Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 | /* * linux/kernel/hrtimer.c * * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de> * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar * * High-resolution kernel timers * * In contrast to the low-resolution timeout API implemented in * kernel/timer.c, hrtimers provide finer resolution and accuracy * depending on system configuration and capabilities. * * These timers are currently used for: * - itimers * - POSIX timers * - nanosleep * - precise in-kernel timing * * Started by: Thomas Gleixner and Ingo Molnar * * Credits: * based on kernel/timer.c * * Help, testing, suggestions, bugfixes, improvements were * provided by: * * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel * et. al. * * For licencing details see kernel-base/COPYING */ #include <linux/cpu.h> #include <linux/module.h> #include <linux/percpu.h> #include <linux/hrtimer.h> #include <linux/notifier.h> #include <linux/syscalls.h> #include <linux/interrupt.h> #include <asm/uaccess.h> /** * ktime_get - get the monotonic time in ktime_t format * * returns the time in ktime_t format */ static ktime_t ktime_get(void) { struct timespec now; ktime_get_ts(&now); return timespec_to_ktime(now); } /** * ktime_get_real - get the real (wall-) time in ktime_t format * * returns the time in ktime_t format */ static ktime_t ktime_get_real(void) { struct timespec now; getnstimeofday(&now); return timespec_to_ktime(now); } EXPORT_SYMBOL_GPL(ktime_get_real); /* * The timer bases: * * Note: If we want to add new timer bases, we have to skip the two * clock ids captured by the cpu-timers. We do this by holding empty * entries rather than doing math adjustment of the clock ids. * This ensures that we capture erroneous accesses to these clock ids * rather than moving them into the range of valid clock id's. */ #define MAX_HRTIMER_BASES 2 static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) = { { .index = CLOCK_REALTIME, .get_time = &ktime_get_real, .resolution = KTIME_REALTIME_RES, }, { .index = CLOCK_MONOTONIC, .get_time = &ktime_get, .resolution = KTIME_MONOTONIC_RES, }, }; /** * ktime_get_ts - get the monotonic clock in timespec format * * @ts: pointer to timespec variable * * The function calculates the monotonic clock from the realtime * clock and the wall_to_monotonic offset and stores the result * in normalized timespec format in the variable pointed to by ts. */ void ktime_get_ts(struct timespec *ts) { struct timespec tomono; unsigned long seq; do { seq = read_seqbegin(&xtime_lock); getnstimeofday(ts); tomono = wall_to_monotonic; } while (read_seqretry(&xtime_lock, seq)); set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec, ts->tv_nsec + tomono.tv_nsec); } EXPORT_SYMBOL_GPL(ktime_get_ts); /* * Functions and macros which are different for UP/SMP systems are kept in a * single place */ #ifdef CONFIG_SMP #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0) /* * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock * means that all timers which are tied to this base via timer->base are * locked, and the base itself is locked too. * * So __run_timers/migrate_timers can safely modify all timers which could * be found on the lists/queues. * * When the timer's base is locked, and the timer removed from list, it is * possible to set timer->base = NULL and drop the lock: the timer remains * locked. */ static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { struct hrtimer_base *base; for (;;) { base = timer->base; if (likely(base != NULL)) { spin_lock_irqsave(&base->lock, *flags); if (likely(base == timer->base)) return base; /* The timer has migrated to another CPU: */ spin_unlock_irqrestore(&base->lock, *flags); } cpu_relax(); } } /* * Switch the timer base to the current CPU when possible. */ static inline struct hrtimer_base * switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base) { struct hrtimer_base *new_base; new_base = &__get_cpu_var(hrtimer_bases[base->index]); if (base != new_base) { /* * We are trying to schedule the timer on the local CPU. * However we can't change timer's base while it is running, * so we keep it on the same CPU. No hassle vs. reprogramming * the event source in the high resolution case. The softirq * code will take care of this when the timer function has * completed. There is no conflict as we hold the lock until * the timer is enqueued. */ if (unlikely(base->curr_timer == timer)) return base; /* See the comment in lock_timer_base() */ timer->base = NULL; spin_unlock(&base->lock); spin_lock(&new_base->lock); timer->base = new_base; } return new_base; } #else /* CONFIG_SMP */ #define set_curr_timer(b, t) do { } while (0) static inline struct hrtimer_base * lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { struct hrtimer_base *base = timer->base; spin_lock_irqsave(&base->lock, *flags); return base; } #define switch_hrtimer_base(t, b) (b) #endif /* !CONFIG_SMP */ /* * Functions for the union type storage format of ktime_t which are * too large for inlining: */ #if BITS_PER_LONG < 64 # ifndef CONFIG_KTIME_SCALAR /** * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable * * @kt: addend * @nsec: the scalar nsec value to add * * Returns the sum of kt and nsec in ktime_t format */ ktime_t ktime_add_ns(const ktime_t kt, u64 nsec) { ktime_t tmp; if (likely(nsec < NSEC_PER_SEC)) { tmp.tv64 = nsec; } else { unsigned long rem = do_div(nsec, NSEC_PER_SEC); tmp = ktime_set((long)nsec, rem); } return ktime_add(kt, tmp); } #else /* CONFIG_KTIME_SCALAR */ # endif /* !CONFIG_KTIME_SCALAR */ /* * Divide a ktime value by a nanosecond value */ static unsigned long ktime_divns(const ktime_t kt, nsec_t div) { u64 dclc, inc, dns; int sft = 0; dclc = dns = ktime_to_ns(kt); inc = div; /* Make sure the divisor is less than 2^32: */ while (div >> 32) { sft++; div >>= 1; } dclc >>= sft; do_div(dclc, (unsigned long) div); return (unsigned long) dclc; } #else /* BITS_PER_LONG < 64 */ # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div)) #endif /* BITS_PER_LONG >= 64 */ /* * Counterpart to lock_timer_base above: */ static inline void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) { spin_unlock_irqrestore(&timer->base->lock, *flags); } /** * hrtimer_forward - forward the timer expiry * * @timer: hrtimer to forward * @interval: the interval to forward * * Forward the timer expiry so it will expire in the future. * Returns the number of overruns. */ unsigned long hrtimer_forward(struct hrtimer *timer, ktime_t interval) { unsigned long orun = 1; ktime_t delta, now; now = timer->base->get_time(); delta = ktime_sub(now, timer->expires); if (delta.tv64 < 0) return 0; if (interval.tv64 < timer->base->resolution.tv64) interval.tv64 = timer->base->resolution.tv64; if (unlikely(delta.tv64 >= interval.tv64)) { nsec_t incr = ktime_to_ns(interval); orun = ktime_divns(delta, incr); timer->expires = ktime_add_ns(timer->expires, incr * orun); if (timer->expires.tv64 > now.tv64) return orun; /* * This (and the ktime_add() below) is the * correction for exact: */ orun++; } timer->expires = ktime_add(timer->expires, interval); return orun; } /* * enqueue_hrtimer - internal function to (re)start a timer * * The timer is inserted in expiry order. Insertion into the * red black tree is O(log(n)). Must hold the base lock. */ static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) { struct rb_node **link = &base->active.rb_node; struct rb_node *parent = NULL; struct hrtimer *entry; /* * Find the right place in the rbtree: */ while (*link) { parent = *link; entry = rb_entry(parent, struct hrtimer, node); /* * We