Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 | /* * INET An implementation of the TCP/IP protocol suite for the LINUX * operating system. INET is implemented using the BSD Socket * interface as the means of communication with the user level. * * Definitions for the AF_INET socket handler. * * Version: @(#)sock.h 1.0.4 05/13/93 * * Authors: Ross Biro * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> * Corey Minyard <wf-rch!minyard@relay.EU.net> * Florian La Roche <flla@stud.uni-sb.de> * * Fixes: * Alan Cox : Volatiles in skbuff pointers. See * skbuff comments. May be overdone, * better to prove they can be removed * than the reverse. * Alan Cox : Added a zapped field for tcp to note * a socket is reset and must stay shut up * Alan Cox : New fields for options * Pauline Middelink : identd support * Alan Cox : Eliminate low level recv/recvfrom * David S. Miller : New socket lookup architecture. * Steve Whitehouse: Default routines for sock_ops * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made * protinfo be just a void pointer, as the * protocol specific parts were moved to * respective headers and ipv4/v6, etc now * use private slabcaches for its socks * Pedro Hortas : New flags field for socket options * * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. */ #ifndef _SOCK_H #define _SOCK_H #include <linux/hardirq.h> #include <linux/kernel.h> #include <linux/list.h> #include <linux/list_nulls.h> #include <linux/timer.h> #include <linux/cache.h> #include <linux/bitops.h> #include <linux/lockdep.h> #include <linux/netdevice.h> #include <linux/skbuff.h> /* struct sk_buff */ #include <linux/mm.h> #include <linux/security.h> #include <linux/slab.h> #include <linux/uaccess.h> #include <linux/memcontrol.h> #include <linux/res_counter.h> #include <linux/static_key.h> #include <linux/aio.h> #include <linux/sched.h> #include <linux/filter.h> #include <linux/rculist_nulls.h> #include <linux/poll.h> #include <linux/atomic.h> #include <net/dst.h> #include <net/checksum.h> #include <net/tcp_states.h> #include <linux/net_tstamp.h> struct cgroup; struct cgroup_subsys; #ifdef CONFIG_NET int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss); void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg); #else static inline int mem_cgroup_sockets_init(struct mem_cgroup *memcg, struct cgroup_subsys *ss) { return 0; } static inline void mem_cgroup_sockets_destroy(struct mem_cgroup *memcg) { } #endif /* * This structure really needs to be cleaned up. * Most of it is for TCP, and not used by any of * the other protocols. */ /* Define this to get the SOCK_DBG debugging facility. */ #define SOCK_DEBUGGING #ifdef SOCK_DEBUGGING #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \ printk(KERN_DEBUG msg); } while (0) #else /* Validate arguments and do nothing */ static inline __printf(2, 3) void SOCK_DEBUG(const struct sock *sk, const char *msg, ...) { } #endif /* This is the per-socket lock. The spinlock provides a synchronization * between user contexts and software interrupt processing, whereas the * mini-semaphore synchronizes multiple users amongst themselves. */ typedef struct { spinlock_t slock; int owned; wait_queue_head_t wq; /* * We express the mutex-alike socket_lock semantics * to the lock validator by explicitly managing * the slock as a lock variant (in addition to * the slock itself): */ #ifdef CONFIG_DEBUG_LOCK_ALLOC struct lockdep_map dep_map; #endif } socket_lock_t; struct sock; struct proto; struct net; typedef __u32 __bitwise __portpair; typedef __u64 __bitwise __addrpair; /** * struct sock_common - minimal network layer representation of sockets * @skc_daddr: Foreign IPv4 addr * @skc_rcv_saddr: Bound local IPv4 addr * @skc_hash: hash value used with various protocol lookup tables * @skc_u16hashes: two u16 hash values used by UDP lookup tables * @skc_dport: placeholder for inet_dport/tw_dport * @skc_num: placeholder for inet_num/tw_num * @skc_family: network address family * @skc_state: Connection state * @skc_reuse: %SO_REUSEADDR setting * @skc_reuseport: %SO_REUSEPORT setting * @skc_bound_dev_if: bound device index if != 0 * @skc_bind_node: bind hash linkage for various protocol lookup tables * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol * @skc_prot: protocol handlers inside a network family * @skc_net: reference to the network namespace of this socket * @skc_node: main hash linkage for various protocol lookup tables * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol * @skc_tx_queue_mapping: tx queue number for this connection * @skc_refcnt: reference count * * This is the minimal network layer representation of sockets, the header * for struct sock and struct inet_timewait_sock. */ struct sock_common { /* skc_daddr and skc_rcv_saddr must be grouped on a 8 bytes aligned * address on 64bit arches : cf INET_MATCH() */ union { __addrpair skc_addrpair; struct { __be32 skc_daddr; __be32 skc_rcv_saddr; }; }; union { unsigned int skc_hash; __u16 skc_u16hashes[2]; }; /* skc_dport && skc_num must be grouped as well */ union { __portpair skc_portpair; struct { __be16 skc_dport; __u16 skc_num; }; }; unsigned short skc_family; volatile unsigned char skc_state; unsigned char skc_reuse:4; unsigned char skc_reuseport:1; unsigned char skc_ipv6only:1; int skc_bound_dev_if; union { struct hlist_node skc_bind_node; struct hlist_nulls_node skc_portaddr_node; }; struct proto *skc_prot; #ifdef CONFIG_NET_NS struct net *skc_net; #endif #if IS_ENABLED(CONFIG_IPV6) struct in6_addr skc_v6_daddr; struct in6_addr skc_v6_rcv_saddr; #endif /* * fields between dontcopy_begin/dontcopy_end * are not copied in sock_copy() */ /* private: */ int skc_dontcopy_begin[0]; /* public: */ union { struct hlist_node skc_node; struct hlist_nulls_node skc_nulls_node; }; int skc_tx_queue_mapping; atomic_t skc_refcnt; /* private: */ int skc_dontcopy_end[0]; /* public: */ }; struct cg_proto; /** * struct sock - network layer representation of sockets * @__sk_common: shared layout with inet_timewait_sock * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings * @sk_lock: synchronizer * @sk_rcvbuf: size of receive buffer in bytes * @sk_wq: sock wait queue and async head * @sk_rx_dst: receive input route used by early demux * @sk_dst_cache: destination cache * @sk_dst_lock: destination cache lock * @sk_policy: flow policy * @sk_receive_queue: incoming packets * @sk_wmem_alloc: transmit queue bytes committed * @sk_write_queue: Packet sending queue * @sk_omem_alloc: "o" is "option" or "other" * @sk_wmem_queued: persistent queue size * @sk_forward_alloc: space allocated forward * @sk_napi_id: id of the last napi context to receive data for sk * @sk_ll_usec: usecs to busypoll when there is no data * @sk_allocation: allocation mode * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler) * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE) * @sk_sndbuf: size of send buffer in bytes * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE, * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets * @sk_no_check_rx: allow zero checksum in RX packets * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO) * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK) * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4) * @sk_gso_max_size: Maximum GSO segment size to build * @sk_gso_max_segs: Maximum number of GSO segments * @sk_lingertime: %SO_LINGER l_linger setting * @sk_backlog: always used with the per-socket spinlock held * @sk_callback_lock: used with the callbacks in the end of this struct * @sk_error_queue: rarely used * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt, * IPV6_ADDRFORM