Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 | /* * ip27-irq.c: Highlevel interrupt handling for IP27 architecture. * * Copyright (C) 1999, 2000 Ralf Baechle (ralf@gnu.org) * Copyright (C) 1999, 2000 Silicon Graphics, Inc. * Copyright (C) 1999 - 2001 Kanoj Sarcar */ #undef DEBUG #include <linux/init.h> #include <linux/irq.h> #include <linux/errno.h> #include <linux/signal.h> #include <linux/sched.h> #include <linux/types.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/timex.h> #include <linux/smp.h> #include <linux/random.h> #include <linux/kernel.h> #include <linux/kernel_stat.h> #include <linux/delay.h> #include <linux/bitops.h> #include <asm/bootinfo.h> #include <asm/io.h> #include <asm/mipsregs.h> #include <asm/processor.h> #include <asm/sn/addrs.h> #include <asm/sn/agent.h> #include <asm/sn/arch.h> #include <asm/sn/hub.h> #include <asm/sn/intr.h> /* * Linux has a controller-independent x86 interrupt architecture. * every controller has a 'controller-template', that is used * by the main code to do the right thing. Each driver-visible * interrupt source is transparently wired to the appropriate * controller. Thus drivers need not be aware of the * interrupt-controller. * * Various interrupt controllers we handle: 8259 PIC, SMP IO-APIC, * PIIX4's internal 8259 PIC and SGI's Visual Workstation Cobalt (IO-)APIC. * (IO-APICs assumed to be messaging to Pentium local-APICs) * * the code is designed to be easily extended with new/different * interrupt controllers, without having to do assembly magic. */ extern asmlinkage void ip27_irq(void); /* * Find first bit set */ static int ms1bit(unsigned long x) { int b = 0, s; s = 16; if (x >> 16 == 0) s = 0; b += s; x >>= s; s = 8; if (x >> 8 == 0) s = 0; b += s; x >>= s; s = 4; if (x >> 4 == 0) s = 0; b += s; x >>= s; s = 2; if (x >> 2 == 0) s = 0; b += s; x >>= s; s = 1; if (x >> 1 == 0) s = 0; b += s; return b; } /* * This code is unnecessarily complex, because we do * intr enabling. Basically, once we grab the set of intrs we need * to service, we must mask _all_ these interrupts; firstly, to make * sure the same intr does not intr again, causing recursion that * can lead to stack overflow. Secondly, we can not just mask the * one intr we are do_IRQing, because the non-masked intrs in the * first set might intr again, causing multiple servicings of the * same intr. This effect is mostly seen for intercpu intrs. * Kanoj 05.13.00 */ static void ip27_do_irq_mask0(void) { int irq, swlevel; hubreg_t pend0, mask0; cpuid_t cpu = smp_processor_id(); int pi_int_mask0 = (cputoslice(cpu) == 0) ? PI_INT_MASK0_A : PI_INT_MASK0_B; /* copied from Irix intpend0() */ pend0 = LOCAL_HUB_L(PI_INT_PEND0); mask0 = LOCAL_HUB_L(pi_int_mask0); pend0 &= mask0; /* Pick intrs we should look at */ if (!pend0) return; swlevel = ms1bit(pend0); #ifdef CONFIG_SMP if (pend0 & (1UL << CPU_RESCHED_A_IRQ)) { LOCAL_HUB_CLR_INTR(CPU_RESCHED_A_IRQ); scheduler_ipi(); } else if (pend0 & (1UL << CPU_RESCHED_B_IRQ)) { LOCAL_HUB_CLR_INTR(CPU_RESCHED_B_IRQ); scheduler_ipi(); } else if (pend0 & (1UL << CPU_CALL_A_IRQ)) { LOCAL_HUB_CLR_INTR(CPU_CALL_A_IRQ); smp_call_function_interrupt(); } else if (pend0 & (1UL << CPU_CALL_B_IRQ)) { LOCAL_HUB_CLR_INTR(CPU_CALL_B_IRQ); smp_call_function_interrupt(); } else #endif { /* "map" swlevel to irq */ struct slice_data *si = cpu_data[cpu].data; irq = si->level_to_irq[swlevel]; do_IRQ(irq); } LOCAL_HUB_L(PI_INT_PEND0); } static void ip27_do_irq_mask1(void) { int irq, swlevel; hubreg_t pend1, mask1; cpuid_t cpu = smp_processor_id(); int pi_int_mask1 = (cputoslice(cpu) == 0) ? PI_INT_MASK1_A : PI_INT_MASK1_B; struct slice_data *si = cpu_data[cpu].data; /* copied from Irix intpend0() */ pend1 = LOCAL_HUB_L(PI_INT_PEND1); mask1 = LOCAL_HUB_L(pi_int_mask1); pend1 &= mask1; /* Pick intrs we should look at */ if (!pend1) return; swlevel = ms1bit(pend1); /* "map" swlevel to irq */ irq = si->level_to_irq[swlevel]; LOCAL_HUB_CLR_INTR(swlevel); do_IRQ(irq); LOCAL_HUB_L(PI_INT_PEND1); } static void ip27_prof_timer(void) { panic("CPU %d got a profiling interrupt", smp_processor_id()); } static void ip27_hub_error(void) { panic("CPU %d got a hub error interrupt", smp_processor_id()); } asmlinkage void plat_irq_dispatch(void) { unsigned long pending = read_c0_cause() & read_c0_status(); extern unsigned int rt_timer_irq; if (pending & CAUSEF_IP4) do_IRQ(rt_timer_irq); else if (pending & CAUSEF_IP2) /* PI_INT_PEND_0 or CC_PEND_{A|B} */ ip27_do_irq_mask0(); else if (pending & CAUSEF_IP3) /* PI_INT_PEND_1 */ ip27_do_irq_mask1(); else if (pending & CAUSEF_IP5) ip27_prof_timer(); else if (pending & CAUSEF_IP6) ip27_hub_error(); } void __init arch_init_irq(void) { } void install_ipi(void) { int slice = LOCAL_HUB_L(PI_CPU_NUM); int cpu = smp_processor_id(); struct slice_data *si = cpu_data[cpu].data; struct hub_data *hub = hub_data(cpu_to_node(cpu)); int resched, call; resched = CPU_RESCHED_A_IRQ + slice; __set_bit(resched, hub->irq_alloc_mask); __set_bit(resched, si->irq_enable_mask); LOCAL_HUB_CLR_INTR(resched); call = CPU_CALL_A_IRQ + slice; __set_bit(call, hub->irq_alloc_mask); __set_bit(call, si->irq_enable_mask); LOCAL_HUB_CLR_INTR(call); if (slice == 0) { LOCAL_HUB_S(PI_INT_MASK0_A, si->irq_enable_mask[0]); LOCAL_HUB_S(PI_INT_MASK1_A, si->irq_enable_mask[1]); } else { LOCAL_HUB_S(PI_INT_MASK0_B, si->irq_enable_mask[0]); LOCAL_HUB_S(PI_INT_MASK1_B, si->irq_enable_mask[1]); } } |