, mode, 1); } EXPORT_SYMBOL_GPL(hrtimer_start); /** * hrtimer_try_to_cancel - try to deactivate a timer * @timer: hrtimer to stop * * Returns: * 0 when the timer was not active * 1 when the timer was active * -1 when the timer is currently excuting the callback function and * cannot be stopped */ int hrtimer_try_to_cancel(struct hrtimer *timer) { struct hrtimer_clock_base *base; unsigned long flags; int ret = -1; base = lock_hrtimer_base(timer, &flags); if (!hrtimer_callback_running(timer)) ret = remove_hrtimer(timer, base); unlock_hrtimer_base(timer, &flags); return ret; } EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); /** * hrtimer_cancel - cancel a timer and wait for the handler to finish. * @timer: the timer to be cancelled * * Returns: * 0 when the timer was not active * 1 when the timer was active */ int hrtimer_cancel(struct hrtimer *timer) { for (;;) { int ret = hrtimer_try_to_cancel(timer); if (ret >= 0) return ret; cpu_relax(); } } EXPORT_SYMBOL_GPL(hrtimer_cancel); /** * hrtimer_get_remaining - get remaining time for the timer * @timer: the timer to read */ ktime_t hrtimer_get_remaining(const struct hrtimer *timer) { unsigned long flags; ktime_t rem; lock_hrtimer_base(timer, &flags); rem = hrtimer_expires_remaining(timer); unlock_hrtimer_base(timer, &flags); return rem; } EXPORT_SYMBOL_GPL(hrtimer_get_remaining); #ifdef CONFIG_NO_HZ /** * hrtimer_get_next_event - get the time until next expiry event * * Returns the delta to the next expiry event or KTIME_MAX if no timer * is pending. */ ktime_t hrtimer_get_next_event(void) { struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); struct hrtimer_clock_base *base = cpu_base->clock_base; ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; unsigned long flags; int i; raw_spin_lock_irqsave(&cpu_base->lock, flags); if (!hrtimer_hres_active()) { for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) { struct hrtimer *timer; struct timerqueue_node *next; next = timerqueue_getnext(&base->active); if (!next) continue; timer = container_of(next, struct hrtimer, node); delta.tv64 = hrtimer_get_expires_tv64(timer); delta = ktime_sub(delta, base->get_time()); if (delta.tv64 < mindelta.tv64) mindelta.tv64 = delta.tv64; } } raw_spin_unlock_irqrestore(&cpu_base->lock, flags); if (mindelta.tv64 < 0) mindelta.tv64 = 0; return mindelta; } #endif static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode) { struct hrtimer_cpu_base *cpu_base; int base; memset(timer, 0, sizeof(struct hrtimer)); cpu_base = &__raw_get_cpu_var(hrtimer_bases); if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS) clock_id = CLOCK_MONOTONIC; base = hrtimer_clockid_to_base(clock_id); timer->base = &cpu_base->clock_base[base]; timerqueue_init(&timer->node); #ifdef CONFIG_TIMER_STATS timer->start_site = NULL; timer->start_pid = -1; memset(timer->start_comm, 0, TASK_COMM_LEN); #endif } /** * hrtimer_init - initialize a timer to the given clock * @timer: the timer to be initialized * @clock_id: the clock to be used * @mode: timer mode abs/rel */ void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode) { debug_init(timer, clock_id, mode); __hrtimer_init(timer, clock_id, mode); } EXPORT_SYMBOL_GPL(hrtimer_init); /** * hrtimer_get_res - get the timer resolution for a clock * @which_clock: which clock to query * @tp: pointer to timespec variable to store the resolution * * Store the resolution of the clock selected by @which_clock in the * variable pointed to by @tp. */ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) { struct hrtimer_cpu_base *cpu_base; int base = hrtimer_clockid_to_base(which_clock); cpu_base = &__raw_get_cpu_var(hrtimer_bases); *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution); return 0; } EXPORT_SYMBOL_GPL(hrtimer_get_res); static void __run_hrtimer(struct hrtimer *timer, ktime_t *now) { struct hrtimer_clock_base *base = timer->base; struct hrtimer_cpu_base *cpu_base = base->cpu_base; enum hrtimer_restart (*fn)(struct hrtimer *); int