Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 | /* * ip27-irq.c: Highlevel interrupt handling for IP27 architecture. * * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org) * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 1999 - 2001 Kanoj Sarcar */ #undef DEBUG #include <linux/init.h> #include <linux/irq.h> #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/timex.h> #include <linux/smp.h> #include <linux/random.h> #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/delay.h> #include <linux/bitops.h> #include <asm/bootinfo.h> #include <asm/io.h> #include <asm/mipsregs.h> #include <asm/system.h> #include <asm/processor.h> #include <asm/pci/bridge.h> #include <asm/sn/addrs.h> #include <asm/sn/agent.h> #include <asm/sn/arch.h> #include <asm/sn/hub.h> #include <asm/sn/intr.h> /* * Linux has a controller-independent x86 interrupt architecture. * every controller has a 'controller-template', that is used * by the main code to do the right thing. Each driver-visible * interrupt source is transparently wired to the appropriate * controller. Thus drivers need not be aware of the * interrupt-controller. * * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC, * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC. * (IO-APICs assumed to be messaging to Pentium local-APICs) * * the code is designed to be easily extended with new/different * interrupt controllers, without having to do assembly magic. */ extern asmlinkage void ip27_irq(void); extern struct bridge_controller *irq_to_bridge[]; extern int irq_to_slot[]; /* * use these macros to get the encoded nasid and widget id * from the irq value */ #define IRQ_TO_BRIDGE(i) irq_to_bridge[(i)] #define SLOT_FROM_PCI_IRQ(i) irq_to_slot[i] static inline int alloc_level(int cpu, int irq) { struct hub_data *hub = hub_data(cpu_to_node(cpu)); struct slice_data *si = cpu_data[cpu].data; int level; level = find_first_zero_bit(hub->irq_alloc_mask, LEVELS_PER_SLICE); if (level >= LEVELS_PER_SLICE) panic("Cpu %d flooded with devices", cpu); __set_bit(level, hub->irq_alloc_mask); si->level_to_irq[level] = irq; return level; } static inline int find_level(cpuid_t *cpunum, int irq) { int cpu, i; for_each_online_cpu(cpu) { struct slice_data *si = cpu_data[cpu].data; for (i = BASE_PCI_IRQ; i < LEVELS_PER_SLICE; i++) if (si->level_to_irq[i] == irq) { *cpunum = cpu; return i; } } panic("Could not identify cpu/level for irq %d", irq); } /* * Find first bit set */ static int ms1bit(unsigned long x) { int b = 0, s; s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s; s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s; s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s; s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s; s = 1; if (x >> 1 == 0) s = 0; b += s; return b; } /* * This code is unnecessarily complex, because we do * intr enabling. Basically, once we grab the set of intrs we need * to service, we must mask _all_ these interrupts; firstly, to make * sure the same intr does not intr again, causing recursion that * can lead to stack overflow. Secondly, we can not just mask the * one intr we are do_IRQing, because the non-masked intrs in the * first set might intr again, causing multiple servicings of the * same intr. This effect is mostly seen for intercpu intrs. * Kanoj 05.13.00 */ static void ip27_do_irq_mask0(void) { int irq, swlevel; hubreg_t pend0, mask0; cpuid_t cpu = smp_processor_id(); int pi_int_mask0 = (cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B; /* copied from Irix intpend0() */ pend0 = LOCAL_HUB_L(PI_INT_PEND0); mask0 = LOCAL_HUB_L(pi_int_mask0); pend0 &= mask0; /* Pick intrs we should look at */ if (!pend0) return; swlevel = ms1bit(pend0); #ifdef CONFIG_SMP if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) { LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ); scheduler_ipi(); } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) { LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ); scheduler_ipi(); } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) { LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ); smp_call_function_interrupt(); } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) { LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ); smp_call_function_interrupt(); } else #endif { /* "map" swlevel to irq */ struct slice_data *si = cpu_data[cpu].data; irq = si->level_to_irq[swlevel]; do_IRQ(irq); } LOCAL_HUB_L(PI_INT_PEND0); } static void ip27_do_irq_mask1(void) { int irq, swlevel; hubreg_t pend1, mask1; cpuid_t cpu = smp_processor_id(); int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B; struct slice_data *si = cpu_data[cpu].data; /* copied from Irix intpend0() */ pend1 = LOCAL_HUB_L(PI_INT_PEND1); mask1 = LOCAL_HUB_L(pi_int_mask1); pend1 &= mask1; /* Pick intrs we should look at */ if (!pend1) return; swlevel = ms1bit(pend1); /* "map" swlevel to irq */ irq = si->level_to_irq[swlevel]; LOCAL_HUB_CLR_INTR(swlevel); do_IRQ(irq); LOCAL_HUB_L(PI_INT_PEND1); } static void ip27_prof_timer(void) { panic("CPU %d got a profiling interrupt", smp_processor_id()); } static void ip27_hub_error(void) { panic("CPU %d got a hub error interrupt", smp_processor_id()); } static int