dont care about collisions. Nodes with * the same expiry time stay together. */ if (timer->expires.tv64 < entry->expires.tv64) link = &(*link)->rb_left; else link = &(*link)->rb_right; } /* * Insert the timer to the rbtree and check whether it * replaces the first pending timer */ rb_link_node(&timer->node, parent, link); rb_insert_color(&timer->node, &base->active); timer->state = HRTIMER_PENDING; if (!base->first || timer->expires.tv64 < rb_entry(base->first, struct hrtimer, node)->expires.tv64) base->first = &timer->node; } /* * __remove_hrtimer - internal function to remove a timer * * Caller must hold the base lock. */ static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) { /* * Remove the timer from the rbtree and replace the * first entry pointer if necessary. */ if (base->first == &timer->node) base->first = rb_next(&timer->node); rb_erase(&timer->node, &base->active); } /* * remove hrtimer, called with base lock held */ static inline int remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base) { if (hrtimer_active(timer)) { __remove_hrtimer(timer, base); timer->state = HRTIMER_INACTIVE; return 1; } return 0; } /** * hrtimer_start - (re)start an relative timer on the current CPU * * @timer: the timer to be added * @tim: expiry time * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL) * * Returns: * 0 on success * 1 when the timer was active */ int hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode) { struct hrtimer_base *base, *new_base; unsigned long flags; int ret; base = lock_hrtimer_base(timer, &flags); /* Remove an active timer from the queue: */ ret = remove_hrtimer(timer, base); /* Switch the timer base, if necessary: */ new_base = switch_hrtimer_base(timer, base); if (mode == HRTIMER_REL) { tim = ktime_add(tim, new_base->get_time()); /* * CONFIG_TIME_LOW_RES is a temporary way for architectures * to signal that they simply return xtime in * do_gettimeoffset(). In this case we want to round up by * resolution when starting a relative timer, to avoid short * timeouts. This will go away with the GTOD framework. */ #ifdef CONFIG_TIME_LOW_RES tim = ktime_add(tim, base->resolution); #endif } timer->expires = tim; enqueue_hrtimer(timer, new_base); unlock_hrtimer_base(timer, &flags); return ret; } /** * hrtimer_try_to_cancel - try to deactivate a timer * * @timer: hrtimer to stop * * Returns: * 0 when the timer was not active * 1 when the timer was active * -1 when the timer is currently excuting the callback function and * can not be stopped */ int hrtimer_try_to_cancel(struct hrtimer *timer) { struct hrtimer_base *base; unsigned long flags; int ret = -1; base = lock_hrtimer_base(timer, &flags); if (base->curr_timer != timer) ret = remove_hrtimer(timer, base); unlock_hrtimer_base(timer, &flags); return ret; } /** * hrtimer_cancel - cancel a timer and wait for the handler to finish. * * @timer: the timer to be cancelled * * Returns: * 0 when the timer was not active * 1 when the timer was active */ int hrtimer_cancel(struct hrtimer *timer) { for (;;) { int ret = hrtimer_try_to_cancel(timer); if (ret >= 0) return ret; } } /** * hrtimer_get_remaining - get remaining time for the timer * * @timer: the timer to read */ ktime_t hrtimer_get_remaining(const struct hrtimer *timer) { struct hrtimer_base *base; unsigned long flags; ktime_t rem; base = lock_hrtimer_base(timer, &flags); rem = ktime_sub(timer->expires, timer->base->get_time()); unlock_hrtimer_base(timer, &flags); return rem; } #ifdef CONFIG_NO_IDLE_HZ /** * hrtimer_get_next_event - get the time until next expiry event * * Returns the delta to the next expiry event or KTIME_MAX if no timer * is pending. */ ktime_t hrtimer_get_next_event(void) { struct hrtimer_base *base = __get_cpu_var(hrtimer_bases); ktime_t delta, mindelta = { .tv64 = KTIME_MAX }; unsigned long flags; int i; for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) { struct hrtimer *timer; spin_lock_irqsave(&base->lock, flags); if (!base->first) { spin_unlock_irqrestore(&base->lock, flags); continue; } timer = rb_entry(base->first, struct hrtimer, node); delta.tv64 = timer->expires.tv64; spin_unlock_irqrestore(&base->lock, flags); delta = ktime_sub(delta, base->get_time()); if (delta.tv64 < mindelta.tv64) mindelta.tv64 = delta.tv64; } if (mindelta.tv64 < 0) mindelta.tv64 = 0; return mindelta; } #endif /** * hrtimer_init - initialize a timer to the given clock * * @timer: the timer to be initialized * @clock_id: the clock to be used * @mode: timer mode abs/rel */ void hrtimer_init(struct hrtimer *timer, clockid_t clock_id, enum hrtimer_mode mode) { struct hrtimer_base *bases; memset(timer, 0, sizeof(struct hrtimer)); bases = per_cpu(hrtimer_bases, raw_smp_processor_id()); if (clock_id == CLOCK_REALTIME && mode != HRTIMER_ABS) clock_id = CLOCK_MONOTONIC; timer->base = &bases[clock_id]; } /** * hrtimer_get_res - get the timer resolution for a clock * * @which_clock: which clock to query * @tp: pointer to timespec variable to store the resolution * * Store the resolution of the clock selected by which_clock in the * variable pointed to by tp. */ int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp) { struct hrtimer_base *bases; bases = per_cpu(hrtimer_bases, raw_smp_processor_id()); *tp = ktime_to_timespec(bases[which_clock].resolution); return 0; } /* * Expire the per base hrtimer-queue: */ static inline void run_hrtimer_queue(struct hrtimer_base *base) { ktime_t now = base->get_time(); struct rb_node *node; spin_lock_irq(&base->lock); while ((node = base->first)) { struct hrtimer *timer; int (*fn)(void *); int restart; void *data; timer = rb_entry(node, struct hrtimer, node); if (now.tv64 <= timer->expires.tv64) break; fn = timer->function; data = timer->data; set_curr_timer(base, timer); timer->state = HRTIMER_RUNNING; __remove_hrtimer(timer, base); spin_unlock_irq(&base->lock); /* * fn == NULL is special case for the simplest timer * variant - wake up process and do not restart: */ if (!fn) { wake_up_process(data); restart = HRTIMER_NORESTART; } else restart = fn(data); spin_lock_irq(&base->lock); /* Another CPU has added back the timer */ if (timer->state != HRTIMER_RUNNING) continue; if (restart == HRTIMER_RESTART) enqueue_hrtimer(timer, base); else timer->state = HRTIMER_EXPIRED; } set_curr_timer(base, NULL); spin_unlock_irq(&base->lock); } /* * Called from timer softirq every jiffy, expire hrtimers: */ void hrtimer_run_queues(void) { struct hrtimer_base *base = __get_cpu_var(hrtimer_bases); int i; for (i = 0; i < MAX_HRTIMER_BASES; i++) run_hrtimer_queue(&base[i]); } /* * Sleep related functions: */ /** * schedule_hrtimer - sleep until timeout * * @timer: hrtimer variable initialized with the correct clock base * @mode: timeout value is abs/rel * * Make the current task sleep until @timeout is * elapsed. * * You can set the task state as follows - * * %TASK_UNINTERRUPTIBLE - at least @timeout is guaranteed to * pass before the routine returns. The routine will return 0 * * %TASK_INTERRUPTIBLE - the routine may return early if a signal is * delivered to the current task. In this case the remaining time * will be returned * * The current task state is guaranteed to be TASK_RUNNING when this * routine returns. */ static ktime_t __sched schedule_hrtimer(struct hrtimer *timer, const enum hrtimer_mode mode) { /* fn stays NULL, meaning single-shot wakeup: */ timer->data = current; hrtimer_start(timer, timer->expires, mode); schedule(); hrtimer_cancel(timer); /* Return the remaining time: */ if (timer->state != HRTIMER_EXPIRED) return ktime_sub(timer->expires, timer->base->get_time()); else