for instance) * @sk_err: last error * @sk_err_soft: errors that don't cause failure but are the cause of a * persistent failure not just 'timed out' * @sk_drops: raw/udp drops counter * @sk_ack_backlog: current listen backlog * @sk_max_ack_backlog: listen backlog set in listen() * @sk_priority: %SO_PRIORITY setting * @sk_cgrp_prioidx: socket group's priority map index * @sk_type: socket type (%SOCK_STREAM, etc) * @sk_protocol: which protocol this socket belongs in this network family * @sk_peer_pid: &struct pid for this socket's peer * @sk_peer_cred: %SO_PEERCRED setting * @sk_rcvlowat: %SO_RCVLOWAT setting * @sk_rcvtimeo: %SO_RCVTIMEO setting * @sk_sndtimeo: %SO_SNDTIMEO setting * @sk_rxhash: flow hash received from netif layer * @sk_txhash: computed flow hash for use on transmit * @sk_filter: socket filtering instructions * @sk_protinfo: private area, net family specific, when not using slab * @sk_timer: sock cleanup timer * @sk_stamp: time stamp of last packet received * @sk_tsflags: SO_TIMESTAMPING socket options * @sk_tskey: counter to disambiguate concurrent tstamp requests * @sk_socket: Identd and reporting IO signals * @sk_user_data: RPC layer private data * @sk_frag: cached page frag * @sk_peek_off: current peek_offset value * @sk_send_head: front of stuff to transmit * @sk_security: used by security modules * @sk_mark: generic packet mark * @sk_classid: this socket's cgroup classid * @sk_cgrp: this socket's cgroup-specific proto data * @sk_write_pending: a write to stream socket waits to start * @sk_state_change: callback to indicate change in the state of the sock * @sk_data_ready: callback to indicate there is data to be processed * @sk_write_space: callback to indicate there is bf sending space available * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE) * @sk_backlog_rcv: callback to process the backlog * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0 */ struct sock { /* * Now struct inet_timewait_sock also uses sock_common, so please just * don't add nothing before this first member (__sk_common) --acme */ struct sock_common __sk_common; #define sk_node __sk_common.skc_node #define sk_nulls_node __sk_common.skc_nulls_node #define sk_refcnt __sk_common.skc_refcnt #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin #define sk_dontcopy_end __sk_common.skc_dontcopy_end #define sk_hash __sk_common.skc_hash #define sk_portpair __sk_common.skc_portpair #define sk_num __sk_common.skc_num #define sk_dport __sk_common.skc_dport #define sk_addrpair __sk_common.skc_addrpair #define sk_daddr __sk_common.skc_daddr #define sk_rcv_saddr __sk_common.skc_rcv_saddr #define sk_family __sk_common.skc_family #define sk_state __sk_common.skc_state #define sk_reuse __sk_common.skc_reuse #define sk_reuseport __sk_common.skc_reuseport #define sk_ipv6only __sk_common.skc_ipv6only #define sk_bound_dev_if __sk_common.skc_bound_dev_if #define sk_bind_node __sk_common.skc_bind_node #define sk_prot __sk_common.skc_prot #define sk_net __sk_common.skc_net #define sk_v6_daddr __sk_common.skc_v6_daddr #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr socket_lock_t sk_lock; struct sk_buff_head sk_receive_queue; /* * The backlog queue is special, it is always used with * the per-socket spinlock held and requires low latency * access. Therefore we special case it's implementation. * Note : rmem_alloc is in this structure to fill a hole * on 64bit arches, not because its logically part of * backlog. */ struct { atomic_t rmem_alloc; int len; struct sk_buff *head; struct sk_buff *tail; } sk_backlog; #define sk_rmem_alloc sk_backlog.rmem_alloc int sk_forward_alloc; #ifdef CONFIG_RPS __u32 sk_rxhash; #endif __u32 sk_txhash; #ifdef CONFIG_NET_RX_BUSY_POLL unsigned int sk_napi_id; unsigned int sk_ll_usec; #endif atomic_t sk_drops; int sk_rcvbuf; struct sk_filter __rcu *sk_filter; struct socket_wq __rcu *sk_wq; #ifdef CONFIG_XFRM struct xfrm_policy *sk_policy[2]; #endif unsigned long sk_flags; struct dst_entry *sk_rx_dst; struct dst_entry __rcu *sk_dst_cache; spinlock_t sk_dst_lock; atomic_t sk_wmem_alloc; atomic_t sk_omem_alloc; int sk_sndbuf; struct sk_buff_head sk_write_queue; kmemcheck_bitfield_begin(flags); unsigned int sk_shutdown : 2, sk_no_check_tx : 1, sk_no_check_rx : 1, sk_userlocks : 4, sk_protocol : 8, #define SK_PROTOCOL_MAX U8_MAX sk_type : 16; kmemcheck_bitfield_end(flags); int sk_wmem_queued; gfp_t sk_allocation; u32 sk_pacing_rate; /* bytes per second */ u32 sk_max_pacing_rate; netdev_features_t sk_route_caps; netdev_features_t sk_route_nocaps; int sk_gso_type; unsigned int sk_gso_max_size; u16 sk_gso_max_segs; int sk_rcvlowat; unsigned long sk_lingertime; struct sk_buff_head sk_error_queue; struct proto *sk_prot_creator; rwlock_t sk_callback_lock; int sk_err, sk_err_soft; unsigned short sk_ack_backlog; unsigned short sk_max_ack_backlog; __u32 sk_priority; #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO) __u32 sk_cgrp_prioidx; #endif struct pid *sk_peer_pid; const struct cred *sk_peer_cred; long sk_rcvtimeo; long sk_sndtimeo; void *sk_protinfo; struct timer_list sk_timer; ktime_t sk_stamp; u16 sk_tsflags; u32 sk_tskey; struct socket *sk_socket; void *sk_user_data; struct page_frag sk_frag; struct sk_buff *sk_send_head; __s32 sk_peek_off; int sk_write_pending; #ifdef CONFIG_SECURITY void *sk_security; #endif __u32 sk_mark; u32 sk_classid; struct cg_proto *sk_cgrp; void (*sk_state_change)(struct sock *sk); void (*sk_data_ready)(struct sock *sk); void (*sk_write_space)(struct sock *sk); void (*sk_error_report)(struct sock *sk); int (*sk_backlog_rcv)(struct sock *sk, struct sk_buff *skb); void (*sk_destruct)(struct sock *sk); }; #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data))) #define rcu_dereference_sk_user_data(sk) rcu_dereference(__sk_user_data((sk))) #define rcu_assign_sk_user_data(sk, ptr) rcu_assign_pointer(__sk_user_data((sk)), ptr) /* * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK * or not whether his port will be reused by someone else. SK_FORCE_REUSE * on a socket means that the socket will reuse everybody else's port * without looking at the other's sk_reuse value. */ #define SK_NO_REUSE 0 #define SK_CAN_REUSE 1 #define SK_FORCE_REUSE 2 static inline int sk_peek_offset(struct sock *sk, int flags) { if ((flags & MSG_PEEK) && (sk->sk_peek_off >= 0)) return sk->sk_peek_off; else return 0; } static inline void sk_peek_offset_bwd(struct sock *sk, int val) { if (sk->sk_peek_off >= 0) { if (sk->sk_peek_off >= val) sk->sk_peek_off -= val; else sk->sk_peek_off = 0; } } static inline void sk_peek_offset_fwd(struct sock *sk, int val) { if (sk->sk_peek_off >= 0) sk->sk_peek_off += val; } /* * Hashed lists helper routines */ static inline struct sock *sk_entry(const struct hlist_node *node) { return hlist_entry(node, struct sock, sk_node); } static inline struct sock *__sk_head(const struct hlist_head *head) { return hlist_entry(head->first, struct sock, sk_node); } static inline struct sock *sk_head(const struct hlist_head *head) { return hlist_empty(head) ? NULL : __sk_head(head); } static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head) { return hlist_nulls_entry(head->first, struct sock, sk_nulls_node); } static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head) { return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head); } static inline struct sock *sk_next(const struct sock *sk) { return sk->sk_node.next ? hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL; } static inline struct sock *sk_nulls_next(const struct sock *sk) { return (!is_a_nulls(sk->sk_nulls_node.next)) ? hlist_nulls_entry(sk->sk_nulls_node.next, struct