Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 | /* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_fs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_bit.h" #include "xfs_inum.h" #include "xfs_sb.h" #include "xfs_ag.h" #include "xfs_mount.h" #include "xfs_da_format.h" #include "xfs_inode.h" #include "xfs_trans.h" #include "xfs_log.h" #include "xfs_log_priv.h" #include "xfs_log_recover.h" #include "xfs_inode_item.h" #include "xfs_extfree_item.h" #include "xfs_trans_priv.h" #include "xfs_alloc.h" #include "xfs_ialloc.h" #include "xfs_quota.h" #include "xfs_cksum.h" #include "xfs_trace.h" #include "xfs_icache.h" #include "xfs_bmap_btree.h" #include "xfs_dinode.h" #include "xfs_error.h" #include "xfs_dir2.h" #define BLK_AVG(blk1, blk2) ((blk1+blk2) >> 1) STATIC int xlog_find_zeroed( struct xlog *, xfs_daddr_t *); STATIC int xlog_clear_stale_blocks( struct xlog *, xfs_lsn_t); #if defined(DEBUG) STATIC void xlog_recover_check_summary( struct xlog *); #else #define xlog_recover_check_summary(log) #endif /* * This structure is used during recovery to record the buf log items which * have been canceled and should not be replayed. */ struct xfs_buf_cancel { xfs_daddr_t bc_blkno; uint bc_len; int bc_refcount; struct list_head bc_list; }; /* * Sector aligned buffer routines for buffer create/read/write/access */ /* * Verify the given count of basic blocks is valid number of blocks * to specify for an operation involving the given XFS log buffer. * Returns nonzero if the count is valid, 0 otherwise. */ static inline int xlog_buf_bbcount_valid( struct xlog *log, int bbcount) { return bbcount > 0 && bbcount <= log->l_logBBsize; } /* * Allocate a buffer to hold log data. The buffer needs to be able * to map to a range of nbblks basic blocks at any valid (basic * block) offset within the log. */ STATIC xfs_buf_t * xlog_get_bp( struct xlog *log, int nbblks) { struct xfs_buf *bp; if (!xlog_buf_bbcount_valid(log, nbblks)) { xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", nbblks); XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); return NULL; } /* * We do log I/O in units of log sectors (a power-of-2 * multiple of the basic block size), so we round up the * requested size to accommodate the basic blocks required * for complete log sectors. * * In addition, the buffer may be used for a non-sector- * aligned block offset, in which case an I/O of the * requested size could extend beyond the end of the * buffer. If the requested size is only 1 basic block it * will never straddle a sector boundary, so this won't be * an issue. Nor will this be a problem if the log I/O is * done in basic blocks (sector size 1). But otherwise we * extend the buffer by one extra log sector to ensure * there's space to accommodate this possibility. */ if (nbblks > 1 && log->l_sectBBsize > 1) nbblks += log->l_sectBBsize; nbblks = round_up(nbblks, log->l_sectBBsize); bp = xfs_buf_get_uncached(log->l_mp->m_logdev_targp, nbblks, 0); if (bp) xfs_buf_unlock(bp); return bp; } STATIC void xlog_put_bp( xfs_buf_t *bp) { xfs_buf_free(bp); } /* * Return the address of the start of the given block number's data * in a log buffer. The buffer covers a log sector-aligned region. */ STATIC xfs_caddr_t xlog_align( struct xlog *log, xfs_daddr_t blk_no, int nbblks, struct xfs_buf *bp) { xfs_daddr_t offset = blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1); ASSERT(offset + nbblks <= bp->b_length); return bp->b_addr + BBTOB(offset); } /* * nbblks should be uint, but oh well. Just want to catch that 32-bit length. */ STATIC int xlog_bread_noalign( struct xlog *log, xfs_daddr_t blk_no, int nbblks, struct xfs_buf *bp) { int error; if (!xlog_buf_bbcount_valid(log, nbblks)) { xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", nbblks); XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); return EFSCORRUPTED; } blk_no = round_down(blk_no, log->l_sectBBsize); nbblks = round_up(nbblks, log->l_sectBBsize); ASSERT(nbblks > 0); ASSERT(nbblks <= bp->b_length); XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); XFS_BUF_READ(bp); bp->b_io_length = nbblks; bp->b_error = 0; if (XFS_FORCED_SHUTDOWN(log->l_mp)) return XFS_ERROR(EIO); xfs_buf_iorequest(bp); error = xfs_buf_iowait(bp); if (error) xfs_buf_ioerror_alert(bp, __func__); return error; } STATIC int xlog_bread( struct xlog *log, xfs_daddr_t blk_no, int nbblks, struct xfs_buf *bp, xfs_caddr_t *offset) { int error; error = xlog_bread_noalign(log, blk_no, nbblks, bp); if (error) return error; *offset = xlog_align(log, blk_no, nbblks, bp); return 0; } /* * Read at an offset into the buffer. Returns with the buffer in it's original * state regardless of the result of the read. */ STATIC int xlog_bread_offset( struct xlog *log, xfs_daddr_t blk_no, /* block to read from */ int nbblks, /* blocks to read */ struct xfs_buf *bp, xfs_caddr_t offset) { xfs_caddr_t orig_offset = bp->b_addr; int orig_len = BBTOB(bp->b_length); int error, error2; error = xfs_buf_associate_memory(bp, offset, BBTOB(nbblks)); if (error) return error; error = xlog_bread_noalign(log, blk_no, nbblks, bp); /* must reset buffer pointer even on error */ error2 = xfs_buf_associate_memory(bp, orig_offset, orig_len); if (error) return error; return error2; } /* * Write out the buffer at the given block for the given number of blocks. * The buffer is kept locked across the write and is returned locked. * This can only be used for synchronous log writes. */ STATIC int xlog_bwrite( struct xlog *log, xfs_daddr_t blk_no, int nbblks, struct xfs_buf *bp) { int error; if (!xlog_buf_bbcount_valid(log, nbblks)) { xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer", nbblks); XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_HIGH, log->l_mp); return EFSCORRUPTED; } blk_no = round_down(blk_no, log->l_sectBBsize); nbblks = round_up(nbblks, log->l_sectBBsize); ASSERT(nbblks > 0); ASSERT(nbblks <= bp->b_length); XFS_BUF_SET_ADDR(bp, log->l_logBBstart + blk_no); XFS_BUF_ZEROFLAGS(bp); xfs_buf_hold(bp); xfs_buf_lock(bp); bp->b_io_length = nbblks; bp->b_error = 0; error = xfs_bwrite(bp); if (error) xfs_buf_ioerror_alert(bp, __func__); xfs_buf_relse(bp); return error; } #ifdef DEBUG /* * dump debug superblock and log record information */ STATIC void xlog_header_check_dump( xfs_mount_t *mp, xlog_rec_header_t *head) { xfs_debug(mp, "%s: SB : uuid = %pU, fmt = %d", __func__, &mp->m_sb.sb_uuid, XLOG_FMT); xfs_debug(mp, " log : uuid = %pU, fmt = %d", &head->h_fs_uuid, be32_to_cpu(head->h_fmt)); } #else #define xlog_header_check_dump(mp, head) #endif /* * check log record header for recovery */ STATIC int xlog_header_check_recover( xfs_mount_t *mp, xlog_rec_header_t *head) { ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); /* * IRIX doesn't write the h_fmt field and leaves it zeroed * (XLOG_FMT_UNKNOWN). This stops us from trying to recover * a dirty log created in IRIX. */ if (unlikely(head->h_fmt != cpu_to_be32(XLOG_FMT))) { xfs_warn(mp, "dirty log written in incompatible format - can't recover"); xlog_header_check_dump(mp, head); XFS_ERROR_REPORT("xlog_header_check_recover(1)", XFS_ERRLEVEL_HIGH, mp); return XFS_ERROR(EFSCORRUPTED); } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { xfs_warn(mp, "dirty log entry has mismatched uuid - can't recover"); xlog_header_check_dump(mp, head); XFS_ERROR_REPORT("xlog_header_check_recover(2)", XFS_ERRLEVEL_HIGH, mp); return XFS_ERROR(EFSCORRUPTED); } return 0; } /* * read the head block of the log and check the header */ STATIC int xlog_header_check_mount( xfs_mount_t *mp, xlog_rec_header_t *head) { ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)); if (uuid_is_nil(&head->h_fs_uuid)) { /* * IRIX doesn't write the h_fs_uuid or h_fmt fields. If * h_fs_uuid is nil, we assume this log was last mounted * by IRIX and continue. */ xfs_warn(mp, "nil uuid in log - IRIX style log"); } else if (unlikely(!uuid_equal(&mp->m_sb.sb_uuid, &head->h_fs_uuid))) { xfs_warn(mp, "log has mismatched uuid - can't recover"); xlog_header_check_dump(mp, head); XFS_ERROR_REPORT("xlog_header_check_mount", XFS_ERRLEVEL_HIGH, mp); return XFS_ERROR(EFSCORRUPTED); } return 0; } STATIC void xlog_recover_iodone( struct xfs_buf *bp) { if (bp->b_error) { /* * We're not going to bother about retrying * this during recovery. One strike! */ xfs_buf_ioerror_alert(bp, __func__); xfs_force_shutdown(bp->b_target->bt_mount, SHUTDOWN_META_IO_ERROR); } bp->b_iodone = NULL; xfs_buf_ioend(bp, 0); } /* * This routine finds (to an approximation) the first block in the physical * log which contains the given cycle. It uses a binary search algorithm. * Note that the algorithm can not be perfect because the disk will not * necessarily be perfect. */ STATIC int xlog_find_cycle_start( struct xlog *log, struct xfs_buf *bp, xfs_daddr_t first_blk, xfs_daddr_t *last_blk, uint cycle) { xfs_caddr_t offset; xfs_daddr_t mid_blk; xfs_daddr_t end_blk; uint mid_cycle; int error; end_blk = *last_blk; mid_blk = BLK_AVG(first_blk, end_blk); while (mid_blk != first_blk && mid_blk != end_blk) { error = xlog_bread(log, mid_blk, 1, bp, &offset); if (error) return error; mid_cycle = xlog_get_cycle(offset); if (mid_cycle == cycle) end_blk = mid_blk; /* last_half_cycle == mid_cycle */ else first_blk = mid_blk; /* first_half_cycle == mid_cycle */ mid_blk = BLK_AVG(first_blk, end_blk); } ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) || (mid_blk == end_blk && mid_blk-1 == first_blk)); *last_blk = end_blk; return 0; } /* * Check that a range of blocks does not contain stop_on_cycle_no. * Fill in *new_blk with the block offset where such a block is * found, or with -1 (an invalid block number) if there is no such * block in the range. The scan needs to occur from front to back * and the pointer into the region must be updated since a later * routine will need to perform another test. */ STATIC int xlog_find_verify_cycle( struct xlog *log, xfs_daddr_t start_blk, int nbblks, uint stop_on_cycle_no, xfs_daddr_t *new_blk) { xfs_daddr_t i, j; uint cycle; xfs_buf_t *bp; xfs_daddr_t bufblks; xfs_caddr_t buf = NULL; int error = 0; /* * Greedily allocate a buffer big enough to handle the full * range of basic blocks we'll be examining. If that fails, * try a smaller size. We need to be able to read at least * a log sector, or we're out of luck. */ bufblks = 1 << ffs(nbblks); while (bufblks > log->l_logBBsize) bufblks >>= 1; while (!