return (ktime_t) {.tv64 = 0 }; } static inline ktime_t __sched schedule_hrtimer_interruptible(struct hrtimer *timer, const enum hrtimer_mode mode) { set_current_state(TASK_INTERRUPTIBLE); return schedule_hrtimer(timer, mode); } static long __sched nanosleep_restart(struct restart_block *restart) { struct timespec __user *rmtp; struct timespec tu; void *rfn_save = restart->fn; struct hrtimer timer; ktime_t rem; restart->fn = do_no_restart_syscall; hrtimer_init(&timer, (clockid_t) restart->arg3, HRTIMER_ABS); timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0; rem = schedule_hrtimer_interruptible(&timer, HRTIMER_ABS); if (rem.tv64 <= 0) return 0; rmtp = (struct timespec __user *) restart->arg2; tu = ktime_to_timespec(rem); if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu))) return -EFAULT; restart->fn = rfn_save; /* The other values in restart are already filled in */ return -ERESTART_RESTARTBLOCK; } long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp, const enum hrtimer_mode mode, const clockid_t clockid) { struct restart_block *restart; struct hrtimer timer; struct timespec tu; ktime_t rem; hrtimer_init(&timer, clockid, mode); timer.expires = timespec_to_ktime(*rqtp); rem = schedule_hrtimer_interruptible(&timer, mode); if (rem.tv64 <= 0) return 0; /* Absolute timers do not update the rmtp value and restart: */ if (mode == HRTIMER_ABS) return -ERESTARTNOHAND; tu = ktime_to_timespec(rem); if (rmtp && copy_to_user(rmtp, &tu, sizeof(tu))) return -EFAULT; restart = ¤t_thread_info()->restart_block; restart->fn = nanosleep_restart; restart->arg0 = timer.expires.tv64 & 0xFFFFFFFF; restart->arg1 = timer.expires.tv64 >> 32; restart->arg2 = (unsigned long) rmtp; restart->arg3 = (unsigned long) timer.base->index; return -ERESTART_RESTARTBLOCK; } asmlinkage long sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp) { struct timespec tu; if (copy_from_user(&tu, rqtp, sizeof(tu))) return -EFAULT; if (!timespec_valid(&tu)) return -EINVAL; return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC); } /* * Functions related to boot-time initialization: */ static void __devinit init_hrtimers_cpu(int cpu) { struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu); int i; for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) spin_lock_init(&base->lock); } #ifdef CONFIG_HOTPLUG_CPU static void migrate_hrtimer_list(struct hrtimer_base *old_base, struct hrtimer_base *new_base) { struct hrtimer *timer; struct rb_node *node; while ((node = rb_first(&old_base->active))) { timer = rb_entry(node, struct hrtimer, node); __remove_hrtimer(timer, old_base); timer->base = new_base; enqueue_hrtimer(timer, new_base); } } static void migrate_hrtimers(int cpu) { struct hrtimer_base *old_base, *new_base; int i; BUG_ON(cpu_online(cpu)); old_base = per_cpu(hrtimer_bases, cpu); new_base = get_cpu_var(hrtimer_bases); local_irq_disable(); for (i = 0; i < MAX_HRTIMER_BASES; i++) { spin_lock(&new_base->lock); spin_lock(&old_base->lock); BUG_ON(old_base->curr_timer); migrate_hrtimer_list(old_base, new_base); spin_unlock(&old_base->lock); spin_unlock(&new_base->lock); old_base++; new_base++; } local_irq_enable(); put_cpu_var(hrtimer_bases); } #endif /* CONFIG_HOTPLUG_CPU */ static int __devinit hrtimer_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { long cpu = (long)hcpu; switch (action) { case CPU_UP_PREPARE: init_hrtimers_cpu(cpu); break; #ifdef CONFIG_HOTPLUG_CPU case CPU_DEAD: migrate_hrtimers(cpu); break; #endif default: break; } return NOTIFY_OK; } static struct notifier_block __devinitdata hrtimers_nb = { .notifier_call = hrtimer_cpu_notify, }; void __init hrtimers_init(void) { hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE, (void *)(long)smp_processor_id()); register_cpu_notifier(&hrtimers_nb); } |