sock, sk_nulls_node) : NULL; } static inline bool sk_unhashed(const struct sock *sk) { return hlist_unhashed(&sk->sk_node); } static inline bool sk_hashed(const struct sock *sk) { return !sk_unhashed(sk); } static inline void sk_node_init(struct hlist_node *node) { node->pprev = NULL; } static inline void sk_nulls_node_init(struct hlist_nulls_node *node) { node->pprev = NULL; } static inline void __sk_del_node(struct sock *sk) { __hlist_del(&sk->sk_node); } /* NB: equivalent to hlist_del_init_rcu */ static inline bool __sk_del_node_init(struct sock *sk) { if (sk_hashed(sk)) { __sk_del_node(sk); sk_node_init(&sk->sk_node); return true; } return false; } /* Grab socket reference count. This operation is valid only when sk is ALREADY grabbed f.e. it is found in hash table or a list and the lookup is made under lock preventing hash table modifications. */ static inline void sock_hold(struct sock *sk) { atomic_inc(&sk->sk_refcnt); } /* Ungrab socket in the context, which assumes that socket refcnt cannot hit zero, f.e. it is true in context of any socketcall. */ static inline void __sock_put(struct sock *sk) { atomic_dec(&sk->sk_refcnt); } static inline bool sk_del_node_init(struct sock *sk) { bool rc = __sk_del_node_init(sk); if (rc) { /* paranoid for a while -acme */ WARN_ON(atomic_read(&sk->sk_refcnt) == 1); __sock_put(sk); } return rc; } #define sk_del_node_init_rcu(sk) sk_del_node_init(sk) static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk) { if (sk_hashed(sk)) { hlist_nulls_del_init_rcu(&sk->sk_nulls_node); return true; } return false; } static inline bool sk_nulls_del_node_init_rcu(struct sock *sk) { bool rc = __sk_nulls_del_node_init_rcu(sk); if (rc) { /* paranoid for a while -acme */ WARN_ON(atomic_read(&sk->sk_refcnt) == 1); __sock_put(sk); } return rc; } static inline void __sk_add_node(struct sock *sk, struct hlist_head *list) { hlist_add_head(&sk->sk_node, list); } static inline void sk_add_node(struct sock *sk, struct hlist_head *list) { sock_hold(sk); __sk_add_node(sk, list); } static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list) { sock_hold(sk); hlist_add_head_rcu(&sk->sk_node, list); } static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) { hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list); } static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list) { sock_hold(sk); __sk_nulls_add_node_rcu(sk, list); } static inline void __sk_del_bind_node(struct sock *sk) { __hlist_del(&sk->sk_bind_node); } static inline void sk_add_bind_node(struct sock *sk, struct hlist_head *list) { hlist_add_head(&sk->sk_bind_node, list); } #define sk_for_each(__sk, list) \ hlist_for_each_entry(__sk, list, sk_node) #define sk_for_each_rcu(__sk, list) \ hlist_for_each_entry_rcu(__sk, list, sk_node) #define sk_nulls_for_each(__sk, node, list) \ hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node) #define sk_nulls_for_each_rcu(__sk, node, list) \ hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node) #define sk_for_each_from(__sk) \ hlist_for_each_entry_from(__sk, sk_node) #define sk_nulls_for_each_from(__sk, node) \ if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \ hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node) #define sk_for_each_safe(__sk, tmp, list) \ hlist_for_each_entry_safe(__sk, tmp, list, sk_node) #define sk_for_each_bound(__sk, list) \ hlist_for_each_entry(__sk, list, sk_bind_node) /** * sk_nulls_for_each_entry_offset - iterate over a list at a given struct offset * @tpos: the type * to use as a loop cursor. * @pos: the &struct hlist_node to use as a loop cursor. * @head: the head for your list. * @offset: offset of hlist_node within the struct. * */ #define sk_nulls_for_each_entry_offset(tpos, pos, head, offset) \ for (pos = (head)->first; \ (!is_a_nulls(pos)) && \ ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \ pos = pos->next) static inline struct user_namespace *sk_user_ns(struct sock *sk) { /* Careful only use this in a context where these parameters * can not change and must all be valid, such as recvmsg from * userspace. */ return sk->sk_socket->file->f_cred->user_ns; } /* Sock flags */ enum sock_flags { SOCK_DEAD, SOCK_DONE, SOCK_URGINLINE, SOCK_KEEPOPEN, SOCK_LINGER, SOCK_DESTROY, SOCK_BROADCAST, SOCK_TIMESTAMP, SOCK_ZAPPED, SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */ SOCK_DBG, /* %SO_DEBUG setting */ SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */ SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */ SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */ SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */ SOCK_MEMALLOC, /* VM depends on this socket for swapping */ SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */ SOCK_FASYNC, /* fasync() active */ SOCK_RXQ_OVFL, SOCK_ZEROCOPY, /* buffers from userspace */ SOCK_WIFI_STATUS, /* push wifi status to userspace */ SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS. * Will use last 4 bytes of packet sent from * user-space instead. */ SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */ SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */ }; #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE)) static inline void sock_copy_flags(struct sock *nsk, struct sock *osk) { nsk->sk_flags = osk->sk_flags; } static inline void sock_set_flag(struct sock *sk, enum sock_flags flag) { __set_bit(flag, &sk->sk_flags); } static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag) { __clear_bit(flag, &sk->sk_flags); } static inline bool sock_flag(const struct sock *sk, enum sock_flags flag) { return test_bit(flag, &sk->sk_flags); } #ifdef CONFIG_NET extern struct static_key memalloc_socks; static inline int sk_memalloc_socks(void) { return static_key_false(&memalloc_socks); } #else static inline int sk_memalloc_socks(void) { return 0; } #endif static inline gfp_t sk_gfp_atomic(struct sock *sk, gfp_t gfp_mask) { return GFP_ATOMIC | (sk->sk_allocation & __GFP_MEMALLOC); } static inline void sk_acceptq_removed(struct sock *sk) { sk->sk_ack_backlog--; } static inline void sk_acceptq_added(struct sock *sk) { sk->sk_ack_backlog++; } static inline bool sk_acceptq_is_full(const struct sock *sk) { return sk->sk_ack_backlog > sk->sk_max_ack_backlog; } /* * Compute minimal free write space needed to queue new packets. */ static inline int sk_stream_min_wspace(const struct sock *sk) { return sk->sk_wmem_queued >> 1; } static inline int sk_stream_wspace(const struct sock *sk) { return sk->sk_sndbuf - sk->sk_wmem_queued; } void sk_stream_write_space(struct sock *sk); /* OOB backlog add */ static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb) { /* dont let skb dst not refcounted, we are going to leave rcu lock */ skb_dst_force_safe(skb); if (!sk->sk_backlog.tail) sk->sk_backlog.head = skb; else sk->sk_backlog.tail->next = skb; sk->sk_backlog.tail = skb; skb->next = NULL; } /* * Take into account size of receive queue and backlog queue * Do not take into account this skb truesize, * to allow even a single big packet to come. */ static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit) { unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc); return qsize > limit; } /* The per-socket spinlock must be held here. */ static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb, unsigned int limit) { if (sk_rcvqueues_full(sk, limit)) return -ENOBUFS; /* * If the skb was allocated from pfmemalloc reserves, only * allow SOCK_MEMALLOC sockets to use it as this socket is * helping free memory */ if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC)) return -ENOMEM; __sk_add_backlog(sk, skb); sk->sk_backlog.len += skb->truesize; return 0; } int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb); static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb) { if (sk_memalloc_socks() && skb_pfmemalloc(skb)) return __sk_backlog_rcv(sk, skb); return sk->sk_backlog_rcv(sk, skb); } static inline void sock_rps_record_flow_hash(__u32 hash) { #ifdef CONFIG_RPS struct rps_sock_flow_table *sock_flow_table; rcu_read_lock(); sock_flow_table = rcu_dereference(rps_sock_flow_table); rps_record_sock_flow(sock_flow_table, hash); rcu_read_unlock(); #endif } static inline void sock_rps_reset_flow_hash(__u32 hash) { #ifdef CONFIG_RPS struct rps_sock_flow_table *sock_flow_table; rcu_read_lock(); sock_flow_table = rcu_dereference(rps_sock_flow_table); rps_reset_sock_flow(sock_flow_table, hash); rcu_read_unlock(); #endif } static inline void sock_rps_record_flow(const struct sock *sk) { #ifdef CONFIG_RPS sock_rps_record_flow_hash(sk->sk_rxhash); #endif } static inline void sock_rps_reset_flow(const struct sock *sk) { #ifdef CONFIG_RPS sock_rps_reset_flow_hash(sk->sk_rxhash); #endif } static inline void sock_rps_save_rxhash(struct sock *sk, const struct sk_buff *skb) { #ifdef CONFIG_RPS if (unlikely(sk->sk_rxhash != skb->hash)) { sock_rps_reset_flow(sk); sk->sk_rxhash = skb->hash; } #endif } static inline void sock_rps_reset_rxhash(struct sock *sk) { #ifdef CONFIG_RPS sock_rps_reset_flow(sk); sk->sk_rxhash = 0; #endif } #define sk_wait_event(__sk, __timeo, __condition) \ ({ int __rc; \ release_sock(__sk); \ __rc = __condition; \ if (!__rc) { \ *(__timeo) = schedule_timeout(*(__timeo)); \ } \ lock_sock(__sk); \ __rc = __condition; \ __rc; \ }) int sk_stream_wait_connect(struct sock *sk, long *timeo_p); int sk_stream_wait_memory(struct sock *sk, long *timeo_p); void sk_stream_wait_close(struct sock *sk, long timeo_p); int sk_stream_error(struct sock *sk, int flags, int err); void sk_stream_kill_queues(struct sock *sk); void sk_set_memalloc(struct sock *sk); void sk_clear_memalloc(struct sock *sk); int sk_wait_data(struct sock *sk, long *timeo); struct request_sock_ops; struct timewait_sock_ops; struct inet_hashinfo; struct raw_hashinfo; struct module; /* * caches using SLAB_DESTROY_BY_RCU should let .next pointer from nulls nodes * un-modified. Special care is taken when initializing object to zero. */ static inline void sk_prot_clear_nulls(struct sock *sk, int size) { if (offsetof(struct sock, sk_node.next) != 0) memset(sk, 0, offsetof(struct sock, sk_node.next)); memset(&sk->sk_node.pprev, 0, size - offsetof(struct sock, sk_node.pprev)); } /* Networking protocol blocks we attach to sockets. * socket layer -> transport layer interface * transport -> network interface is defined by struct inet_proto */ struct proto { void (*close)(struct sock *sk, long timeout); int (*connect)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*disconnect)(struct sock *sk, int flags); struct sock * (*accept)(struct sock *sk, int flags, int *err); int (*ioctl)(struct sock *sk, int cmd, unsigned long arg); int (*init)(struct sock *sk); void (*destroy)(struct sock *sk); void (*shutdown)(struct sock *sk, int how); int (*setsockopt)(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen); int (*getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *option); #ifdef CONFIG_COMPAT int (*compat_setsockopt)(struct sock *sk, int level, int optname, char __user *optval, unsigned int optlen); int (*compat_getsockopt)(struct sock *sk, int level, int optname, char __user *optval, int __user *option); int (*compat_ioctl)(struct sock *sk, unsigned int cmd, unsigned long arg); #endif int (*sendmsg)(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t len); int (*recvmsg)(struct kiocb *iocb, struct sock *sk, struct msghdr *msg, size_t len, int noblock, int flags, int *addr_len); int (*sendpage)(struct sock *sk, struct page *page, int offset, size_t size, int flags); int (*bind)(struct sock *sk, struct sockaddr *uaddr, int addr_len); int (*backlog_rcv) (struct sock *sk, struct sk_buff *skb); void (*release_cb)(struct sock *sk); /* Keeping track of sk's, looking them up, and port selection methods. */ void (*hash)(struct sock *sk); void (*unhash)(struct sock *sk); void (*rehash)(struct sock *sk); int (*get_port)(struct sock *sk, unsigned short snum); void (*clear_sk)(struct sock *sk, int size); /* Keeping track of sockets in use */ #ifdef CONFIG_PROC_FS unsigned int inuse_idx; #endif bool (*stream_memory_free)(const struct sock *sk); /* Memory pressure */ void (*enter_memory_pressure)(struct sock *sk); atomic_long_t *memory_allocated; /* Current allocated memory. */ struct percpu_counter *sockets_allocated; /* Current number of sockets. */ /* * Pressure flag: try to collapse. * Technical note: it is used by multiple contexts non atomically. * All the __sk_mem_schedule() is of this nature: accounting * is strict, actions are advisory and have some latency. */ int *memory_pressure; long *sysctl_mem; int *sysctl_wmem; int *sysctl_rmem; int max_header; bool no_autobind; struct kmem_cache *slab; unsigned int obj_size; int slab_flags; struct percpu_counter *orphan_count; struct request_sock_ops *rsk_prot; struct timewait_sock_ops *twsk_prot; union { struct inet_hashinfo *hashinfo; struct udp_table *udp_table; struct raw_hashinfo *raw_hash; } h; struct module *owner; char name[32]; struct list_head node; #ifdef SOCK_REFCNT_DEBUG atomic_t socks; #endif #ifdef CONFIG_MEMCG_KMEM /* * cgroup specific init/deinit functions. Called once for all * protocols that implement it, from cgroups populate function. * This function has to setup any files the protocol want to * appear in the kmem cgroup filesystem. */ int (*init_cgroup)(struct mem_cgroup *memcg, struct cgroup_subsys *ss); void (*destroy_cgroup)(struct mem_cgroup *memcg); struct cg_proto *(*proto_cgroup)(struct mem_cgroup *memcg); #endif }; /* * Bits in struct cg_proto.flags */ enum cg_proto_flags { /* Currently active and new sockets should be assigned to cgroups */ MEMCG_SOCK_ACTIVE, /* It was ever activated; we must disarm static keys on destruction */ MEMCG_SOCK_ACTIVATED, }; struct cg_proto { struct res_counter memory_allocated; /* Current allocated memory. */ struct percpu_counter sockets_allocated; /* Current number of sockets. */ int memory_pressure; long sysctl_mem[3]; unsigned long flags; /* * memcg field is used to find which memcg we belong directly * Each memcg struct can hold more than one cg_proto, so container_of * won't really cut. * * The elegant solution would be having an inverse function to * proto_cgroup in struct proto, but that means polluting the structure * for everybody, instead of just for memcg users. */ struct mem_cgroup *memcg; }; int proto_register(struct proto *prot, int alloc_slab); void proto_unregister(struct proto *prot); static inline bool memcg_proto_active(struct cg_proto *cg_proto) { return test_bit(MEMCG_SOCK_ACTIVE, &cg_proto->flags); } static inline bool memcg_proto_activated(struct cg_proto *cg_proto) { return test_bit(MEMCG_SOCK_ACTIVATED, &cg_proto->flags); } #ifdef SOCK_REFCNT_DEBUG static inline void sk_refcnt_debug_inc(struct sock *sk) { atomic_inc(&sk->sk_prot->socks); } static inline void sk_refcnt_debug_dec(struct sock *sk) { atomic_dec(&sk->sk_prot->socks); printk(KERN_DEBUG "%s socket %p released, %d are still alive\n", sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks)); } static inline void sk_refcnt_debug_release(const struct sock *sk) { if (atomic_read(&sk->sk_refcnt) != 1) printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n", sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt)); } #else /* SOCK_REFCNT_DEBUG */ #define