(bp = xlog_get_bp(log, bufblks))) { bufblks >>= 1; if (bufblks < log->l_sectBBsize) return ENOMEM; } for (i = start_blk; i < start_blk + nbblks; i += bufblks) { int bcount; bcount = min(bufblks, (start_blk + nbblks - i)); error = xlog_bread(log, i, bcount, bp, &buf); if (error) goto out; for (j = 0; j < bcount; j++) { cycle = xlog_get_cycle(buf); if (cycle == stop_on_cycle_no) { *new_blk = i+j; goto out; } buf += BBSIZE; } } *new_blk = -1; out: xlog_put_bp(bp); return error; } /* * Potentially backup over partial log record write. * * In the typical case, last_blk is the number of the block directly after * a good log record. Therefore, we subtract one to get the block number * of the last block in the given buffer. extra_bblks contains the number * of blocks we would have read on a previous read. This happens when the * last log record is split over the end of the physical log. * * extra_bblks is the number of blocks potentially verified on a previous * call to this routine. */ STATIC int xlog_find_verify_log_record( struct xlog *log, xfs_daddr_t start_blk, xfs_daddr_t *last_blk, int extra_bblks) { xfs_daddr_t i; xfs_buf_t *bp; xfs_caddr_t offset = NULL; xlog_rec_header_t *head = NULL; int error = 0; int smallmem = 0; int num_blks = *last_blk - start_blk; int xhdrs; ASSERT(start_blk != 0 || *last_blk != start_blk); if (!(bp = xlog_get_bp(log, num_blks))) { if (!(bp = xlog_get_bp(log, 1))) return ENOMEM; smallmem = 1; } else { error = xlog_bread(log, start_blk, num_blks, bp, &offset); if (error) goto out; offset += ((num_blks - 1) << BBSHIFT); } for (i = (*last_blk) - 1; i >= 0; i--) { if (i < start_blk) { /* valid log record not found */ xfs_warn(log->l_mp, "Log inconsistent (didn't find previous header)"); ASSERT(0); error = XFS_ERROR(EIO); goto out; } if (smallmem) { error = xlog_bread(log, i, 1, bp, &offset); if (error) goto out; } head = (xlog_rec_header_t *)offset; if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) break; if (!smallmem) offset -= BBSIZE; } /* * We hit the beginning of the physical log & still no header. Return * to caller. If caller can handle a return of -1, then this routine * will be called again for the end of the physical log. */ if (i == -1) { error = -1; goto out; } /* * We have the final block of the good log (the first block * of the log record _before_ the head. So we check the uuid. */ if ((error = xlog_header_check_mount(log->l_mp, head))) goto out; /* * We may have found a log record header before we expected one. * last_blk will be the 1st block # with a given cycle #. We may end * up reading an entire log record. In this case, we don't want to * reset last_blk. Only when last_blk points in the middle of a log * record do we update last_blk. */ if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { uint h_size = be32_to_cpu(head->h_size); xhdrs = h_size / XLOG_HEADER_CYCLE_SIZE; if (h_size % XLOG_HEADER_CYCLE_SIZE) xhdrs++; } else { xhdrs = 1; } if (*last_blk - i + extra_bblks != BTOBB(be32_to_cpu(head->h_len)) + xhdrs) *last_blk = i; out: xlog_put_bp(bp); return error; } /* * Head is defined to be the point of the log where the next log write * could go. This means that incomplete LR writes at the end are * eliminated when calculating the head. We aren't guaranteed that previous * LR have complete transactions. We only know that a cycle number of * current cycle number -1 won't be present in the log if we start writing * from our current block number. * * last_blk contains the block number of the first block with a given * cycle number. * * Return: zero if normal, non-zero if error. */ STATIC int xlog_find_head( struct xlog *log, xfs_daddr_t *return_head_blk) { xfs_buf_t *bp; xfs_caddr_t offset; xfs_daddr_t new_blk, first_blk, start_blk, last_blk, head_blk; int num_scan_bblks; uint first_half_cycle, last_half_cycle; uint stop_on_cycle; int error, log_bbnum = log->l_logBBsize; /* Is the end of the log device zeroed? */ if ((error = xlog_find_zeroed(log, &first_blk)) == -1) { *return_head_blk = first_blk; /* Is the whole lot zeroed? */ if (!first_blk) { /* Linux XFS shouldn't generate totally zeroed logs - * mkfs etc write a dummy unmount record to a fresh * log so we can store the uuid in there */ xfs_warn(log->l_mp, "totally zeroed log"); } return 0; } else if (error) { xfs_warn(log->l_mp, "empty log check failed"); return error; } first_blk = 0; /* get cycle # of 1st block */ bp = xlog_get_bp(log, 1); if (!bp) return ENOMEM; error = xlog_bread(log, 0, 1, bp, &offset); if (error) goto bp_err; first_half_cycle = xlog_get_cycle(offset); last_blk = head_blk = log_bbnum - 1; /* get cycle # of last block */ error = xlog_bread(log, last_blk, 1, bp, &offset); if (error) goto bp_err; last_half_cycle = xlog_get_cycle(offset); ASSERT(last_half_cycle != 0); /* * If the 1st half cycle number is equal to the last half cycle number, * then the entire log is stamped with the same cycle number. In this * case, head_blk can't be set to zero (which makes sense). The below * math doesn't work out properly with head_blk equal to zero. Instead, * we set it to log_bbnum which is an invalid block number, but this * value makes the math correct. If head_blk doesn't changed through * all the tests below, *head_blk is set to zero at the very end rather * than log_bbnum. In a sense, log_bbnum and zero are the same block * in a circular file. */ if (first_half_cycle == last_half_cycle) { /* * In this case we believe that the entire log should have * cycle number last_half_cycle. We need to scan backwards * from the end verifying that there are no holes still * containing last_half_cycle - 1. If we find such a hole, * then the start of that hole will be the new head. The * simple case looks like * x | x ... | x - 1 | x * Another case that fits this picture would be * x | x + 1 | x ... | x * In this case the head really is somewhere at the end of the * log, as one of the latest writes at the beginning was * incomplete. * One more case is * x | x + 1 | x ... | x - 1 | x * This is really the combination of the above two cases, and * the head has to end up at the start of the x-1 hole at the * end of the log. * * In the 256k log case, we will read from the beginning to the * end of the log and search for cycle numbers equal to x-1. * We don't worry about the x+1 blocks that we encounter, * because we know that they cannot be the head since the log * started with x. */ head_blk = log_bbnum; stop_on_cycle = last_half_cycle - 1; } else { /* * In this case we want to find the first block with cycle * number matching last_half_cycle. We expect the log to be * some variation on * x + 1 ... | x ... | x * The first block with cycle number x (last_half_cycle) will * be where the new head belongs. First we do a binary search * for the first occurrence of last_half_cycle. The binary * search may not be totally accurate, so then we scan back * from there looking for occurrences of last_half_cycle before * us. If that backwards scan wraps around the beginning of * the log, then we look for occurrences of last_half_cycle - 1 * at the end of the log. The cases we're looking for look * like * v binary search stopped here * x + 1 ... | x | x + 1 | x ... | x * ^ but we want to locate this spot * or * <---------> less than scan distance * x + 1 ... | x ... | x - 1 | x * ^ we want to locate this spot */ stop_on_cycle = last_half_cycle; if ((error = xlog_find_cycle_start(log, bp, first_blk, &head_blk, last_half_cycle))) goto bp_err; } /* * Now validate the answer. Scan back some number of maximum possible * blocks and make sure each one has the expected cycle number. The * maximum is determined by the total possible amount of buffering * in the in-core log. The following number can be made tighter if * we actually look at the block size of the filesystem. */ num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); if (head_blk >= num_scan_bblks) { /* * We are guaranteed that the entire check can be performed * in one buffer. */ start_blk = head_blk - num_scan_bblks; if ((error = xlog_find_verify_cycle(log, start_blk, num_scan_bblks, stop_on_cycle, &new_blk))) goto bp_err; if (new_blk != -1) head_blk = new_blk; } else { /* need to read 2 parts of log */ /* * We are going to scan backwards in the log in two parts. * First we scan the physical end of the log. In this part * of the log, we are looking for blocks with cycle number * last_half_cycle - 1. * If we find one, then we know that the log starts there, as * we've found a hole that didn't get written in going around * the end of the physical log. The simple case for this is * x + 1 ... | x ... | x - 1 | x * <---------> less than scan distance * If all of the blocks at the end of the log have cycle number * last_half_cycle, then we check the blocks at the start of * the log looking for occurrences of last_half_cycle. If we * find one, then our current estimate for the location of the * first occurrence of last_half_cycle is wrong and we move * back to the hole we've found. This case looks like * x + 1 ... | x | x + 1 | x ... * ^ binary search stopped here * Another case we need to handle that only occurs in 256k * logs is * x + 1 ... | x ... | x+1 | x ... * ^ binary search stops here * In a 256k log, the scan at the end of the log will see the * x + 1 blocks. We need to skip past those since that is * certainly not the head of the log. By searching for * last_half_cycle-1 we accomplish that. */ ASSERT(head_blk <= INT_MAX && (xfs_daddr_t) num_scan_bblks >= head_blk); start_blk = log_bbnum - (num_scan_bblks - head_blk); if ((error = xlog_find_verify_cycle(log, start_blk, num_scan_bblks - (int)head_blk, (stop_on_cycle - 1), &new_blk))) goto bp_err; if (new_blk != -1) { head_blk = new_blk; goto validate_head; } /* * Scan beginning of log now. The last part of the physical * log is good. This scan needs to verify that it doesn't find * the last_half_cycle. */ start_blk = 0; ASSERT(head_blk <= INT_MAX); if ((error = xlog_find_verify_cycle(log, start_blk, (int)head_blk, stop_on_cycle, &new_blk))) goto bp_err; if (new_blk != -1) head_blk = new_blk; } validate_head: /* * Now we need to make sure head_blk is not pointing to a block in * the middle of a log record. */ num_scan_bblks = XLOG_REC_SHIFT(log); if (head_blk >= num_scan_bblks) { start_blk = head_blk - num_scan_bblks; /* don't read head_blk */ /* start ptr at last block ptr before head_blk */ if ((error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0)) == -1) { error = XFS_ERROR(EIO); goto bp_err; } else if (error) goto bp_err; } else { start_blk = 0; ASSERT(head_blk <= INT_MAX); if ((error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0)) == -1) { /* We hit the beginning of the log during our search */ start_blk = log_bbnum - (num_scan_bblks - head_blk); new_blk = log_bbnum; ASSERT(start_blk <= INT_MAX && (xfs_daddr_t) log_bbnum-start_blk >= 0); ASSERT(head_blk <= INT_MAX); if ((error = xlog_find_verify_log_record(log, start_blk, &new_blk, (int)head_blk)) == -1) { error = XFS_ERROR(EIO); goto bp_err; } else if (error) goto bp_err; if (new_blk != log_bbnum) head_blk = new_blk; } else if (error) goto bp_err; } xlog_put_bp(bp); if (head_blk == log_bbnum) *return_head_blk = 0; else *return_head_blk = head_blk; /* * When returning here, we have a good block number. Bad block * means that during a previous crash, we didn't have a clean break * from cycle number N to cycle number N-1. In this case, we need * to find the first block with cycle number N-1. */ return 0; bp_err: xlog_put_bp(bp); if (error) xfs_warn(log->l_mp, "failed to find log head"); return error; } /* * Find the sync block number or the tail of the log. * * This will be the block number of the last record to have its * associated buffers synced to disk. Every log record header has * a sync lsn embedded in it. LSNs hold block numbers, so it is easy * to get a sync block number. The only concern is to figure out which * log record header to believe. * * The following algorithm uses the log record header with the largest * lsn. The entire log record does not need to be valid. We only care * that the header is valid. * * We could speed up search by using current head_blk buffer, but it is not * available. */ STATIC int xlog_find_tail( struct xlog *log, xfs_daddr_t *head_blk, xfs_daddr_t *tail_blk) { xlog_rec_header_t *rhead; xlog_op_header_t *op_head; xfs_caddr_t offset = NULL; xfs_buf_t *bp; int error, i, found; xfs_daddr_t umount_data_blk; xfs_daddr_t after_umount_blk; xfs_lsn_t tail_lsn; int hblks; found = 0; /* * Find previous log record */ if ((error = xlog_find_head(log, head_blk))) return error; bp = xlog_get_bp(log, 1); if (!bp) return ENOMEM; if (*head_blk == 0) { /* special case */ error = xlog_bread(log, 0, 1, bp, &offset); if (error) goto done; if (xlog_get_cycle(offset) == 0) { *tail_blk = 0; /* leave all other log inited values alone */ goto done; } } /* * Search backwards looking for log record header block */ ASSERT(*head_blk < INT_MAX); for (i = (int)(*head_blk) - 1; i >= 0; i--) { error = xlog_bread(log, i, 1, bp, &offset); if (error) goto done; if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { found = 1; break; } } /* * If we haven't found the log record header block, start looking * again from the end of the physical log. XXXmiken: There should be * a check here to make sure we didn't search more than N blocks in * the previous code. */ if (!found) { for (i = log->l_logBBsize - 1; i >= (int)(*head_blk); i--) { error = xlog_bread(log, i, 1, bp, &offset); if (error) goto done; if (*(__be32 *)offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) { found = 2; break; } } } if (!found) { xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__); xlog_put_bp(bp); ASSERT(0); return XFS_ERROR(EIO); } /* find blk_no of tail of log */ rhead = (xlog_rec_header_t *)offset; *tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn)); /* * Reset log values according to the state of the log when we * crashed. In the case where head_blk == 0, we bump curr_cycle * one because the next write starts a new cycle rather than * continuing the cycle of the last good log record. At this * point we have guaranteed that all partial log records have been * accounted for. Therefore, we know that the last good log record * written was complete and ended exactly on the end boundary * of the physical log. */ log->l_prev_block = i; log->l_curr_block = (int)*head_blk; log->l_curr_cycle = be32_to_cpu(rhead->h_cycle); if (found == 2) log->l_curr_cycle++; atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn)); atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn)); xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle, BBTOB(log->l_curr_block)); xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle, BBTOB(log->l_curr_block)); /* * Look for unmount record. If we find it, then we know there * was a clean unmount. Since 'i' could be the last block in * the physical log, we convert to a log block before comparing * to the head_blk. * * Save the current tail lsn to use to pass to * xlog_clear_stale_blocks() below. We won't want to clear the * unmount record if there is one, so we pass the lsn of the * unmount record rather than the block after it. */ if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { int h_size = be32_to_cpu(rhead->h_size); int h_version = be32_to_cpu(rhead->h_version); if ((h_version & XLOG_VERSION_2) && (h_size > XLOG_HEADER_CYCLE_SIZE)) { hblks = h_size / XLOG_HEADER_CYCLE_SIZE; if (h_size % XLOG_HEADER_CYCLE_SIZE) hblks++; } else { hblks = 1; } } else { hblks = 1; } after_umount_blk = (i + hblks + (int) BTOBB(be32_to_cpu(rhead->h_len))) % log->l_logBBsize; tail_lsn = atomic64_read(&log->l_tail_lsn); if (*head_blk == after_umount_blk && be32_to_cpu(rhead->h_num_logops) == 1) { umount_data_blk = (i + hblks) % log->l_logBBsize; error = xlog_bread(log, umount_data_blk, 1, bp, &offset); if (error) goto done; op_head = (xlog_op_header_t *)offset; if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) { /* * Set tail and last sync so that newly written * log records will point recovery to after the * current unmount record. */ xlog_assign_atomic_lsn(&log->l_tail_lsn, log->l_curr_cycle, after_umount_blk); xlog_assign_atomic_lsn(&log->l_last_sync_lsn, log->l_curr_cycle, after_umount_blk); *tail_blk = after_umount_blk; /* * Note that the unmount was clean. If the unmount * was not clean, we need to know this to rebuild the * superblock counters from the perag headers if we * have a filesystem using non-persistent counters. */ log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN; } } /* * Make sure that there are no blocks in front of the head * with the same cycle number as the head. This can happen * because we allow multiple outstanding log writes concurrently, * and the later writes might make it out before earlier ones. * * We use the lsn from before modifying it so that we'll never * overwrite the unmount record after a clean unmount. * * Do this only if we are going to recover the filesystem * * NOTE: This used to say "if (!readonly)" * However on Linux, we can & do recover a read-only filesystem. * We only skip recovery if NORECOVERY is specified on mount, * in which case we would not be here. * * But... if the -device- itself is readonly, just skip this. * We can't recover this device anyway, so it won't matter. */ if (!xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) error = xlog_clear_stale_blocks(log, tail_lsn); done: xlog_put_bp(bp); if (error) xfs_warn(log->l_mp, "failed to locate log tail"); return error; } /* * Is the log zeroed at all? * * The last binary search should be changed to perform an X block read * once X becomes small enough. You can then search linearly through * the X blocks. This will cut down on the number of reads we need to do. * * If the log is partially zeroed, this routine will pass back the blkno * of the first block with cycle number 0. It won't have a complete LR * preceding it. * * Return: * 0 => the log is completely written to * -1 => use *blk_no as the first block of the log * >0 => error has occurred */ STATIC int xlog_find_zeroed( struct xlog *log, xfs_daddr_t *blk_no) { xfs_buf_t *bp; xfs_caddr_t offset; uint first_cycle, last_cycle; xfs_daddr_t new_blk, last_blk, start_blk; xfs_daddr_t num_scan_bblks; int error, log_bbnum = log->l_logBBsize; *blk_no = 0; /* check totally zeroed log */ bp = xlog_get_bp(log, 1); if (!bp) return ENOMEM; error = xlog_bread(log, 0, 1, bp, &offset); if (error) goto bp_err; first_cycle = xlog_get_cycle(offset); if (first_cycle == 0) { /* completely zeroed log */ *blk_no = 0; xlog_put_bp(bp); return -1; } /* check partially zeroed log */ error = xlog_bread(log, log_bbnum-1, 1, bp, &offset); if (error) goto bp_err; last_cycle = xlog_get_cycle(offset); if (last_cycle != 0) { /* log completely written to */ xlog_put_bp(bp); return 0; } else if (first_cycle != 1) { /* * If the cycle of the last block is zero, the cycle of * the first block must be 1. If it's not, maybe we're * not looking at a log... Bail out. */ xfs_warn(log->l_mp, "Log inconsistent or not a log (last==0, first!=1)"); error = XFS_ERROR(EINVAL); goto bp_err; } /* we have a partially zeroed log */ last_blk = log_bbnum-1; if ((error = xlog_find_cycle_start(log, bp, 0, &last_blk, 0))) goto bp_err; /* * Validate the answer. Because there is no way to guarantee that * the entire log is made up of log records which are the same size, * we scan over the defined maximum blocks. At this point, the maximum * is not chosen to mean anything special. XXXmiken */ num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log); ASSERT(num_scan_bblks <= INT_MAX); if (last_blk < num_scan_bblks) num_scan_bblks = last_blk; start_blk = last_blk - num_scan_bblks; /* * We search for any instances of cycle number 0 that occur before * our current estimate of the head. What we're trying to detect is * 1 ... | 0 | 1 | 0... * ^ binary search ends here */ if ((error = xlog_find_verify_cycle(log, start_blk, (int)num_scan_bblks, 0, &new_blk))) goto bp_err; if (new_blk != -1) last_blk = new_blk; /* * Potentially backup over partial log record write. We don't need * to search the end of the log because we know it is zero. */ if ((error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0)) == -1) { error = XFS_ERROR(EIO); goto bp_err; } else if (error) goto bp_err; *blk_no = last_blk; bp_err: xlog_put_bp(bp); if (error) return error; return -1; } /* * These are simple subroutines used by xlog_clear_stale_blocks() below * to initialize a buffer full of empty log record headers and write * them into the log. */ STATIC void xlog_add_record( struct xlog *log, xfs_caddr_t buf, int cycle, int block, int tail_cycle, int tail_block) { xlog_rec_header_t *recp = (xlog_rec_header_t *)buf; memset(buf, 0, BBSIZE); recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); recp->h_cycle = cpu_to_be32(cycle); recp->h_version = cpu_to_be32( xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block)); recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block)); recp->h_fmt = cpu_to_be32(XLOG_FMT); memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t)); } STATIC int xlog_write_log_records( struct xlog *log, int cycle, int start_block, int blocks, int tail_cycle, int tail_block) { xfs_caddr_t offset; xfs_buf_t *bp; int balign, ealign; int sectbb = log->l_sectBBsize; int end_block = start_block + blocks; int bufblks; int error = 0; int i, j = 0; /* * Greedily allocate a buffer big enough to handle the full * range of basic blocks to be written. If that fails, try * a smaller size. We need to be able to write at least a * log sector, or we're out of luck. */ bufblks = 1 << ffs(blocks); while (bufblks > log->l_logBBsize) bufblks >>= 1; while (!