intr_connect_level(int cpu, int bit) { nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu)); struct slice_data *si = cpu_data[cpu].data; set_bit(bit, si->irq_enable_mask); if (!cputoslice(cpu)) { REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]); REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]); } else { REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]); REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]); } return 0; } static int intr_disconnect_level(int cpu, int bit) { nasid_t nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu)); struct slice_data *si = cpu_data[cpu].data; clear_bit(bit, si->irq_enable_mask); if (!cputoslice(cpu)) { REMOTE_HUB_S(nasid, PI_INT_MASK0_A, si->irq_enable_mask[0]); REMOTE_HUB_S(nasid, PI_INT_MASK1_A, si->irq_enable_mask[1]); } else { REMOTE_HUB_S(nasid, PI_INT_MASK0_B, si->irq_enable_mask[0]); REMOTE_HUB_S(nasid, PI_INT_MASK1_B, si->irq_enable_mask[1]); } return 0; } /* Startup one of the (PCI ...) IRQs routes over a bridge. */ static unsigned int startup_bridge_irq(struct irq_data *d) { struct bridge_controller *bc; bridgereg_t device; bridge_t *bridge; int pin, swlevel; cpuid_t cpu; pin = SLOT_FROM_PCI_IRQ(d->irq); bc = IRQ_TO_BRIDGE(d->irq); bridge = bc->base; pr_debug("bridge_startup(): irq= 0x%x pin=%d\n", d->irq, pin); /* * "map" irq to a swlevel greater than 6 since the first 6 bits * of INT_PEND0 are taken */ swlevel = find_level(&cpu, d->irq); bridge->b_int_addr[pin].addr = (0x20000 | swlevel | (bc->nasid << 8)); bridge->b_int_enable |= (1 << pin); bridge->b_int_enable |= 0x7ffffe00; /* more stuff in int_enable */ /* * Enable sending of an interrupt clear packt to the hub on a high to * low transition of the interrupt pin. * * IRIX sets additional bits in the address which are documented as * reserved in the bridge docs. */ bridge->b_int_mode |= (1UL << pin); /* * We assume the bridge to have a 1:1 mapping between devices * (slots) and intr pins. */ device = bridge->b_int_device; device &= ~(7 << (pin*3)); device |= (pin << (pin*3)); bridge->b_int_device = device; bridge->b_wid_tflush; intr_connect_level(cpu, swlevel); return 0; /* Never anything pending. */ } /* Shutdown one of the (PCI ...) IRQs routes over a bridge. */ static void shutdown_bridge_irq(struct irq_data *d) { struct bridge_controller *bc = IRQ_TO_BRIDGE(d->irq); bridge_t *bridge = bc->base; int pin, swlevel; cpuid_t cpu; pr_debug("bridge_shutdown: irq 0x%x\n", d->irq); pin = SLOT_FROM_PCI_IRQ(d->irq); /* * map irq to a swlevel greater than 6 since the first 6 bits * of INT_PEND0 are taken */ swlevel = find_level(&cpu, d->irq); intr_disconnect_level(cpu, swlevel); bridge->b_int_enable &= ~(1 << pin); bridge->b_wid_tflush; } static inline void enable_bridge_irq(struct irq_data *d) { cpuid_t cpu; int swlevel; swlevel = find_level(&cpu, d->irq); /* Criminal offence */ intr_connect_level(cpu, swlevel); } static inline void disable_bridge_irq(struct irq_data *d) { cpuid_t cpu; int swlevel; swlevel = find_level(&cpu, d->irq); /* Criminal offence */ intr_disconnect_level(cpu, swlevel); } static struct irq_chip bridge_irq_type = { .name = "bridge", .irq_startup = startup_bridge_irq, .irq_shutdown = shutdown_bridge_irq, .irq_mask = disable_bridge_irq, .irq_unmask = enable_bridge_irq, }; void register_bridge_irq(unsigned int irq) { irq_set_chip_and_handler(irq, &bridge_irq_type, handle_level_irq); } int request_bridge_irq(struct bridge_controller *bc) { int irq = allocate_irqno(); int swlevel, cpu; nasid_t nasid; if (irq < 0) return irq; /* * "map" irq to a swlevel greater than 6 since the first 6 bits * of INT_PEND0 are taken */ cpu = bc->irq_cpu; swlevel = alloc_level(cpu, irq); if (unlikely(swlevel < 0)) { free_irqno(irq); return -EAGAIN; } /* Make sure it's not already pending when we connect it. */ nasid = COMPACT_TO_NASID_NODEID(cpu_to_node(cpu)); REMOTE_HUB_CLR_INTR(nasid, swlevel); intr_connect_level(cpu, swlevel); register_bridge_irq(irq); return irq; } asmlinkage void plat_irq_dispatch(void) { unsigned long pending = read_c0_cause() & read_c0_status(); extern unsigned int rt_timer_irq; if (pending & CAUSEF_IP4) do_IRQ(rt_timer_irq); else if (pending & CAUSEF_IP2) /* PI_INT_PEND_0 or CC_PEND_{A|B} */ ip27_do_irq_mask0(); else if (pending & CAUSEF_IP3) /* PI_INT_PEND_1 */ ip27_do_irq_mask1(); else if (pending & CAUSEF_IP5) ip27_prof_timer(); else if (pending & CAUSEF_IP6) ip27_hub_error(); } void __init arch_init_irq(void) { } void install_ipi(void) { int slice = LOCAL_HUB_L(PI_CPU_NUM); int cpu = smp_processor_id(); struct slice_data *si = cpu_data[cpu].data; struct hub_data *hub = hub_data(cpu_to_node(cpu)); int resched, call; resched = CPU_RESCHED_A_IRQ + slice; __set_bit(resched, hub->irq_alloc_mask); __set_bit(resched, si->irq_enable_mask); LOCAL_HUB_CLR_INTR(resched); call = CPU_CALL_A_IRQ + slice; __set_bit(call, hub->irq_alloc_mask); __set_bit(call, si->irq_enable_mask); LOCAL_HUB_CLR_INTR(call); if (slice == 0) { LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]); LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]); } else { LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]); LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]); } } |