sk_refcnt_debug_inc(sk) do { } while (0) #define sk_refcnt_debug_dec(sk) do { } while (0) #define sk_refcnt_debug_release(sk) do { } while (0) #endif /* SOCK_REFCNT_DEBUG */ #if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_NET) extern struct static_key memcg_socket_limit_enabled; static inline struct cg_proto *parent_cg_proto(struct proto *proto, struct cg_proto *cg_proto) { return proto->proto_cgroup(parent_mem_cgroup(cg_proto->memcg)); } #define mem_cgroup_sockets_enabled static_key_false(&memcg_socket_limit_enabled) #else #define mem_cgroup_sockets_enabled 0 static inline struct cg_proto *parent_cg_proto(struct proto *proto, struct cg_proto *cg_proto) { return NULL; } #endif static inline bool sk_stream_memory_free(const struct sock *sk) { if (sk->sk_wmem_queued >= sk->sk_sndbuf) return false; return sk->sk_prot->stream_memory_free ? sk->sk_prot->stream_memory_free(sk) : true; } static inline bool sk_stream_is_writeable(const struct sock *sk) { return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) && sk_stream_memory_free(sk); } static inline bool sk_has_memory_pressure(const struct sock *sk) { return sk->sk_prot->memory_pressure != NULL; } static inline bool sk_under_memory_pressure(const struct sock *sk) { if (!sk->sk_prot->memory_pressure) return false; if (mem_cgroup_sockets_enabled && sk->sk_cgrp) return !!sk->sk_cgrp->memory_pressure; return !!*sk->sk_prot->memory_pressure; } static inline void sk_leave_memory_pressure(struct sock *sk) { int *memory_pressure = sk->sk_prot->memory_pressure; if (!memory_pressure) return; if (*memory_pressure) *memory_pressure = 0; if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { struct cg_proto *cg_proto = sk->sk_cgrp; struct proto *prot = sk->sk_prot; for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) cg_proto->memory_pressure = 0; } } static inline void sk_enter_memory_pressure(struct sock *sk) { if (!sk->sk_prot->enter_memory_pressure) return; if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { struct cg_proto *cg_proto = sk->sk_cgrp; struct proto *prot = sk->sk_prot; for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) cg_proto->memory_pressure = 1; } sk->sk_prot->enter_memory_pressure(sk); } static inline long sk_prot_mem_limits(const struct sock *sk, int index) { long *prot = sk->sk_prot->sysctl_mem; if (mem_cgroup_sockets_enabled && sk->sk_cgrp) prot = sk->sk_cgrp->sysctl_mem; return prot[index]; } static inline void memcg_memory_allocated_add(struct cg_proto *prot, unsigned long amt, int *parent_status) { struct res_counter *fail; int ret; ret = res_counter_charge_nofail(&prot->memory_allocated, amt << PAGE_SHIFT, &fail); if (ret < 0) *parent_status = OVER_LIMIT; } static inline void memcg_memory_allocated_sub(struct cg_proto *prot, unsigned long amt) { res_counter_uncharge(&prot->memory_allocated, amt << PAGE_SHIFT); } static inline u64 memcg_memory_allocated_read(struct cg_proto *prot) { u64 ret; ret = res_counter_read_u64(&prot->memory_allocated, RES_USAGE); return ret >> PAGE_SHIFT; } static inline long sk_memory_allocated(const struct sock *sk) { struct proto *prot = sk->sk_prot; if (mem_cgroup_sockets_enabled && sk->sk_cgrp) return memcg_memory_allocated_read(sk->sk_cgrp); return atomic_long_read(prot->memory_allocated); } static inline long sk_memory_allocated_add(struct sock *sk, int amt, int *parent_status) { struct proto *prot = sk->sk_prot; if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { memcg_memory_allocated_add(sk->sk_cgrp, amt, parent_status); /* update the root cgroup regardless */ atomic_long_add_return(amt, prot->memory_allocated); return memcg_memory_allocated_read(sk->sk_cgrp); } return atomic_long_add_return(amt, prot->memory_allocated); } static inline void sk_memory_allocated_sub(struct sock *sk, int amt) { struct proto *prot = sk->sk_prot; if (mem_cgroup_sockets_enabled && sk->sk_cgrp) memcg_memory_allocated_sub(sk->sk_cgrp, amt); atomic_long_sub(amt, prot->memory_allocated); } static inline void sk_sockets_allocated_dec(struct sock *sk) { struct proto *prot = sk->sk_prot; if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { struct cg_proto *cg_proto = sk->sk_cgrp; for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) percpu_counter_dec(&cg_proto->sockets_allocated); } percpu_counter_dec(prot->sockets_allocated); } static inline void sk_sockets_allocated_inc(struct sock *sk) { struct proto *prot = sk->sk_prot; if (mem_cgroup_sockets_enabled && sk->sk_cgrp) { struct cg_proto *cg_proto = sk->sk_cgrp; for (; cg_proto; cg_proto = parent_cg_proto(prot, cg_proto)) percpu_counter_inc(&cg_proto->sockets_allocated); } percpu_counter_inc(prot->sockets_allocated); } static inline int sk_sockets_allocated_read_positive(struct sock *sk) { struct proto *prot = sk->sk_prot; if (mem_cgroup_sockets_enabled && sk->sk_cgrp) return percpu_counter_read_positive(&sk->sk_cgrp->sockets_allocated); return percpu_counter_read_positive(prot->sockets_allocated); } static inline int proto_sockets_allocated_sum_positive(struct proto *prot) { return percpu_counter_sum_positive(prot->sockets_allocated); } static inline long proto_memory_allocated(struct proto *prot) { return atomic_long_read(prot->memory_allocated); } static inline bool proto_memory_pressure(struct proto *prot) { if (!prot->memory_pressure) return false; return !!*prot->memory_pressure; } #ifdef CONFIG_PROC_FS /* Called with local bh disabled */ void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc); int sock_prot_inuse_get(struct net *net, struct proto *proto); #else static inline void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc) { } #endif /* With per-bucket locks this operation is not-atomic, so that * this version is not worse. */ static inline void __sk_prot_rehash(struct sock *sk) { sk->sk_prot->unhash(sk); sk->sk_prot->hash(sk); } void sk_prot_clear_portaddr_nulls(struct sock *sk, int size); /* About 10 seconds */ #define SOCK_DESTROY_TIME (10*HZ) /* Sockets 0-1023 can't be bound to unless you are superuser */ #define PROT_SOCK 1024 #define SHUTDOWN_MASK 3 #define RCV_SHUTDOWN 1 #define SEND_SHUTDOWN 2 #define SOCK_SNDBUF_LOCK 1 #define SOCK_RCVBUF_LOCK 2 #define SOCK_BINDADDR_LOCK 4 #define SOCK_BINDPORT_LOCK 8 /* sock_iocb: used to kick off async processing of socket ios */ struct sock_iocb { struct list_head list; int flags; int size; struct socket *sock; struct sock *sk; struct scm_cookie *scm; struct msghdr *msg, async_msg; struct kiocb *kiocb; }; static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb) { return (struct sock_iocb *)iocb->private; } static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si) { return si->kiocb; } struct socket_alloc { struct socket socket; struct inode vfs_inode; }; static inline struct socket *SOCKET_I(struct inode *inode) { return &container_of(inode, struct socket_alloc, vfs_inode)->socket; } static inline struct inode *SOCK_INODE(struct socket *socket) { return &container_of(socket, struct socket_alloc, socket)->vfs_inode; } /* * Functions for memory accounting */ int __sk_mem_schedule(struct sock *sk, int size, int kind); void __sk_mem_reclaim(struct sock *sk); #define SK_MEM_QUANTUM ((int)PAGE_SIZE) #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM) #define SK_MEM_SEND 0 #define SK_MEM_RECV 1 static inline int sk_mem_pages(int amt) { return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT; } static inline bool sk_has_account(struct sock *sk) { /* return true if protocol supports memory accounting */ return !!sk->sk_prot->memory_allocated; } static inline bool sk_wmem_schedule(struct sock *sk, int size) { if (!sk_has_account(sk)) return true; return