(bp = xlog_get_bp(log, bufblks))) { bufblks >>= 1; if (bufblks < sectbb) return ENOMEM; } /* We may need to do a read at the start to fill in part of * the buffer in the starting sector not covered by the first * write below. */ balign = round_down(start_block, sectbb); if (balign != start_block) { error = xlog_bread_noalign(log, start_block, 1, bp); if (error) goto out_put_bp; j = start_block - balign; } for (i = start_block; i < end_block; i += bufblks) { int bcount, endcount; bcount = min(bufblks, end_block - start_block); endcount = bcount - j; /* We may need to do a read at the end to fill in part of * the buffer in the final sector not covered by the write. * If this is the same sector as the above read, skip it. */ ealign = round_down(end_block, sectbb); if (j == 0 && (start_block + endcount > ealign)) { offset = bp->b_addr + BBTOB(ealign - start_block); error = xlog_bread_offset(log, ealign, sectbb, bp, offset); if (error) break; } offset = xlog_align(log, start_block, endcount, bp); for (; j < endcount; j++) { xlog_add_record(log, offset, cycle, i+j, tail_cycle, tail_block); offset += BBSIZE; } error = xlog_bwrite(log, start_block, endcount, bp); if (error) break; start_block += endcount; j = 0; } out_put_bp: xlog_put_bp(bp); return error; } /* * This routine is called to blow away any incomplete log writes out * in front of the log head. We do this so that we won't become confused * if we come up, write only a little bit more, and then crash again. * If we leave the partial log records out there, this situation could * cause us to think those partial writes are valid blocks since they * have the current cycle number. We get rid of them by overwriting them * with empty log records with the old cycle number rather than the * current one. * * The tail lsn is passed in rather than taken from * the log so that we will not write over the unmount record after a * clean unmount in a 512 block log. Doing so would leave the log without * any valid log records in it until a new one was written. If we crashed * during that time we would not be able to recover. */ STATIC int xlog_clear_stale_blocks( struct xlog *log, xfs_lsn_t tail_lsn) { int tail_cycle, head_cycle; int tail_block, head_block; int tail_distance, max_distance; int distance; int error; tail_cycle = CYCLE_LSN(tail_lsn); tail_block = BLOCK_LSN(tail_lsn); head_cycle = log->l_curr_cycle; head_block = log->l_curr_block; /* * Figure out the distance between the new head of the log * and the tail. We want to write over any blocks beyond the * head that we may have written just before the crash, but * we don't want to overwrite the tail of the log. */ if (head_cycle == tail_cycle) { /* * The tail is behind the head in the physical log, * so the distance from the head to the tail is the * distance from the head to the end of the log plus * the distance from the beginning of the log to the * tail. */ if (unlikely(head_block < tail_block || head_block >= log->l_logBBsize)) { XFS_ERROR_REPORT("xlog_clear_stale_blocks(1)", XFS_ERRLEVEL_LOW, log->l_mp); return XFS_ERROR(EFSCORRUPTED); } tail_distance = tail_block + (log->l_logBBsize - head_block); } else { /* * The head is behind the tail in the physical log, * so the distance from the head to the tail is just * the tail block minus the head block. */ if (unlikely(head_block >= tail_block || head_cycle != (tail_cycle + 1))){ XFS_ERROR_REPORT("xlog_clear_stale_blocks(2)", XFS_ERRLEVEL_LOW, log->l_mp); return XFS_ERROR(EFSCORRUPTED); } tail_distance = tail_block - head_block; } /* * If the head is right up against the tail, we can't clear * anything. */ if (tail_distance <= 0) { ASSERT(tail_distance == 0); return 0; } max_distance = XLOG_TOTAL_REC_SHIFT(log); /* * Take the smaller of the maximum amount of outstanding I/O * we could have and the distance to the tail to clear out. * We take the smaller so that we don't overwrite the tail and * we don't waste all day writing from the head to the tail * for no reason. */ max_distance = MIN(max_distance, tail_distance); if ((head_block + max_distance) <= log->l_logBBsize) { /* * We can stomp all the blocks we need to without * wrapping around the end of the log. Just do it * in a single write. Use the cycle number of the * current cycle minus one so that the log will look like: * n ... | n - 1 ... */ error = xlog_write_log_records(log, (head_cycle - 1), head_block, max_distance, tail_cycle, tail_block); if (error) return error; } else { /* * We need to wrap around the end of the physical log in * order to clear all the blocks. Do it in two separate * I/Os. The first write should be from the head to the * end of the physical log, and it should use the current * cycle number minus one just like above. */ distance = log->l_logBBsize - head_block; error = xlog_write_log_records(log, (head_cycle - 1), head_block, distance, tail_cycle, tail_block); if (error) return error; /* * Now write the blocks at the start of the physical log. * This writes the remainder of the blocks we want to clear. * It uses the current cycle number since we're now on the * same cycle as the head so that we get: * n ... n ... | n - 1 ... * ^^^^^ blocks we're writing */ distance = max_distance - (log->l_logBBsize - head_block); error = xlog_write_log_records(log, head_cycle, 0, distance, tail_cycle, tail_block); if (error) return error; } return 0; } /****************************************************************************** * * Log recover routines * ****************************************************************************** */ STATIC xlog_recover_t * xlog_recover_find_tid( struct hlist_head *head, xlog_tid_t tid) { xlog_recover_t *trans; hlist_for_each_entry(trans, head, r_list) { if (trans->r_log_tid == tid) return trans; } return NULL; } STATIC void xlog_recover_new_tid( struct hlist_head *head, xlog_tid_t tid, xfs_lsn_t lsn) { xlog_recover_t *trans; trans = kmem_zalloc(sizeof(xlog_recover_t), KM_SLEEP); trans->r_log_tid = tid; trans->r_lsn = lsn; INIT_LIST_HEAD(&trans->r_itemq); INIT_HLIST_NODE(&trans->r_list); hlist_add_head(&trans->r_list, head); } STATIC void xlog_recover_add_item( struct list_head *head) { xlog_recover_item_t *item; item = kmem_zalloc(sizeof(xlog_recover_item_t), KM_SLEEP); INIT_LIST_HEAD(&item->ri_list); list_add_tail(&item->ri_list, head); } STATIC int xlog_recover_add_to_cont_trans( struct xlog *log, struct xlog_recover *trans, xfs_caddr_t dp, int len) { xlog_recover_item_t *item; xfs_caddr_t ptr, old_ptr; int old_len; if (list_empty(&trans->r_itemq)) { /* finish copying rest of trans header */ xlog_recover_add_item(&trans->r_itemq); ptr = (xfs_caddr_t) &trans->r_theader + sizeof(xfs_trans_header_t) - len; memcpy(ptr, dp, len); /* d, s, l */ return 0; } /* take the tail entry */ item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); old_ptr = item->ri_buf[item->ri_cnt-1].i_addr; old_len = item->ri_buf[item->ri_cnt-1].i_len; ptr = kmem_realloc(old_ptr, len+old_len, old_len, KM_SLEEP); memcpy(&ptr[old_len], dp, len); /* d, s, l */ item->ri_buf[item->ri_cnt-1].i_len += len; item->ri_buf[item->ri_cnt-1].i_addr = ptr; trace_xfs_log_recover_item_add_cont(log, trans, item, 0); return 0; } /* * The next region to add is the start of a new region. It could be * a whole region or it could be the first part of a new region. Because * of this, the assumption here is that the type and size fields of all * format structures fit into the first 32 bits of the structure. * * This works because all regions must be 32 bit aligned. Therefore, we * either have both fields or we have neither field. In the case we have * neither field, the data part of the region is zero length. We only have * a log_op_header and can throw away the header since a new one will appear * later. If we have at least 4 bytes, then we can determine how many regions * will appear in the current log item. */ STATIC int xlog_recover_add_to_trans( struct xlog *log, struct xlog_recover *trans, xfs_caddr_t dp, int len) { xfs_inode_log_format_t *in_f; /* any will do */ xlog_recover_item_t *item; xfs_caddr_t ptr; if (!len) return 0; if (list_empty(&trans->r_itemq)) { /* we need to catch log corruptions here */ if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) { xfs_warn(log->l_mp, "%s: bad header magic number", __func__); ASSERT(0); return XFS_ERROR(EIO); } if (len == sizeof(xfs_trans_header_t)) xlog_recover_add_item(&trans->r_itemq); memcpy(&trans->r_theader, dp, len); /* d, s, l */ return 0; } ptr = kmem_alloc(len, KM_SLEEP); memcpy(ptr, dp, len); in_f = (xfs_inode_log_format_t *)ptr; /* take the tail entry */ item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); if (item->ri_total != 0 && item->ri_total == item->ri_cnt) { /* tail item is in use, get a new one */ xlog_recover_add_item(&trans->r_itemq); item = list_entry(trans->r_itemq.prev, xlog_recover_item_t, ri_list); } if (item->ri_total == 0) { /* first region to be added */ if (in_f->ilf_size == 0 || in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) { xfs_warn(log->l_mp, "bad number of regions (%d) in inode log format", in_f->ilf_size); ASSERT(0); kmem_free(ptr); return XFS_ERROR(EIO); } item->ri_total = in_f->ilf_size; item->ri_buf = kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t), KM_SLEEP); } ASSERT(item->ri_total > item->ri_cnt); /* Description region is ri_buf[0] */ item->ri_buf[item->ri_cnt].i_addr = ptr; item->ri_buf[item->ri_cnt].i_len = len; item->ri_cnt++; trace_xfs_log_recover_item_add(log, trans, item, 0); return 0; } /* * Sort the log items in the transaction. * * The ordering constraints are defined by the inode allocation and unlink * behaviour. The rules are: * * 1. Every item is only logged once in a given transaction. Hence it * represents the last logged state of the item. Hence ordering is * dependent on the order in which operations need to be performed so * required initial conditions are always met. * * 2. Cancelled buffers are recorded in pass 1 in a separate table and * there's nothing to replay from them so we can simply cull them * from the transaction. However, we can't do that until after we've * replayed all the other items because they may be dependent on the * cancelled buffer and replaying the cancelled buffer can remove it * form the cancelled buffer table. Hence they have tobe done last. * * 3. Inode allocation buffers must be replayed before inode items that * read the buffer and replay changes into it. For filesystems using the * ICREATE transactions, this means XFS_LI_ICREATE objects need to get * treated the same as inode allocation buffers as they create and * initialise the buffers directly. * * 4. Inode unlink buffers must be replayed after inode items are replayed. * This ensures that inodes are completely flushed to the