restart; WARN_ON(!irqs_disabled()); debug_deactivate(timer); __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0); timer_stats_account_hrtimer(timer); fn = timer->function; /* * Because we run timers from hardirq context, there is no chance * they get migrated to another cpu, therefore its safe to unlock * the timer base. */ raw_spin_unlock(&cpu_base->lock); trace_hrtimer_expire_entry(timer, now); restart = fn(timer); trace_hrtimer_expire_exit(timer); raw_spin_lock(&cpu_base->lock); /* * Note: We clear the CALLBACK bit after enqueue_hrtimer and * we do not reprogramm the event hardware. Happens either in * hrtimer_start_range_ns() or in hrtimer_interrupt() */ if (restart != HRTIMER_NORESTART) { BUG_ON(timer->state != HRTIMER_STATE_CALLBACK); enqueue_hrtimer(timer, base); } WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK)); timer->state &= ~HRTIMER_STATE_CALLBACK; } #ifdef CONFIG_HIGH_RES_TIMERS /* * High resolution timer interrupt * Called with interrupts disabled */ void hrtimer_interrupt(struct clock_event_device *dev) { struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); ktime_t expires_next, now, entry_time, delta; int i, retries = 0; BUG_ON(!cpu_base->hres_active); cpu_base->nr_events++; dev->next_event.tv64 = KTIME_MAX; raw_spin_lock(&cpu_base->lock); entry_time = now = hrtimer_update_base(cpu_base); retry: expires_next.tv64 = KTIME_MAX; /* * We set expires_next to KTIME_MAX here with cpu_base->lock * held to prevent that a timer is enqueued in our queue via * the migration code. This does not affect enqueueing of * timers which run their callback and need to be requeued on * this CPU. */ cpu_base->expires_next.tv64 = KTIME_MAX; for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { struct hrtimer_clock_base *base; struct timerqueue_node *node; ktime_t basenow; if (!(cpu_base->active_bases & (1 << i))) continue; base = cpu_base->clock_base + i; basenow = ktime_add(now, base->offset); while ((node = timerqueue_getnext(&base->active))) { struct hrtimer *timer; timer = container_of(node, struct hrtimer, node); /* * The immediate goal for using the softexpires is * minimizing wakeups, not running timers at the * earliest interrupt after their soft expiration. * This allows us to avoid using a Priority Search * Tree, which can answer a stabbing querry for * overlapping intervals and instead use the simple * BST we already have. * We don't add extra wakeups by delaying timers that * are right-of a not yet expired timer, because that * timer will have to trigger a wakeup anyway. */ if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) { ktime_t expires; expires = ktime_sub(hrtimer_get_expires(timer), base->offset); if (expires.tv64 < 0) expires.tv64 = KTIME_MAX; if (expires.tv64 < expires_next.tv64) expires_next = expires; break; } __run_hrtimer(timer, &basenow); } } /* * Store the new expiry value so the migration code can verify * against it. */ cpu_base->expires_next = expires_next; raw_spin_unlock(&cpu_base->lock); /* Reprogramming necessary ? */ if (expires_next.tv64 == KTIME_MAX || !tick_program_event(expires_next, 0)) { cpu_base->hang_detected = 0; return; } /* * The next timer was already expired due to: * - tracing * - long lasting callbacks * - being scheduled away when running in a VM * * We need to prevent that we loop forever in the hrtimer * interrupt routine. We give it 3 attempts to avoid * overreacting on some spurious event. * * Acquire base lock for updating the offsets and retrieving * the current time. */ raw_spin_lock(&cpu_base->lock); now = hrtimer_update_base(cpu_base); cpu_base->nr_retries++; if (++retries < 3) goto retry; /* * Give the system a chance to do something else than looping * here. We stored the entry time, so we know exactly how long * we spent here. We schedule the next event this amount of * time away. */ cpu_base->nr_hangs++; cpu_base->hang_detected = 1; raw_spin_unlock(&cpu_base->lock); delta = ktime_sub(now, entry_time); if (delta.tv64 > cpu_base->max_hang_time.tv64) cpu_base->max_hang_time = delta; /* * Limit it to a sensible value as we enforce a longer * delay. Give the CPU at least 100ms to catch up. */ if (delta.tv64 > 100 * NSEC_PER_MSEC) expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); else expires_next = ktime_add(now, delta); tick_program_event(expires_next, 1); printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); } /* * local version of hrtimer_peek_ahead_timers() called with interrupts * disabled. */ static void __hrtimer_peek_ahead_timers(void) { struct tick_device *td; if (!hrtimer_hres_active()) return; td = &__get_cpu_var(tick_cpu_device); if (td && td->evtdev) hrtimer_interrupt(td->evtdev); } /** * hrtimer_peek_ahead_timers -- run soft-expired timers now * * hrtimer_peek_ahead_timers will peek at the timer queue of * the current cpu and check if there are any timers for which * the soft expires time has passed. If any such timers exist, * they are run immediately and then removed from the timer queue. * */ void hrtimer_peek_ahead_timers(void) { unsigned long flags; local_irq_save(flags); __hrtimer_peek_ahead_timers(); local_irq_restore(flags); } static void run_hrtimer_softirq(struct softirq_action *h) { hrtimer_peek_ahead_timers(); } #else /* CONFIG_HIGH_RES_TIMERS */ static inline void __hrtimer_peek_ahead_timers(void) { } #endif /* !CONFIG_HIGH_RES_TIMERS */ /* * Called from timer softirq every jiffy, expire hrtimers: * * For HRT its the fall back code to run the softirq in the timer * softirq context in case the hrtimer initialization failed or has * not been done yet. */ void hrtimer_run_pending(void) { if (hrtimer_hres_active()) return; /* * This _is_ ugly: We have to check in the softirq context, * whether we can switch to highres and / or nohz mode. The * clocksource switch happens in the timer interrupt with * xtime_lock held. Notification from there only sets the * check bit in the tick_oneshot code, otherwise we might * deadlock vs. xtime_lock. */ if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) hrtimer_switch_to_hres(); } /* * Called from hardirq context every jiffy */ void hrtimer_run_queues(void) { struct timerqueue_node *node; struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases); struct hrtimer_clock_base *base; int index, gettime = 1; if (hrtimer_hres_active()) return; for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) { base = &cpu_base->clock_base[index]; if (!timerqueue_getnext(&base->active)) continue; if (gettime) { hrtimer_get_softirq_time(cpu_base); gettime = 0; } raw_spin_lock(&cpu_base->lock); while ((node = timerqueue_getnext(&base->active))) { struct hrtimer *timer; timer = container_of(node, struct hrtimer, node); if (base->softirq_time.tv64 <= hrtimer_get_expires_tv64(timer)) break; __run_hrtimer(timer, &base->softirq_time); } raw_spin_unlock(&cpu_base->lock); } } /* * Sleep related functions: */ static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) { struct hrtimer_sleeper *t = container_of(timer, struct hrtimer_sleeper, timer); struct task_struct *task = t->task; t->task = NULL; if (task) wake_up_process(task); return HRTIMER_NORESTART; } void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task) { sl->timer.function = hrtimer_wakeup; sl->task = task; } EXPORT_SYMBOL_GPL(hrtimer_init_sleeper); static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) { hrtimer_init_sleeper(t, current); do { set_current_state(TASK_INTERRUPTIBLE); hrtimer_start_expires(&t->timer, mode); if (!hrtimer_active(&t->timer)) t->task = NULL; if (likely(t->task)) schedule(); hrtimer_cancel(&t->timer); mode = HRTIMER_MODE_ABS; } while (t->task && !signal_pending(current)); __set_current_state(TASK_RUNNING); return t->task == NULL; } static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp) { struct timespec rmt; ktime_t rem; rem = hrtimer_expires_remaining(timer); if (rem.tv64 <= 0) return 0; rmt = ktime_to_timespec(rem); if (copy_to_user(rmtp, &rmt, sizeof(*rmtp))) return -EFAULT; return 1; } long __sched hrtimer_nanosleep_restart(struct restart_block *restart) { struct hrtimer_sleeper t; struct timespec __user *rmtp; int ret = 0; hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid, HRTIMER_MODE_ABS); hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); if (do_nanosleep(&t, HRTIMER_MODE_ABS)) goto out; rmtp = restart->nanosleep.rmtp; if (rmtp) { ret = update_rmtp(&t.timer, rmtp); if (ret <= 0) goto out; } /* The other values in restart are already filled in */ ret = -ERESTART_RESTARTBLOCK; out: destroy_hrtimer_on_stack(&t.timer); return ret; } long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, const enum hrtimer_mode mode, const clockid_t clockid) { struct restart_block *restart; struct hrtimer_sleeper t; int ret = 0; unsigned long slack; slack = current->timer_slack_ns; if (rt_task(current)) slack = 0; hrtimer_init_on_stack(&t.timer, clockid, mode); hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack); if (do_nanosleep(&t, mode)) goto out; /* Absolute timers do not update the rmtp value and restart: */ if (mode == HRTIMER_MODE_ABS) { ret = -ERESTARTNOHAND; goto out; } if (rmtp) { ret = update_rmtp(&t.timer, rmtp); if (ret <= 0) goto out; } restart = ¤t_thread_info()->restart_block; restart->fn = hrtimer_nanosleep_restart; restart->nanosleep.clockid = t.timer.base->clockid; restart->nanosleep.rmtp = rmtp; restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); ret = -ERESTART_RESTARTBLOCK; out: destroy_hrtimer_on_stack(&t.timer); return ret; } SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp, struct timespec __user *, rmtp) { struct timespec tu; if (copy_from_user(&tu, rqtp, sizeof(tu))) return -EFAULT; if (!timespec_valid(&tu)) return -EINVAL; return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC); } /* * Functions related to boot-time initialization: */ static void __cpuinit init_hrtimers_cpu(int cpu) { struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); int i; for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { cpu_base->clock_base[i].cpu_base = cpu_base; timerqueue_init_head(&cpu_base->clock_base[i].active); } hrtimer_init_hres(cpu_base); } #ifdef CONFIG_HOTPLUG_CPU static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, struct hrtimer_clock_base *new_base) { struct hrtimer *timer; struct timerqueue_node *node; while ((node = timerqueue_getnext(&old_base->active))) { timer = container_of(node, struct hrtimer, node); BUG_ON(hrtimer_callback_running(timer)); debug_deactivate(timer); /* * Mark it as STATE_MIGRATE not INACTIVE otherwise the * timer could be seen as !active and just vanish away * under us on another CPU */ __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0); timer->base = new_base; /* * Enqueue the timers on the new cpu. This does not * reprogram the event device in case the timer * expires before the earliest on this CPU, but we run * hrtimer_interrupt after we migrated everything to * sort out already expired timers and reprogram the * event device. */ enqueue_hrtimer(timer, new_base); /* Clear the migration state bit */ timer->state &= ~HRTIMER_STATE_MIGRATE; } } static void migrate_hrtimers(int scpu) { struct hrtimer_cpu_base *old_base, *new_base; int i; BUG_ON(cpu_online(scpu)); tick_cancel_sched_timer(scpu); local_irq_disable(); old_base = &per_cpu(hrtimer_bases, scpu); new_base = &__get_cpu_var(hrtimer_bases); /* * The caller is globally serialized and nobody else * takes two locks at once, deadlock is not possible. */ raw_spin_lock(&new_base->lock); raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING); for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { migrate_hrtimer_list(&old_base->clock_base[i], &new_base->clock_base[i]); } raw_spin_unlock(&old_base->lock); raw_spin_unlock(&new_base->lock); /* Check, if we got expired work to do */ __hrtimer_peek_ahead_timers(); local_irq_enable(); } #endif /* CONFIG_HOTPLUG_CPU */ static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { int scpu = (long)hcpu; switch (action) { case CPU_UP_PREPARE: case CPU_UP_PREPARE_FROZEN: init_hrtimers_cpu(scpu); break; #ifdef CONFIG_HOTPLUG_CPU case CPU_DYING: case CPU_DYING_FROZEN: clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu); break; case CPU_DEAD: case CPU_DEAD_FROZEN: { clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu); migrate_hrtimers(scpu); break; } #endif default: break; } return NOTIFY_OK; } static struct notifier_block __cpuinitdata hrtimers_nb = { .notifier_call = hrtimer_cpu_notify, }; void __init hrtimers_init(void) { hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, (void *)(long)smp_processor_id()); register_cpu_notifier(&hrtimers_nb); #ifdef CONFIG_HIGH_RES_TIMERS open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq); #endif } /** * schedule_hrtimeout_range_clock - sleep until timeout * @expires: timeout value (ktime_t) * @delta: slack in expires timeout (ktime_t) * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME */ int __sched schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta, const enum hrtimer_mode mode, int clock) { struct hrtimer_sleeper t; /* * Optimize when a zero timeout value is given. It does not * matter whether this is an absolute or a relative time. */ if (expires && !expires->tv64) { __set_current_state(TASK_RUNNING); return 0; } /* * A NULL parameter means "infinite" */ if (!expires) { schedule(); __set_current_state(TASK_RUNNING); return -EINTR; } hrtimer_init_on_stack(&t.timer, clock, mode); hrtimer_set_expires_range_ns(&t.timer, *expires, delta); hrtimer_init_sleeper(&t, current); hrtimer_start_expires(&t.timer, mode); if (!hrtimer_active(&t.timer)) t.task = NULL; if (likely(t.task)) schedule(); hrtimer_cancel(&t.timer); destroy_hrtimer_on_stack(&t.timer); __set_current_state(TASK_RUNNING); return !t.task ? 0 : -EINTR; } /** * schedule_hrtimeout_range - sleep until timeout * @expires: timeout value (ktime_t) * @delta: slack in expires timeout (ktime_t) * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL * * Make the current task sleep until the given expiry time has * elapsed. The routine will return immediately unless * the current task state has been set (see set_current_state()). * * The @delta argument gives the kernel the freedom to schedule the * actual wakeup to a time that is both power and performance friendly. * The kernel give the normal best effort behavior for "@expires+@delta", * but may decide to fire the timer earlier, but no earlier than @expires. * * You can set the task state as follows - * * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to * pass before the routine returns. * * %TASK_INTERRUPTIBLE - the routine may return early if a signal is * delivered to the current task. * * The current task state is guaranteed to be TASK_RUNNING when this * routine returns. * * Returns 0 when the timer has expired otherwise -EINTR */ int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta, const enum hrtimer_mode mode) { return schedule_hrtimeout_range_clock(expires, delta, mode, CLOCK_MONOTONIC); } EXPORT_SYMBOL_GPL(schedule_hrtimeout_range); /** * schedule_hrtimeout - sleep until timeout * @expires: timeout value (ktime_t) * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL * * Make the current task sleep until the given expiry time has * elapsed. The routine will return immediately unless * the current task state has been set (see set_current_state()). * * You can set the task state as follows - * * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to * pass before the routine returns. * * %TASK_INTERRUPTIBLE - the routine may return early if a signal is * delivered to the current task. * * The current task state is guaranteed to be TASK_RUNNING when this * routine returns. * * Returns 0 when the timer has expired otherwise -EINTR */ int __sched schedule_hrtimeout(ktime_t *expires, const enum hrtimer_mode mode) { return schedule_hrtimeout_range(expires, 0, mode); } EXPORT_SYMBOL_GPL(schedule_hrtimeout); |