size <= sk->sk_forward_alloc || __sk_mem_schedule(sk, size, SK_MEM_SEND); } static inline bool sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size) { if (!sk_has_account(sk)) return true; return size<= sk->sk_forward_alloc || __sk_mem_schedule(sk, size, SK_MEM_RECV) || skb_pfmemalloc(skb); } static inline void sk_mem_reclaim(struct sock *sk) { if (!sk_has_account(sk)) return; if (sk->sk_forward_alloc >= SK_MEM_QUANTUM) __sk_mem_reclaim(sk); } static inline void sk_mem_reclaim_partial(struct sock *sk) { if (!sk_has_account(sk)) return; if (sk->sk_forward_alloc > SK_MEM_QUANTUM) __sk_mem_reclaim(sk); } static inline void sk_mem_charge(struct sock *sk, int size) { if (!sk_has_account(sk)) return; sk->sk_forward_alloc -= size; } static inline void sk_mem_uncharge(struct sock *sk, int size) { if (!sk_has_account(sk)) return; sk->sk_forward_alloc += size; } static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb) { sock_set_flag(sk, SOCK_QUEUE_SHRUNK); sk->sk_wmem_queued -= skb->truesize; sk_mem_uncharge(sk, skb->truesize); __kfree_skb(skb); } /* Used by processes to "lock" a socket state, so that * interrupts and bottom half handlers won't change it * from under us. It essentially blocks any incoming * packets, so that we won't get any new data or any * packets that change the state of the socket. * * While locked, BH processing will add new packets to * the backlog queue. This queue is processed by the * owner of the socket lock right before it is released. * * Since ~2.3.5 it is also exclusive sleep lock serializing * accesses from user process context. */ #define sock_owned_by_user(sk) ((sk)->sk_lock.owned) static inline void sock_release_ownership(struct sock *sk) { sk->sk_lock.owned = 0; } /* * Macro so as to not evaluate some arguments when * lockdep is not enabled. * * Mark both the sk_lock and the sk_lock.slock as a * per-address-family lock class. */ #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \ do { \ sk->sk_lock.owned = 0; \ init_waitqueue_head(&sk->sk_lock.wq); \ spin_lock_init(&(sk)->sk_lock.slock); \ debug_check_no_locks_freed((void *)&(sk)->sk_lock, \ sizeof((sk)->sk_lock)); \ lockdep_set_class_and_name(&(sk)->sk_lock.slock, \ (skey), (sname)); \ lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \ } while (0) void lock_sock_nested(struct sock *sk, int subclass); static inline void lock_sock(struct sock *sk) { lock_sock_nested(sk, 0); } void release_sock(struct sock *sk); /* BH context may only use the following locking interface. */ #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock)) #define bh_lock_sock_nested(__sk) \ spin_lock_nested(&((__sk)->sk_lock.slock), \ SINGLE_DEPTH_NESTING) #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock)) bool lock_sock_fast(struct sock *sk); /** * unlock_sock_fast - complement of lock_sock_fast * @sk: socket * @slow: slow mode * * fast unlock socket for user context. * If slow mode is on, we call regular release_sock() */ static inline void unlock_sock_fast(struct sock *sk, bool slow) { if (slow) release_sock(sk); else spin_unlock_bh(&sk->sk_lock.slock); } struct sock *sk_alloc(struct net *net, int family, gfp_t priority, struct proto *prot); void sk_free(struct sock *sk); void sk_release_kernel(struct sock *sk); struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority); struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force, gfp_t priority); void sock_wfree(struct sk_buff *skb); void skb_orphan_partial(struct sk_buff *skb); void sock_rfree(struct sk_buff *skb); void sock_efree(struct sk_buff *skb); #ifdef CONFIG_INET void sock_edemux(struct sk_buff *skb); #else #define sock_edemux(skb) sock_efree(skb) #endif int sock_setsockopt(struct socket *sock, int level, int op, char __user *optval, unsigned int optlen); int sock_getsockopt(struct socket *sock, int level, int op, char __user *optval, int __user *optlen); struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size, int noblock, int *errcode); struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len, unsigned long data_len, int noblock, int *errcode, int max_page_order); void *sock_kmalloc(struct sock *sk, int size, gfp_t priority); void sock_kfree_s(struct sock *sk, void *mem, int size); void sk_send_sigurg(struct sock *sk); /* * Functions to fill in entries in struct proto_ops when a protocol * does not implement a particular function. */ int sock_no_bind(struct socket *, struct sockaddr *, int); int sock_no_connect(struct socket *, struct sockaddr *, int, int); int sock_no_socketpair(struct socket *, struct socket *); int sock_no_accept(struct socket *, struct socket *, int); int sock_no_getname(struct socket *, struct sockaddr *, int *, int); unsigned int sock_no_poll(struct file *, struct socket *, struct poll_table_struct *); int sock_no_ioctl(struct socket *, unsigned int, unsigned long); int sock_no_listen(struct socket *, int); int sock_no_shutdown(struct socket *, int); int sock_no_getsockopt(struct socket *, int , int, char __user *, int __user *); int sock_no_setsockopt(struct socket *, int, int, char __user *, unsigned int); int sock_no_sendmsg(struct kiocb *, struct socket *, struct msghdr *, size_t); int sock_no_recvmsg(struct kiocb *, struct socket *, struct msghdr *, size_t, int); int sock_no_mmap(struct file *file, struct socket *sock, struct vm_area_struct *vma); ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset, size_t size, int flags); /* * Functions to fill in entries in struct proto_ops when a protocol * uses the inet style. */ int sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen); int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock, struct msghdr *msg, size_t size, int flags); int sock_common_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen); int compat_sock_common_getsockopt(struct socket *sock, int level, int optname, char __user *optval, int __user *optlen); int compat_sock_common_setsockopt(struct socket *sock, int level, int optname, char __user *optval, unsigned int optlen); void sk_common_release(struct sock *sk); /* * Default socket callbacks and setup code */ /* Initialise core socket variables */ void sock_init_data(struct socket *sock, struct sock *sk); /* * Socket reference counting postulates. * * * Each user of socket SHOULD hold a reference count. * * Each access point to socket (an hash table bucket, reference from a list, * running timer, skb in flight MUST hold a reference count. * * When reference count hits 0, it means it will never increase back. * * When reference count hits 0, it means that no references from * outside exist to this socket and current process on current CPU * is last user and may/should destroy this socket. * * sk_free is called from any context: process, BH, IRQ. When * it is called, socket has no references from outside -> sk_free * may release descendant resources allocated by the socket, but * to the time when it is called, socket is NOT referenced by any * hash tables, lists etc. * * Packets, delivered from outside (from network or from another process) * and enqueued on receive/error queues SHOULD NOT grab reference count, * when they sit in queue. Otherwise, packets will leak to hole, when * socket is looked up by one cpu and unhasing is made by another CPU. * It is true for udp/raw, netlink (leak to receive and error queues), tcp * (leak to backlog). Packet socket does all the processing inside * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets * use separate SMP lock, so that they are prone too. */ /* Ungrab socket and destroy it, if it was the last reference. */ static inline void sock_put(struct sock *sk) { if (atomic_dec_and_test(&sk->sk_refcnt)) sk_free(sk); } /* Generic version of sock_put(), dealing with all sockets * (TCP_TIMEWAIT, ESTABLISHED...) */ void sock_gen_put(struct sock *sk); int sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested); static inline void sk_tx_queue_set(struct sock *sk, int tx_queue) { sk->sk_tx_queue_mapping = tx_queue; } static inline void sk_tx_queue_clear(struct sock *sk) { sk->sk_tx_queue_mapping = -1; } static inline int sk_tx_queue_get(const struct sock *sk) { return sk ? sk->sk_tx_queue_mapping : -1; } static inline void sk_set_socket(struct sock *sk, struct socket *sock) { sk_tx_queue_clear(sk); sk->sk_socket = sock; } static inline wait_queue_head_t *sk_sleep(struct sock *sk) { BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0); return &rcu_dereference_raw(sk->sk_wq)->wait; } /* Detach socket from process context. * Announce socket dead, detach it from wait queue and inode. * Note that parent inode held reference count on this struct sock, * we do not release it in this function, because protocol * probably wants some additional cleanups or even continuing * to work with this socket (TCP). */ static inline void sock_orphan(struct sock *sk) { write_lock_bh(&sk->sk_callback_lock); sock_set_flag(sk, SOCK_DEAD); sk_set_socket(sk, NULL); sk->sk_wq = NULL; write_unlock_bh(&sk->sk_callback_lock); } static inline void sock_graft(struct sock *sk, struct socket *parent) { write_lock_bh(&sk->sk_callback_lock); sk->sk_wq = parent->wq; parent->sk = sk; sk_set_socket(sk, parent); security_sock_graft(sk, parent); write_unlock_bh(&sk->sk_callback_lock); } kuid_t sock_i_uid(struct sock *sk); unsigned long sock_i_ino(struct sock *sk); static inline struct dst_entry * __sk_dst_get(struct sock *sk) { return rcu_dereference_check(sk->sk_dst_cache, sock_owned_by_user(sk) || lockdep_is_held(&sk->sk_lock.slock)); } static inline struct dst_entry * sk_dst_get(struct sock *sk) { struct dst_entry *dst; rcu_read_lock(); dst = rcu_dereference(sk->sk_dst_cache); if (dst && !atomic_inc_not_zero(&dst->__refcnt)) dst = NULL; rcu_read_unlock(); return dst; } static inline void dst_negative_advice(struct sock *sk) { struct dst_entry *ndst, *dst = __sk_dst_get(sk); if (dst && dst->ops->negative_advice) { ndst = dst->ops->negative_advice(dst); if (ndst != dst) { rcu_assign_pointer(sk->sk_dst_cache, ndst); sk_tx_queue_clear(sk); } } } static inline void __sk_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old_dst; sk_tx_queue_clear(sk); /* * This can be called while sk is owned by the caller only, * with no state that can be checked in a rcu_dereference_check() cond */ old_dst = rcu_dereference_raw(sk->sk_dst_cache); rcu_assign_pointer(sk->sk_dst_cache, dst); dst_release(old_dst); } static inline void sk_dst_set(struct sock *sk, struct dst_entry *dst) { struct dst_entry *old_dst; sk_tx_queue_clear(sk); old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst); dst_release(old_dst); } static inline void __sk_dst_reset(struct sock *sk) { __sk_dst_set(sk, NULL); } static inline void sk_dst_reset(struct sock *sk) { sk_dst_set(sk, NULL); } struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie); struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie); bool sk_mc_loop(struct sock *sk); static inline bool sk_can_gso(const struct sock *sk) { return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type); } void sk_setup_caps(struct sock *sk, struct dst_entry *dst); static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags) { sk->sk_route_nocaps |= flags; sk->sk_route_caps &= ~flags; } static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb, char __user *from, char *to, int copy, int offset) { if (skb->ip_summed == CHECKSUM_NONE) { int err = 0; __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err); if (err) return err; skb->csum = csum_block_add(skb->csum, csum, offset); } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) { if (!access_ok(VERIFY_READ, from, copy) || __copy_from_user_nocache(to, from, copy)) return -EFAULT; } else if (copy_from_user(to, from, copy)) return -EFAULT; return 0; } static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb, char __user *from, int copy) { int err, offset = skb->len; err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy), copy, offset); if (err) __skb_trim(skb, offset); return err; } static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from, struct sk_buff *skb, struct page *page, int off, int copy) { int err; err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off, copy, skb->len); if (err) return err; skb->len += copy; skb->data_len += copy; skb->truesize += copy; sk->sk_wmem_queued += copy; sk_mem_charge(sk, copy); return 0; } static inline int skb_copy_to_page(struct sock *sk, char __user *from, struct sk_buff *skb, struct page *page, int off, int copy) { if (skb->ip_summed == CHECKSUM_NONE) { int err = 0; __wsum csum = csum_and_copy_from_user(from, page_address(page) + off, copy, 0, &err); if (err) return err; skb->csum = csum_block_add(skb->csum, csum, skb->len); } else if (copy_from_user(page_address(page) + off, from, copy)) return -EFAULT; skb->len += copy; skb->data_len += copy; skb->truesize += copy; sk->sk_wmem_queued += copy; sk_mem_charge(sk, copy); return 0; } /** * sk_wmem_alloc_get - returns write allocations * @sk: socket * * Returns sk_wmem_alloc minus initial offset of one */ static inline int sk_wmem_alloc_get(const struct sock *sk) { return atomic_read(&sk->sk_wmem_alloc) - 1; } /** * sk_rmem_alloc_get - returns read allocations * @sk: socket * * Returns sk_rmem_alloc */ static inline int sk_rmem_alloc_get(const struct sock *sk) { return atomic_read(&sk->sk_rmem_alloc); } /** * sk_has_allocations - check if allocations are outstanding * @sk: socket * * Returns true if socket has write or read allocations */ static inline bool sk_has_allocations(const struct sock *sk) { return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk); } /** * wq_has_sleeper - check if there are any waiting processes * @wq: struct socket_wq * * Returns true if socket_wq has waiting processes * * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory * barrier call. They were added due to the race found within the tcp code. * * Consider following tcp code paths: * * CPU1 CPU2 * * sys_select receive packet * ... ... * __add_wait_queue update tp->rcv_nxt * ... ... * tp->rcv_nxt check sock_def_readable * ... { * schedule rcu_read_lock(); * wq = rcu_dereference(sk->sk_wq); * if (wq && waitqueue_active(&wq->wait)) * wake_up_interruptible(&wq->wait) * ... * } * * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1 * could then endup calling schedule and sleep forever if there are no more * data on the socket. * */ static inline bool wq_has_sleeper(struct socket_wq *wq) { /* We need to be sure we are in sync with the * add_wait_queue modifications to the wait queue. * * This memory barrier is paired in the sock_poll_wait. */ smp_mb(); return wq && waitqueue_active(&wq->wait); } /** * sock_poll_wait - place memory barrier behind the poll_wait call. * @filp: file * @wait_address: socket wait queue * @p: poll_table * * See the comments in the wq_has_sleeper function. */ static inline void sock_poll_wait(struct file *filp, wait_queue_head_t *wait_address, poll_table *p) { if (!poll_does_not_wait(p) && wait_address) { poll_wait(filp, wait_address, p); /* We need to be sure we are in sync with the * socket flags modification. * * This memory barrier is paired in the wq_has_sleeper. */ smp_mb(); } } static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk) { if (sk->sk_txhash) { skb->l4_hash = 1; skb->hash = sk->sk_txhash; } } /* * Queue a received datagram if it will fit. Stream and sequenced * protocols can't normally use this as they need to fit buffers in * and play with them. * * Inlined as it's very short and called for pretty much every * packet ever received. */ static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk) { skb_orphan(skb); skb->sk = sk; skb->destructor = sock_wfree; skb_set_hash_from_sk(skb, sk); /* * We used to take a refcount on sk, but following operation * is enough to guarantee sk_free() wont free this sock until * all in-flight packets are completed */ atomic_add(skb->truesize, &sk->sk_wmem_alloc); } static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk) { skb_orphan(skb); skb->sk = sk; skb->destructor = sock_rfree; atomic_add(skb->truesize, &sk->sk_rmem_alloc); sk_mem_charge(sk, skb->truesize); } void sk_reset_timer(struct sock *sk, struct timer_list *timer, unsigned long expires); void sk_stop_timer(struct sock *sk, struct timer_list *timer); int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb); int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb); struct sk_buff *sock_dequeue_err_skb(struct sock *sk); /* * Recover an error report and clear atomically */ static inline int sock_error(struct sock *sk) { int err; if (likely(!sk->sk_err)) return 0; err = xchg(&sk->sk_err, 0); return -err; } static inline unsigned long sock_wspace(struct sock *sk) { int amt = 0; if (!(sk->sk_shutdown & SEND_SHUTDOWN)) { amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc); if (amt < 0) amt = 0; } return amt; } static inline void sk_wake_async(struct sock *sk, int how, int band) { if (sock_flag(sk, SOCK_FASYNC)) sock_wake_async(sk->sk_socket, how, band); } /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak. * Note: for send buffers, TCP works better if we can build two skbs at * minimum. */ #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff))) #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2) #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE static inline void sk_stream_moderate_sndbuf(struct sock *sk) { if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) { sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1); sk->sk_sndbuf = max_t(u32, sk->sk_sndbuf, SOCK_MIN_SNDBUF); } } struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp); /** * sk_page_frag - return an appropriate page_frag * @sk: socket * * If socket allocation mode allows current thread to sleep, it means its * safe to use the per task page_frag instead of the per socket one. */ static inline struct page_frag *sk_page_frag(struct sock *sk) { if (sk->sk_allocation & __GFP_WAIT) return ¤t->task_frag; return &sk->sk_frag; } bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag); /* * Default write policy as shown to user space via poll/select/SIGIO */ static inline bool sock_writeable(const struct sock *sk) { return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1); } static inline gfp_t gfp_any(void) { return in_softirq() ? GFP_ATOMIC : GFP_KERNEL; } static inline long sock_rcvtimeo(const struct sock *sk, bool noblock) { return noblock ? 0 : sk->sk_rcvtimeo; } static inline long sock_sndtimeo(const struct sock *sk, bool noblock) { return noblock ? 0 : sk->sk_sndtimeo; } static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len) { return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1; } /* Alas, with timeout socket operations are not restartable. * Compare this to poll(). */ static inline int sock_intr_errno(long timeo) { return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR; } void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); static inline void sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { ktime_t kt = skb->tstamp; struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); /* * generate control messages if * - receive time stamping in software requested * - software time stamp available and wanted * - hardware time stamps available and wanted */ if (sock_flag(sk, SOCK_RCVTSTAMP) || (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) || (kt.tv64 && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) || (hwtstamps->hwtstamp.tv64 && (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE))) __sock_recv_timestamp(msg, sk, skb); else sk->sk_stamp = kt; if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid) __sock_recv_wifi_status(msg, sk, skb); } void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb); static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb) { #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \ (1UL << SOCK_RCVTSTAMP)) #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \ SOF_TIMESTAMPING_RAW_HARDWARE) if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY) __sock_recv_ts_and_drops(msg, sk, skb); else sk->sk_stamp = skb->tstamp; } void __sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags); /** * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped * @sk: socket sending this packet * @tx_flags: completed with instructions for time stamping * * Note : callers should take care of initial *tx_flags value (usually 0) */ static inline void sock_tx_timestamp(const struct sock *sk, __u8 *tx_flags) { if (unlikely(sk->sk_tsflags)) __sock_tx_timestamp(sk, tx_flags); if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS))) *tx_flags |= SKBTX_WIFI_STATUS; } /** * sk_eat_skb - Release a skb if it is no longer needed * @sk: socket to eat this skb from * @skb: socket buffer to eat * * This routine must be called with interrupts disabled or with the socket * locked so that the sk_buff queue operation is ok. */ static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb) { __skb_unlink(skb, &sk->sk_receive_queue); __kfree_skb(skb); } static inline struct net *sock_net(const struct sock *sk) { return read_pnet(&sk->sk_net); } static inline void sock_net_set(struct sock *sk, struct net *net) { write_pnet(&sk->sk_net, net); } /* * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace. * They should not hold a reference to a namespace in order to allow * to stop it. * Sockets after sk_change_net should be released using sk_release_kernel */ static inline void sk_change_net(struct sock *sk, struct net *net) { struct net *current_net = sock_net(sk); if (!net_eq(current_net, net)) { put_net(current_net); sock_net_set(sk, hold_net(net)); } } static inline struct sock *skb_steal_sock(struct sk_buff *skb) { if (skb->sk) { struct sock *sk = skb->sk; skb->destructor = NULL; skb->sk = NULL; return sk; } return NULL; } /* This helper checks if a socket is a full socket, * ie _not_ a timewait or request socket. */ static inline bool sk_fullsock(const struct sock *sk) { return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV); } void sock_enable_timestamp(struct sock *sk, int flag); int sock_get_timestamp(struct sock *, struct timeval __user *); int sock_get_timestampns(struct sock *, struct timespec __user *); int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level, int type); bool sk_ns_capable(const struct sock *sk, struct user_namespace *user_ns, int cap); bool sk_capable(const struct sock *sk, int cap); bool sk_net_capable(const struct sock *sk, int cap); /* * Enable debug/info messages */ extern int net_msg_warn; #define NETDEBUG(fmt, args...) \ do { if (net_msg_warn) printk(fmt,##args); } while (0) #define LIMIT_NETDEBUG(fmt, args...) \ do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0) extern __u32 sysctl_wmem_max; extern __u32 sysctl_rmem_max; extern int sysctl_optmem_max; extern __u32 sysctl_wmem_default; extern __u32 sysctl_rmem_default; #endif /* _SOCK_H */ |