inode buffer * in a "free" state before we remove the unlinked inode list pointer. * * Hence the ordering needs to be inode allocation buffers first, inode items * second, inode unlink buffers third and cancelled buffers last. * * But there's a problem with that - we can't tell an inode allocation buffer * apart from a regular buffer, so we can't separate them. We can, however, * tell an inode unlink buffer from the others, and so we can separate them out * from all the other buffers and move them to last. * * Hence, 4 lists, in order from head to tail: * - buffer_list for all buffers except cancelled/inode unlink buffers * - item_list for all non-buffer items * - inode_buffer_list for inode unlink buffers * - cancel_list for the cancelled buffers * * Note that we add objects to the tail of the lists so that first-to-last * ordering is preserved within the lists. Adding objects to the head of the * list means when we traverse from the head we walk them in last-to-first * order. For cancelled buffers and inode unlink buffers this doesn't matter, * but for all other items there may be specific ordering that we need to * preserve. */ STATIC int xlog_recover_reorder_trans( struct xlog *log, struct xlog_recover *trans, int pass) { xlog_recover_item_t *item, *n; int error = 0; LIST_HEAD(sort_list); LIST_HEAD(cancel_list); LIST_HEAD(buffer_list); LIST_HEAD(inode_buffer_list); LIST_HEAD(inode_list); list_splice_init(&trans->r_itemq, &sort_list); list_for_each_entry_safe(item, n, &sort_list, ri_list) { xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; switch (ITEM_TYPE(item)) { case XFS_LI_ICREATE: list_move_tail(&item->ri_list, &buffer_list); break; case XFS_LI_BUF: if (buf_f->blf_flags & XFS_BLF_CANCEL) { trace_xfs_log_recover_item_reorder_head(log, trans, item, pass); list_move(&item->ri_list, &cancel_list); break; } if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { list_move(&item->ri_list, &inode_buffer_list); break; } list_move_tail(&item->ri_list, &buffer_list); break; case XFS_LI_INODE: case XFS_LI_DQUOT: case XFS_LI_QUOTAOFF: case XFS_LI_EFD: case XFS_LI_EFI: trace_xfs_log_recover_item_reorder_tail(log, trans, item, pass); list_move_tail(&item->ri_list, &inode_list); break; default: xfs_warn(log->l_mp, "%s: unrecognized type of log operation", __func__); ASSERT(0); /* * return the remaining items back to the transaction * item list so they can be freed in caller. */ if (!list_empty(&sort_list)) list_splice_init(&sort_list, &trans->r_itemq); error = XFS_ERROR(EIO); goto out; } } out: ASSERT(list_empty(&sort_list)); if (!list_empty(&buffer_list)) list_splice(&buffer_list, &trans->r_itemq); if (!list_empty(&inode_list)) list_splice_tail(&inode_list, &trans->r_itemq); if (!list_empty(&inode_buffer_list)) list_splice_tail(&inode_buffer_list, &trans->r_itemq); if (!list_empty(&cancel_list)) list_splice_tail(&cancel_list, &trans->r_itemq); return error; } /* * Build up the table of buf cancel records so that we don't replay * cancelled data in the second pass. For buffer records that are * not cancel records, there is nothing to do here so we just return. * * If we get a cancel record which is already in the table, this indicates * that the buffer was cancelled multiple times. In order to ensure * that during pass 2 we keep the record in the table until we reach its * last occurrence in the log, we keep a reference count in the cancel * record in the table to tell us how many times we expect to see this * record during the second pass. */ STATIC int xlog_recover_buffer_pass1( struct xlog *log, struct xlog_recover_item *item) { xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; struct list_head *bucket; struct xfs_buf_cancel *bcp; /* * If this isn't a cancel buffer item, then just return. */ if (!(buf_f->blf_flags & XFS_BLF_CANCEL)) { trace_xfs_log_recover_buf_not_cancel(log, buf_f); return 0; } /* * Insert an xfs_buf_cancel record into the hash table of them. * If there is already an identical record, bump its reference count. */ bucket = XLOG_BUF_CANCEL_BUCKET(log, buf_f->blf_blkno); list_for_each_entry(bcp, bucket, bc_list) { if (bcp->bc_blkno == buf_f->blf_blkno && bcp->bc_len == buf_f->blf_len) { bcp->bc_refcount++; trace_xfs_log_recover_buf_cancel_ref_inc(log, buf_f); return 0; } } bcp = kmem_alloc(sizeof(struct xfs_buf_cancel), KM_SLEEP); bcp->bc_blkno = buf_f->blf_blkno; bcp->bc_len = buf_f->blf_len; bcp->bc_refcount = 1; list_add_tail(&bcp->bc_list, bucket); trace_xfs_log_recover_buf_cancel_add(log, buf_f); return 0; } /* * Check to see whether the buffer being recovered has a corresponding * entry in the buffer cancel record table. If it is, return the cancel * buffer structure to the caller. */ STATIC struct xfs_buf_cancel * xlog_peek_buffer_cancelled( struct xlog *log, xfs_daddr_t blkno, uint len, ushort flags) { struct list_head *bucket; struct xfs_buf_cancel *bcp; if (!log->l_buf_cancel_table) { /* empty table means no cancelled buffers in the log */ ASSERT(!(flags & XFS_BLF_CANCEL)); return NULL; } bucket = XLOG_BUF_CANCEL_BUCKET(log, blkno); list_for_each_entry(bcp, bucket, bc_list) { if (bcp->bc_blkno == blkno && bcp->bc_len == len) return bcp; } /* * We didn't find a corresponding entry in the table, so return 0 so * that the buffer is NOT cancelled. */ ASSERT(!(flags & XFS_BLF_CANCEL)); return NULL; } /* * If the buffer is being cancelled then return 1 so that it will be cancelled, * otherwise return 0. If the buffer is actually a buffer cancel item * (XFS_BLF_CANCEL is set), then decrement the refcount on the entry in the * table and remove it from the table if this is the last reference. * * We remove the cancel record from the table when we encounter its last * occurrence in the log so that if the same buffer is re-used again after its * last cancellation we actually replay the changes made at that point. */ STATIC int xlog_check_buffer_cancelled( struct xlog *log, xfs_daddr_t blkno, uint len, ushort flags) { struct xfs_buf_cancel *bcp; bcp = xlog_peek_buffer_cancelled(log, blkno, len, flags); if (!bcp) return 0; /* * We've go a match, so return 1 so that the recovery of this buffer * is cancelled. If this buffer is actually a buffer cancel log * item, then decrement the refcount on the one in the table and * remove it if this is the last reference. */ if (flags & XFS_BLF_CANCEL) { if (--bcp->bc_refcount == 0) { list_del(&bcp->bc_list); kmem_free(bcp); } } return 1; } /* * Perform recovery for a buffer full of inodes. In these buffers, the only * data which should be recovered is that which corresponds to the * di_next_unlinked pointers in the on disk inode structures. The rest of the * data for the inodes is always logged through the inodes themselves rather * than the inode buffer and is recovered in xlog_recover_inode_pass2(). * * The only time when buffers full of inodes are fully recovered is when the * buffer is full of newly allocated inodes. In this case the buffer will * not be marked as an inode buffer and so will be sent to * xlog_recover_do_reg_buffer() below during recovery. */ STATIC int xlog_recover_do_inode_buffer( struct xfs_mount *mp, xlog_recover_item_t *item, struct xfs_buf *bp, xfs_buf_log_format_t *buf_f) { int i; int item_index = 0; int bit = 0; int nbits = 0; int reg_buf_offset = 0; int reg_buf_bytes = 0; int next_unlinked_offset; int inodes_per_buf; xfs_agino_t *logged_nextp; xfs_agino_t *buffer_nextp; trace_xfs_log_recover_buf_inode_buf(mp->m_log, buf_f); /* * Post recovery validation only works properly on CRC enabled * filesystems. */ if (xfs_sb_version_hascrc(&mp->m_sb)) bp->b_ops = &xfs_inode_buf_ops; inodes_per_buf = BBTOB(bp->b_io_length) >> mp->m_sb.sb_inodelog; for (i = 0; i < inodes_per_buf; i++) { next_unlinked_offset = (i * mp->m_sb.sb_inodesize) + offsetof(xfs_dinode_t, di_next_unlinked); while (next_unlinked_offset >= (reg_buf_offset + reg_buf_bytes)) { /* * The next di_next_unlinked field is beyond * the current logged region. Find the next * logged region that contains or is beyond * the current di_next_unlinked field. */ bit += nbits; bit = xfs_next_bit(buf_f->blf_data_map, buf_f->blf_map_size, bit); /* * If there are no more logged regions in the * buffer, then we're done. */ if (bit == -1) return 0; nbits = xfs_contig_bits(buf_f->blf_data_map, buf_f->blf_map_size, bit); ASSERT(nbits > 0); reg_buf_offset = bit << XFS_BLF_SHIFT; reg_buf_bytes = nbits << XFS_BLF_SHIFT; item_index++; } /* * If the current logged region starts after the current * di_next_unlinked field, then move on to the next * di_next_unlinked field. */ if (next_unlinked_offset < reg_buf_offset) continue; ASSERT(item->ri_buf[item_index].i_addr != NULL); ASSERT((item->ri_buf[item_index].i_len % XFS_BLF_CHUNK) == 0); ASSERT((reg_buf_offset + reg_buf_bytes) <= BBTOB(bp->b_io_length)); /* * The current logged region contains a copy of the * current di_next_unlinked field. Extract its value * and copy it to the buffer copy. */ logged_nextp = item->ri_buf[item_index].i_addr + next_unlinked_offset - reg_buf_offset; if (unlikely(*logged_nextp == 0)) { xfs_alert(mp, "Bad inode buffer log record (ptr = 0x%p, bp = 0x%p). " "Trying to replay bad (0) inode di_next_unlinked field.", item, bp); XFS_ERROR_REPORT("xlog_recover_do_inode_buf", XFS_ERRLEVEL_LOW, mp); return XFS_ERROR(EFSCORRUPTED); } buffer_nextp = (xfs_agino_t *)xfs_buf_offset(bp, next_unlinked_offset); *buffer_nextp = *logged_nextp; /* * If necessary, recalculate the CRC in the on-disk inode. We * have to leave the inode in a consistent state for whoever * reads it next.... */ xfs_dinode_calc_crc(mp, (struct xfs_dinode *) xfs_buf_offset(bp, i * mp->m_sb.sb_inodesize)); } return 0; } /* * V5 filesystems know the age of the buffer on disk being recovered. We can * have newer objects on disk than we are replaying, and so for these cases we * don't want to replay the current change as that will make the buffer contents * temporarily invalid on disk. * * The magic number might not match the buffer type we are going to recover * (e.g. reallocated blocks), so we ignore the xfs_buf_log_format flags. Hence * extract the LSN of the existing object in the buffer based on it's current * magic number. If we don't recognise the magic number in the buffer, then * return a LSN of -1 so that the caller knows it was an unrecognised block and * so can recover the buffer. * * Note: we cannot rely solely on magic number matches to determine that the * buffer has a valid LSN - we also need to verify that it belongs to this * filesystem, so we need to extract the object's LSN and compare it to that * which we read from the superblock. If the UUIDs don't match, then we've got a * stale metadata block from an old filesystem instance that we need to recover * over the top of. */ static xfs_lsn_t xlog_recover_get_buf_lsn( struct xfs_mount *mp, struct xfs_buf *bp) { __uint32_t magic32; __uint16_t magic16; __uint16_t magicda; void *blk = bp->b_addr; uuid_t *uuid; xfs_lsn_t lsn = -1; /* v4 filesystems always recover immediately */ if (!xfs_sb_version_hascrc(&mp->m_sb)) goto recover_immediately; magic32 = be32_to_cpu(*(__be32 *)blk); switch (magic32) { case XFS_ABTB_CRC_MAGIC: case XFS_ABTC_CRC_MAGIC: case XFS_ABTB_MAGIC: case XFS_ABTC_MAGIC: case XFS_IBT_CRC_MAGIC: case XFS_IBT_MAGIC: { struct xfs_btree_block *btb = blk; lsn = be64_to_cpu(btb->bb_u.s.bb_lsn); uuid = &btb->bb_u.s.bb_uuid; break; } case XFS_BMAP_CRC_MAGIC: case XFS_BMAP_MAGIC: { struct xfs_btree_block *btb = blk; lsn = be64_to_cpu(btb->bb_u.l.bb_lsn); uuid = &btb->bb_u.l.bb_uuid; break; } case XFS_AGF_MAGIC: lsn = be64_to_cpu(((struct xfs_agf *)blk)->agf_lsn); uuid = &((struct xfs_agf *)blk)->agf_uuid; break; case XFS_AGFL_MAGIC: lsn = be64_to_cpu(((struct xfs_agfl *)blk)->agfl_lsn); uuid = &((struct xfs_agfl *)blk)->agfl_uuid; break; case XFS_AGI_MAGIC: lsn = be64_to_cpu(((struct xfs_agi *)blk)->agi_lsn); uuid = &((struct xfs_agi *)blk)->agi_uuid; break; case XFS_SYMLINK_MAGIC: lsn = be64_to_cpu(((struct xfs_dsymlink_hdr *)blk)->sl_lsn); uuid = &((struct xfs_dsymlink_hdr *)blk)->sl_uuid; break; case XFS_DIR3_BLOCK_MAGIC: case XFS_DIR3_DATA_MAGIC: case XFS_DIR3_FREE_MAGIC: lsn = be64_to_cpu(((struct xfs_dir3_blk_hdr *)blk)->lsn); uuid = &((struct xfs_dir3_blk_hdr *)blk)->uuid; break; case XFS_ATTR3_RMT_MAGIC: lsn = be64_to_cpu(((struct xfs_attr3_rmt_hdr *)blk)->rm_lsn); uuid = &((struct xfs_attr3_rmt_hdr *)blk)->rm_uuid; break; case XFS_SB_MAGIC: lsn = be64_to_cpu(((struct xfs_dsb *)blk)->sb_lsn); uuid = &((struct xfs_dsb *)blk)->sb_uuid; break; default: break; } if (lsn != (xfs_lsn_t)-1) { if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) goto recover_immediately; return lsn; } magicda = be16_to_cpu(((struct xfs_da_blkinfo *)blk)->magic); switch (magicda) { case XFS_DIR3_LEAF1_MAGIC: case XFS_DIR3_LEAFN_MAGIC: case XFS_DA3_NODE_MAGIC: lsn = be64_to_cpu(((struct xfs_da3_blkinfo *)blk)->lsn); uuid = &((struct xfs_da3_blkinfo *)blk)->uuid; break; default: break; } if (lsn != (xfs_lsn_t)-1) { if (!uuid_equal(&mp->m_sb.sb_uuid, uuid)) goto recover_immediately; return lsn; } /* * We do individual object checks on dquot and inode buffers as they * have their own individual LSN records. Also, we could have a stale * buffer here, so we have to at least recognise these buffer types. * * A notd complexity here is inode unlinked list processing - it logs * the inode directly in the buffer, but we don't know which inodes have * been modified, and there is no global buffer LSN. Hence we need to * recover all inode buffer types immediately. This problem will be * fixed by logical logging of the unlinked list modifications. */ magic16 = be16_to_cpu(*(__be16 *)blk); switch (magic16) { case XFS_DQUOT_MAGIC: case XFS_DINODE_MAGIC: goto recover_immediately; default: break; } /* unknown buffer contents, recover immediately */ recover_immediately: return (xfs_lsn_t)-1; } /* * Validate the recovered buffer is of the correct type and attach the * appropriate buffer operations to them for writeback. Magic numbers are in a * few places: * the first 16 bits of the buffer (inode buffer, dquot buffer), * the first 32 bits of the buffer (most blocks), * inside a struct xfs_da_blkinfo at the start of the buffer. */ static void xlog_recover_validate_buf_type( struct xfs_mount *mp, struct xfs_buf *bp, xfs_buf_log_format_t *buf_f) { struct xfs_da_blkinfo *info = bp->b_addr; __uint32_t magic32; __uint16_t magic16; __uint16_t magicda; magic32 = be32_to_cpu(*(__be32 *)bp->b_addr); magic16 = be16_to_cpu(*(__be16*)bp->b_addr); magicda = be16_to_cpu(info->magic); switch (xfs_blft_from_flags(buf_f)) { case XFS_BLFT_BTREE_BUF: switch (magic32) { case XFS_ABTB_CRC_MAGIC: case XFS_ABTC_CRC_MAGIC: case XFS_ABTB_MAGIC: case XFS_ABTC_MAGIC: bp->b_ops = &xfs_allocbt_buf_ops; break; case XFS_IBT_CRC_MAGIC: case XFS_IBT_MAGIC: bp->b_ops = &xfs_inobt_buf_ops; break; case XFS_BMAP_CRC_MAGIC: case XFS_BMAP_MAGIC: bp->b_ops = &xfs_bmbt_buf_ops; break; default: xfs_warn(mp, "Bad btree block magic!"); ASSERT(0); break; } break; case XFS_BLFT_AGF_BUF: if (magic32 != XFS_AGF_MAGIC) { xfs_warn(mp, "Bad AGF block magic!"); ASSERT(0); break; } bp->b_ops = &xfs_agf_buf_ops; break; case XFS_BLFT_AGFL_BUF: if (!xfs_sb_version_hascrc(&mp->m_sb)) break; if (magic32 != XFS_AGFL_MAGIC) { xfs_warn(mp, "Bad AGFL block magic!"); ASSERT(0); break; } bp->b_ops = &xfs_agfl_buf_ops; break; case XFS_BLFT_AGI_BUF: if (magic32 != XFS_AGI_MAGIC) { xfs_warn(mp, "Bad AGI block magic!"); ASSERT(0); break; } bp->b_ops = &xfs_agi_buf_ops; break; case XFS_BLFT_UDQUOT_BUF: case XFS_BLFT_PDQUOT_BUF: case XFS_BLFT_GDQUOT_BUF: #ifdef CONFIG_XFS_QUOTA if (magic16 != XFS_DQUOT_MAGIC) { xfs_warn(mp, "Bad DQUOT block magic!"); ASSERT(0); break; } bp->b_ops = &xfs_dquot_buf_ops; #else xfs_alert(mp, "Trying to recover dquots without QUOTA support built in!"); ASSERT(0); #endif break; case XFS_BLFT_DINO_BUF: /* * we get here with inode allocation buffers, not buffers that * track unlinked list changes. */ if (magic16 != XFS_DINODE_MAGIC) { xfs_warn(mp, "Bad INODE block magic!"); ASSERT(0); break; } bp->b_ops = &xfs_inode_buf_ops; break; case XFS_BLFT_SYMLINK_BUF: if (magic32 != XFS_SYMLINK_MAGIC) { xfs_warn(mp, "Bad symlink block magic!"); ASSERT(0); break; } bp->b_ops = &xfs_symlink_buf_ops; break; case XFS_BLFT_DIR_BLOCK_BUF: if (magic32 != XFS_DIR2_BLOCK_MAGIC && magic32 != XFS_DIR3_BLOCK_MAGIC) { xfs_warn(mp, "Bad dir block magic!"); ASSERT(0); break; } bp->b_ops = &xfs_dir3_block_buf_ops; break; case XFS_BLFT_DIR_DATA_BUF: if (magic32 != XFS_DIR2_DATA_MAGIC && magic32 != XFS_DIR3_DATA_MAGIC) { xfs_warn(mp, "Bad dir data magic!"); ASSERT(0); break; } bp->b_ops = &xfs_dir3_data_buf_ops; break; case XFS_BLFT_DIR_FREE_BUF: if (magic32 != XFS_DIR2_FREE_MAGIC && magic32 != XFS_DIR3_FREE_MAGIC) { xfs_warn(mp, "Bad dir3 free magic!"); ASSERT(0); break; } bp->b_ops = &xfs_dir3_free_buf_ops; break; case XFS_BLFT_DIR_LEAF1_BUF: if (magicda != XFS_DIR2_LEAF1_MAGIC && magicda != XFS_DIR3_LEAF1_MAGIC) { xfs_warn(mp, "Bad dir leaf1 magic!"); ASSERT(0); break; } bp->b_ops = &xfs_dir3_leaf1_buf_ops; break; case XFS_BLFT_DIR_LEAFN_BUF: if (magicda != XFS_DIR2_LEAFN_MAGIC && magicda != XFS_DIR3_LEAFN_MAGIC) { xfs_warn(mp, "Bad dir leafn magic!"); ASSERT(0); break; } bp->b_ops = &xfs_dir3_leafn_buf_ops; break; case XFS_BLFT_DA_NODE_BUF: if (magicda != XFS_DA_NODE_MAGIC && magicda != XFS_DA3_NODE_MAGIC) { xfs_warn(mp, "Bad da node magic!"); ASSERT(0); break; } bp->b_ops = &xfs_da3_node_buf_ops; break; case XFS_BLFT_ATTR_LEAF_BUF: if (magicda != XFS_ATTR_LEAF_MAGIC && magicda != XFS_ATTR3_LEAF_MAGIC) { xfs_warn(mp, "Bad attr leaf magic!"); ASSERT(0); break; } bp->b_ops = &xfs_attr3_leaf_buf_ops; break; case XFS_BLFT_ATTR_RMT_BUF: if (!xfs_sb_version_hascrc(&mp->m_sb)) break; if (magic32 != XFS_ATTR3_RMT_MAGIC) { xfs_warn(mp, "Bad attr remote magic!"); ASSERT(0); break; } bp->b_ops = &xfs_attr3_rmt_buf_ops; break; case XFS_BLFT_SB_BUF: if (magic32 != XFS_SB_MAGIC) { xfs_warn(mp, "Bad SB block magic!"); ASSERT(0); break; } bp->b_ops = &xfs_sb_buf_ops; break; default: xfs_warn(mp, "Unknown buffer type %d!", xfs_blft_from_flags(buf_f)); break; } } /* * Perform a 'normal' buffer recovery. Each logged region of the * buffer should be copied over the corresponding region in the * given buffer. The bitmap in the buf log format structure indicates * where to place the logged data. */ STATIC void xlog_recover_do_reg_buffer( struct xfs_mount *mp, xlog_recover_item_t *item, struct xfs_buf *bp, xfs_buf_log_format_t *buf_f) { int i; int bit; int nbits; int error; trace_xfs_log_recover_buf_reg_buf(mp->m_log, buf_f); bit = 0; i = 1; /* 0 is the buf format structure */ while (1) { bit = xfs_next_bit(buf_f->blf_data_map, buf_f->blf_map_size, bit); if (bit == -1) break; nbits = xfs_contig_bits(buf_f->blf_data_map, buf_f->blf_map_size, bit); ASSERT(nbits > 0); ASSERT(item->ri_buf[i].i_addr != NULL); ASSERT(item->ri_buf[i].i_len % XFS_BLF_CHUNK == 0); ASSERT(BBTOB(bp->b_io_length) >= ((uint)bit << XFS_BLF_SHIFT) + (nbits << XFS_BLF_SHIFT)); /* * The dirty regions logged in the buffer, even though * contiguous, may span multiple chunks. This is because the * dirty region may span a physical page boundary in a buffer * and hence be split into two separate vectors for writing into * the log. Hence we need to trim nbits back to the length of * the current region being copied out of the log. */ if (item->ri_buf[i].i_len < (nbits << XFS_BLF_SHIFT)) nbits = item->ri_buf[i].i_len >> XFS_BLF_SHIFT; /* * Do a sanity check if this is a dquot buffer. Just checking * the first dquot in the buffer should do. XXXThis is * probably a good thing to do for other buf types also. */ error = 0; if (buf_f->blf_flags & (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { if (item->ri_buf[i].i_addr == NULL) { xfs_alert(mp, "XFS: NULL dquot in %s.", __func__); goto next; } if (item->ri_buf[i].i_len < sizeof(xfs_disk_dquot_t)) { xfs_alert(mp, "XFS: dquot too small (%d) in %s.", item->ri_buf[i].i_len, __func__); goto next; } error = xfs_dqcheck(mp, item->ri_buf[i].i_addr, -1, 0, XFS_QMOPT_DOWARN, "dquot_buf_recover"); if (error) goto next; } memcpy(xfs_buf_offset(bp, (uint)bit << XFS_BLF_SHIFT), /* dest */ item->ri_buf[i].i_addr, /* source */ nbits<<XFS_BLF_SHIFT); /* length */ next: i++; bit += nbits; } /* Shouldn't be any more regions */ ASSERT(i == item->ri_total); /* * We can only do post recovery validation on items on CRC enabled * fielsystems as we need to know when the buffer was written to be able * to determine if we should have replayed the item. If we replay old * metadata over a newer buffer, then it will enter a temporarily * inconsistent state resulting in verification failures. Hence for now * just avoid the verification stage for non-crc filesystems */ if (xfs_sb_version_hascrc(&mp->m_sb)) xlog_recover_validate_buf_type(mp, bp, buf_f); } /* * Perform a dquot buffer recovery. * Simple algorithm: if we have found a QUOTAOFF log item of the same type * (ie. USR or GRP), then just toss this buffer away; don't recover it. * Else, treat it as a regular buffer and do recovery. */ STATIC void xlog_recover_do_dquot_buffer( struct xfs_mount *mp, struct xlog *log, struct xlog_recover_item *item, struct xfs_buf *bp, struct xfs_buf_log_format *buf_f) { uint type; trace_xfs_log_recover_buf_dquot_buf(log, buf_f); /* * Filesystems are required to send in quota flags at mount time. */ if (mp->m_qflags == 0) { return; } type = 0; if (buf_f->blf_flags & XFS_BLF_UDQUOT_BUF) type |= XFS_DQ_USER; if (buf_f->blf_flags & XFS_BLF_PDQUOT_BUF) type |= XFS_DQ_PROJ; if (buf_f->blf_flags & XFS_BLF_GDQUOT_BUF) type |= XFS_DQ_GROUP; /* * This type of quotas was turned off, so ignore this buffer */ if (log->l_quotaoffs_flag & type) return; xlog_recover_do_reg_buffer(mp, item, bp, buf_f); } /* * This routine replays a modification made to a buffer at runtime. * There are actually two types of buffer, regular and inode, which * are handled differently. Inode buffers are handled differently * in that we only recover a specific set of data from them, namely * the inode di_next_unlinked fields. This is because all other inode * data is actually logged via inode records and any data we replay * here which overlaps that may be stale. * * When meta-data buffers are freed at run time we log a buffer item * with the XFS_BLF_CANCEL bit set to indicate that previous copies * of the buffer in the log should not be replayed at recovery time. * This is so that if the blocks covered by the buffer are reused for * file data before we crash we don't end up replaying old, freed * meta-data into a user's file. * * To handle the cancellation of buffer log items, we make two passes * over the log during recovery. During the first we build a table of * those buffers which have been cancelled, and during the second we * only replay those buffers which do not have corresponding cancel * records in the table. See xlog_recover_buffer_pass[1,2] above * for more details on the implementation of the table of cancel records. */ STATIC int xlog_recover_buffer_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t current_lsn) { xfs_buf_log_format_t *buf_f = item->ri_buf[0].i_addr; xfs_mount_t *mp = log->l_mp; xfs_buf_t *bp; int error; uint buf_flags; xfs_lsn_t lsn; /* * In this pass we only want to recover all the buffers which have * not been cancelled and are not cancellation buffers themselves. */ if (xlog_check_buffer_cancelled(log, buf_f->blf_blkno, buf_f->blf_len, buf_f->blf_flags)) { trace_xfs_log_recover_buf_cancel(log, buf_f); return 0; } trace_xfs_log_recover_buf_recover(log, buf_f); buf_flags = 0; if (buf_f->blf_flags & XFS_BLF_INODE_BUF) buf_flags |= XBF_UNMAPPED; bp = xfs_buf_read(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, buf_flags, NULL); if (!bp) return XFS_ERROR(ENOMEM); error = bp->b_error; if (error) { xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#1)"); goto out_release; } /* * recover the buffer only if we get an LSN from it and it's less than * the lsn of the transaction we are replaying. */ lsn = xlog_recover_get_buf_lsn(mp, bp); if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) goto out_release; if (buf_f->blf_flags & XFS_BLF_INODE_BUF) { error = xlog_recover_do_inode_buffer(mp, item, bp, buf_f); } else if (buf_f->blf_flags & (XFS_BLF_UDQUOT_BUF|XFS_BLF_PDQUOT_BUF|XFS_BLF_GDQUOT_BUF)) { xlog_recover_do_dquot_buffer(mp, log, item, bp, buf_f); } else { xlog_recover_do_reg_buffer(mp, item, bp, buf_f); } if (error) goto out_release; /* * Perform delayed write on the buffer. Asynchronous writes will be * slower when taking into account all the buffers to be flushed. * * Also make sure that only inode buffers with good sizes stay in * the buffer cache. The kernel moves inodes in buffers of 1 block * or mp->m_inode_cluster_size bytes, whichever is bigger. The inode * buffers in the log can be a different size if the log was generated * by an older kernel using unclustered inode buffers or a newer kernel * running with a different inode cluster size. Regardless, if the * the inode buffer size isn't MAX(blocksize, mp->m_inode_cluster_size) * for *our* value of mp->m_inode_cluster_size, then we need to keep * the buffer out of the buffer cache so that the buffer won't * overlap with future reads of those inodes. */ if (XFS_DINODE_MAGIC == be16_to_cpu(*((__be16 *)xfs_buf_offset(bp, 0))) && (BBTOB(bp->b_io_length) != MAX(log->l_mp->m_sb.sb_blocksize, (__uint32_t)log->l_mp->m_inode_cluster_size))) { xfs_buf_stale(bp); error = xfs_bwrite(bp); } else { ASSERT(bp->b_target->bt_mount == mp); bp->b_iodone = xlog_recover_iodone; xfs_buf_delwri_queue(bp, buffer_list); } out_release: xfs_buf_relse(bp); return error; } /* * Inode fork owner changes * * If we have been told that we have to reparent the inode fork, it's because an * extent swap operation on a CRC enabled filesystem has been done and we are * replaying it. We need to walk the BMBT of the appropriate fork and change the * owners of it. * * The complexity here is that we don't have an inode context to work with, so * after we've replayed the inode we need to instantiate one. This is where the * fun begins. * * We are in the middle of log recovery, so we can't run transactions. That * means we cannot use cache coherent inode instantiation via xfs_iget(), as * that will result in the corresponding iput() running the inode through * xfs_inactive(). If we've just replayed an inode core that changes the link * count to zero (i.e. it's been unlinked), then xfs_inactive() will run * transactions (bad!). * * So, to avoid this, we instantiate an inode directly from the inode core we've * just recovered. We have the buffer still locked, and all we really need to * instantiate is the inode core and the forks being modified. We can do this * manually, then run the inode btree owner change, and then tear down the * xfs_inode without having to run any transactions at all. * * Also, because we don't have a transaction context available here but need to * gather all the buffers we modify for writeback so we pass the buffer_list * instead for the operation to use. */ STATIC int xfs_recover_inode_owner_change( struct xfs_mount *mp, struct xfs_dinode *dip, struct xfs_inode_log_format *in_f, struct list_head *buffer_list) { struct xfs_inode *ip; int error; ASSERT(in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)); ip = xfs_inode_alloc(mp, in_f->ilf_ino); if (!ip) return ENOMEM; /* instantiate the inode */ xfs_dinode_from_disk(&ip->i_d, dip); ASSERT(ip->i_d.di_version >= 3); error = xfs_iformat_fork(ip, dip); if (error) goto out_free_ip; if (in_f->ilf_fields & XFS_ILOG_DOWNER) { ASSERT(in_f->ilf_fields & XFS_ILOG_DBROOT); error = xfs_bmbt_change_owner(NULL, ip, XFS_DATA_FORK, ip->i_ino, buffer_list); if (error) goto out_free_ip; } if (in_f->ilf_fields & XFS_ILOG_AOWNER) { ASSERT(in_f->ilf_fields & XFS_ILOG_ABROOT); error = xfs_bmbt_change_owner(NULL, ip, XFS_ATTR_FORK, ip->i_ino, buffer_list); if (error) goto out_free_ip; } out_free_ip: xfs_inode_free(ip); return error; } STATIC int xlog_recover_inode_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t current_lsn) { xfs_inode_log_format_t *in_f; xfs_mount_t *mp = log->l_mp; xfs_buf_t *bp; xfs_dinode_t *dip; int len; xfs_caddr_t src; xfs_caddr_t dest; int error; int attr_index; uint fields; xfs_icdinode_t *dicp; uint isize; int need_free = 0; if (item->ri_buf[0].i_len == sizeof(xfs_inode_log_format_t)) { in_f = item->ri_buf[0].i_addr; } else { in_f = kmem_alloc(sizeof(xfs_inode_log_format_t), KM_SLEEP); need_free = 1; error = xfs_inode_item_format_convert(&item->ri_buf[0], in_f); if (error) goto error; } /* * Inode buffers can be freed, look out for it, * and do not replay the inode. */ if (xlog_check_buffer_cancelled(log, in_f->ilf_blkno, in_f->ilf_len, 0)) { error = 0; trace_xfs_log_recover_inode_cancel(log, in_f); goto error; } trace_xfs_log_recover_inode_recover(log, in_f); bp = xfs_buf_read(mp->m_ddev_targp, in_f->ilf_blkno, in_f->ilf_len, 0, &xfs_inode_buf_ops); if (!bp) { error = ENOMEM; goto error; } error = bp->b_error; if (error) { xfs_buf_ioerror_alert(bp, "xlog_recover_do..(read#2)"); goto out_release; } ASSERT(in_f->ilf_fields & XFS_ILOG_CORE); dip = (xfs_dinode_t *)xfs_buf_offset(bp, in_f->ilf_boffset); /* * Make sure the place we're flushing out to really looks * like an inode! */ if (unlikely(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC))) { xfs_alert(mp, "%s: Bad inode magic number, dip = 0x%p, dino bp = 0x%p, ino = %Ld", __func__, dip, bp, in_f->ilf_ino); XFS_ERROR_REPORT("xlog_recover_inode_pass2(1)", XFS_ERRLEVEL_LOW, mp); error = EFSCORRUPTED; goto out_release; } dicp = item->ri_buf[1].i_addr; if (unlikely(dicp->di_magic != XFS_DINODE_MAGIC)) { xfs_alert(mp, "%s: Bad inode log record, rec ptr 0x%p, ino %Ld", __func__, item, in_f->ilf_ino); XFS_ERROR_REPORT("xlog_recover_inode_pass2(2)", XFS_ERRLEVEL_LOW, mp); error = EFSCORRUPTED; goto out_release; } /* * If the inode has an LSN in it, recover the inode only if it's less * than the lsn of the transaction we are replaying. Note: we still * need to replay an owner change even though the inode is more recent * than the transaction as there is no guarantee that all the btree * blocks are more recent than this transaction, too. */ if (dip->di_version >= 3) { xfs_lsn_t lsn = be64_to_cpu(dip->di_lsn); if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { trace_xfs_log_recover_inode_skip(log, in_f); error = 0; goto out_owner_change; } } /* * di_flushiter is only valid for v1/2 inodes. All changes for v3 inodes * are transactional and if ordering is necessary we can determine that * more accurately by the LSN field in the V3 inode core. Don't trust * the inode versions we might be changing them here - use the * superblock flag to determine whether we need to look at di_flushiter * to skip replay when the on disk inode is newer than the log one */ if (!xfs_sb_version_hascrc(&mp->m_sb) && dicp->di_flushiter < be16_to_cpu(dip->di_flushiter)) { /* * Deal with the wrap case, DI_MAX_FLUSH is less * than smaller numbers */ if (be16_to_cpu(dip->di_flushiter) == DI_MAX_FLUSH && dicp->di_flushiter < (DI_MAX_FLUSH >> 1)) { /* do nothing */ } else { trace_xfs_log_recover_inode_skip(log, in_f); error = 0; goto out_release; } } /* Take the opportunity to reset the flush iteration count */ dicp->di_flushiter = 0; if (unlikely(S_ISREG(dicp->di_mode))) { if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && (dicp->di_format != XFS_DINODE_FMT_BTREE)) { XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(3)", XFS_ERRLEVEL_LOW, mp, dicp); xfs_alert(mp, "%s: Bad regular inode log record, rec ptr 0x%p, " "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", __func__, item, dip, bp, in_f->ilf_ino); error = EFSCORRUPTED; goto out_release; } } else if (unlikely(S_ISDIR(dicp->di_mode))) { if ((dicp->di_format != XFS_DINODE_FMT_EXTENTS) && (dicp->di_format != XFS_DINODE_FMT_BTREE) && (dicp->di_format != XFS_DINODE_FMT_LOCAL)) { XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(4)", XFS_ERRLEVEL_LOW, mp, dicp); xfs_alert(mp, "%s: Bad dir inode log record, rec ptr 0x%p, " "ino ptr = 0x%p, ino bp = 0x%p, ino %Ld", __func__, item, dip, bp, in_f->ilf_ino); error = EFSCORRUPTED; goto out_release; } } if (unlikely(dicp->di_nextents + dicp->di_anextents > dicp->di_nblocks)){ XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(5)", XFS_ERRLEVEL_LOW, mp, dicp); xfs_alert(mp, "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " "dino bp 0x%p, ino %Ld, total extents = %d, nblocks = %Ld", __func__, item, dip, bp, in_f->ilf_ino, dicp->di_nextents + dicp->di_anextents, dicp->di_nblocks); error = EFSCORRUPTED; goto out_release; } if (unlikely(dicp->di_forkoff > mp->m_sb.sb_inodesize)) { XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(6)", XFS_ERRLEVEL_LOW, mp, dicp); xfs_alert(mp, "%s: Bad inode log record, rec ptr 0x%p, dino ptr 0x%p, " "dino bp 0x%p, ino %Ld, forkoff 0x%x", __func__, item, dip, bp, in_f->ilf_ino, dicp->di_forkoff); error = EFSCORRUPTED; goto out_release; } isize = xfs_icdinode_size(dicp->di_version); if (unlikely(item->ri_buf[1].i_len > isize)) { XFS_CORRUPTION_ERROR("xlog_recover_inode_pass2(7)", XFS_ERRLEVEL_LOW, mp, dicp); xfs_alert(mp, "%s: Bad inode log record length %d, rec ptr 0x%p", __func__, item->ri_buf[1].i_len, item); error = EFSCORRUPTED; goto out_release; } /* The core is in in-core format */ xfs_dinode_to_disk(dip, dicp); /* the rest is in on-disk format */ if (item->ri_buf[1].i_len > isize) { memcpy((char *)dip + isize, item->ri_buf[1].i_addr + isize, item->ri_buf[1].i_len - isize); } fields = in_f->ilf_fields; switch (fields & (XFS_ILOG_DEV | XFS_ILOG_UUID)) { case XFS_ILOG_DEV: xfs_dinode_put_rdev(dip, in_f->ilf_u.ilfu_rdev); break; case XFS_ILOG_UUID: memcpy(XFS_DFORK_DPTR(dip), &in_f->ilf_u.ilfu_uuid, sizeof(uuid_t)); break; } if (in_f->ilf_size == 2) goto out_owner_change; len = item->ri_buf[2].i_len; src = item->ri_buf[2].i_addr; ASSERT(in_f->ilf_size <= 4); ASSERT((in_f->ilf_size == 3) || (fields & XFS_ILOG_AFORK)); ASSERT(!(fields & XFS_ILOG_DFORK) || (len == in_f->ilf_dsize)); switch (fields & XFS_ILOG_DFORK) { case XFS_ILOG_DDATA: case XFS_ILOG_DEXT: memcpy(XFS_DFORK_DPTR(dip), src, len); break; case XFS_ILOG_DBROOT: xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, (xfs_bmdr_block_t *)XFS_DFORK_DPTR(dip), XFS_DFORK_DSIZE(dip, mp)); break; default: /* * There are no data fork flags set. */ ASSERT((fields & XFS_ILOG_DFORK) == 0); break; } /* * If we logged any attribute data, recover it. There may or * may not have been any other non-core data logged in this * transaction. */ if (in_f->ilf_fields & XFS_ILOG_AFORK) { if (in_f->ilf_fields & XFS_ILOG_DFORK) { attr_index = 3; } else { attr_index = 2; } len = item->ri_buf[attr_index].i_len; src = item->ri_buf[attr_index].i_addr; ASSERT(len == in_f->ilf_asize); switch (in_f->ilf_fields & XFS_ILOG_AFORK) { case XFS_ILOG_ADATA: case XFS_ILOG_AEXT: dest = XFS_DFORK_APTR(dip); ASSERT(len <= XFS_DFORK_ASIZE(dip, mp)); memcpy(dest, src, len); break; case XFS_ILOG_ABROOT: dest = XFS_DFORK_APTR(dip); xfs_bmbt_to_bmdr(mp, (struct xfs_btree_block *)src, len, (xfs_bmdr_block_t*)dest, XFS_DFORK_ASIZE(dip, mp)); break; default: xfs_warn(log->l_mp, "%s: Invalid flag", __func__); ASSERT(0); error = EIO; goto out_release; } } out_owner_change: if (in_f->ilf_fields & (XFS_ILOG_DOWNER|XFS_ILOG_AOWNER)) error = xfs_recover_inode_owner_change(mp, dip, in_f, buffer_list); /* re-generate the checksum. */ xfs_dinode_calc_crc(log->l_mp, dip); ASSERT(bp->b_target->bt_mount == mp); bp->b_iodone = xlog_recover_iodone; xfs_buf_delwri_queue(bp, buffer_list); out_release: xfs_buf_relse(bp); error: if (need_free) kmem_free(in_f); return XFS_ERROR(error); } /* * Recover QUOTAOFF records. We simply make a note of it in the xlog * structure, so that we know not to do any dquot item or dquot buffer recovery, * of that type. */ STATIC int xlog_recover_quotaoff_pass1( struct xlog *log, struct xlog_recover_item *item) { xfs_qoff_logformat_t *qoff_f = item->ri_buf[0].i_addr; ASSERT(qoff_f); /* * The logitem format's flag tells us if this was user quotaoff, * group/project quotaoff or both. */ if (qoff_f->qf_flags & XFS_UQUOTA_ACCT) log->l_quotaoffs_flag |= XFS_DQ_USER; if (qoff_f->qf_flags & XFS_PQUOTA_ACCT) log->l_quotaoffs_flag |= XFS_DQ_PROJ; if (qoff_f->qf_flags & XFS_GQUOTA_ACCT) log->l_quotaoffs_flag |= XFS_DQ_GROUP; return (0); } /* * Recover a dquot record */ STATIC int xlog_recover_dquot_pass2( struct xlog *log, struct list_head *buffer_list, struct xlog_recover_item *item, xfs_lsn_t current_lsn) { xfs_mount_t *mp = log->l_mp; xfs_buf_t *bp; struct xfs_disk_dquot *ddq, *recddq; int error; xfs_dq_logformat_t *dq_f; uint type; /* * Filesystems are required to send in quota flags at mount time. */ if (mp->m_qflags == 0) return (0); recddq = item->ri_buf[1].i_addr; if (recddq == NULL) { xfs_alert(log->l_mp, "NULL dquot in %s.", __func__); return XFS_ERROR(EIO); } if (item->ri_buf[1].i_len < sizeof(xfs_disk_dquot_t)) { xfs_alert(log->l_mp, "dquot too small (%d) in %s.", item->ri_buf[1].i_len, __func__); return XFS_ERROR(EIO); } /* * This type of quotas was turned off, so ignore this record. */ type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); ASSERT(type); if (log->l_quotaoffs_flag & type) return (0); /* * At this point we know that quota was _not_ turned off. * Since the mount flags are not indicating to us otherwise, this * must mean that quota is on, and the dquot needs to be replayed. * Remember that we may not have fully recovered the superblock yet, * so we can't do the usual trick of looking at the SB quota bits. * * The other possibility, of course, is that the quota subsystem was * removed since the last mount - ENOSYS. */ dq_f = item->ri_buf[0].i_addr; ASSERT(dq_f); error = xfs_dqcheck(mp, recddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, "xlog_recover_dquot_pass2 (log copy)"); if (error) return XFS_ERROR(EIO); ASSERT(dq_f->qlf_len == 1); error = xfs_trans_read_buf(mp, NULL, mp->m_ddev_targp, dq_f->qlf_blkno, XFS_FSB_TO_BB(mp, dq_f->qlf_len), 0, &bp, NULL); if (error) return error; ASSERT(bp); ddq = (xfs_disk_dquot_t *)xfs_buf_offset(bp, dq_f->qlf_boffset); /* * At least the magic num portion should be on disk because this * was among a chunk of dquots created earlier, and we did some * minimal initialization then. */ error = xfs_dqcheck(mp, ddq, dq_f->qlf_id, 0, XFS_QMOPT_DOWARN, "xlog_recover_dquot_pass2"); if (error) { xfs_buf_relse(bp); return XFS_ERROR(EIO); } /* * If the dquot has an LSN in it, recover the dquot only if it's less * than the lsn of the transaction we are replaying. */ if (xfs_sb_version_hascrc(&mp->m_sb)) { struct xfs_dqblk *dqb = (struct xfs_dqblk *)ddq; xfs_lsn_t lsn = be64_to_cpu(dqb->dd_lsn); if (lsn && lsn != -1 && XFS_LSN_CMP(lsn, current_lsn) >= 0) { goto out_release; } } memcpy(ddq, recddq, item->ri_buf[1].i_len); if (xfs_sb_version_hascrc(&mp->m_sb)) { xfs_update_cksum((char *)ddq, sizeof(struct xfs_dqblk), XFS_DQUOT_CRC_OFF); } ASSERT(dq_f->qlf_size == 2); ASSERT(bp->b_target->bt_mount == mp); bp->b_iodone = xlog_recover_iodone; xfs_buf_delwri_queue(bp, buffer_list); out_release: xfs_buf_relse(bp); return 0; } /* * This routine is called to create an in-core extent free intent * item from the efi format structure which was logged on disk. * It allocates an in-core efi, copies the extents from the format * structure into it, and adds the efi to the AIL with the given * LSN. */ STATIC int xlog_recover_efi_pass2( struct xlog *log, struct xlog_recover_item *item, xfs_lsn_t lsn) { int error; xfs_mount_t *mp = log->l_mp; xfs_efi_log_item_t *efip; xfs_efi_log_format_t *efi_formatp; efi_formatp = item->ri_buf[0].i_addr; efip = xfs_efi_init(mp, efi_formatp->efi_nextents); if ((error = xfs_efi_copy_format(&(item->ri_buf[0]), &(efip->efi_format)))) { xfs_efi_item_free(efip); return error; } atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents); spin_lock(&log->l_ailp->xa_lock); /* * xfs_trans_ail_update() drops the AIL lock. */ xfs_trans_ail_update(log->l_ailp, &efip->efi_item, lsn); return 0; } /* * This routine is called when an efd format structure is found in * a committed transaction in the log. It's purpose is to cancel * the corresponding efi if it was still in the log. To do this * it searches the AIL for the efi with an id equal to that in the * efd format structure. If we find it, we remove the efi from the * AIL and free it. */ STATIC int xlog_recover_efd_pass2( struct xlog *log, struct xlog_recover_item *item) { xfs_efd_log_format_t *efd_formatp; xfs_efi_log_item_t *efip = NULL; xfs_log_item_t *lip; __uint64_t efi_id; struct xfs_ail_cursor cur; struct xfs_ail *ailp = log->l_ailp; efd_formatp = item->ri_buf[0].i_addr; ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) + ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) || (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) + ((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t))))); efi_id = efd_formatp->efd_efi_id; /* * Search for the efi with the id in the efd format structure * in the AIL. */ spin_lock(&ailp->xa_lock); lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); while (lip != NULL) { if (lip->li_type == XFS_LI_EFI) { efip = (xfs_efi_log_item_t *)lip; if (efip->efi_format.efi_id == efi_id) { /* * xfs_trans_ail_delete() drops the * AIL lock. */ xfs_trans_ail_delete(ailp, lip, SHUTDOWN_CORRUPT_INCORE); xfs_efi_item_free(efip); spin_lock(&ailp->xa_lock); break; } } lip = xfs_trans_ail_cursor_next(ailp, &cur); } xfs_trans_ail_cursor_done(ailp, &cur); spin_unlock(&ailp->xa_lock); return 0; } /* * This routine is called when an inode create format structure is found in a * committed transaction in the log. It's purpose is to initialise the inodes * being allocated on disk. This requires us to get inode cluster buffers that * match the range to be intialised, stamped with inode templates and written * by delayed write so that subsequent modifications will hit the cached buffer * and only need writing out at the end of recovery. */ STATIC int xlog_recover_do_icreate_pass2( struct xlog *log, struct list_head *buffer_list, xlog_recover_item_t *item) { struct xfs_mount *mp = log->l_mp; struct xfs_icreate_log *icl; xfs_agnumber_t agno; xfs_agblock_t agbno; unsigned int count; unsigned int isize; xfs_agblock_t length; icl = (struct xfs_icreate_log *)item->ri_buf[0].i_addr; if (icl->icl_type != XFS_LI_ICREATE) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad type"); return EINVAL; } if (icl->icl_size != 1) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad icl size"); return EINVAL; } agno = be32_to_cpu(icl->icl_ag); if (agno >= mp->m_sb.sb_agcount) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agno"); return EINVAL; } agbno = be32_to_cpu(icl->icl_agbno); if (!agbno || agbno == NULLAGBLOCK || agbno >= mp->m_sb.sb_agblocks) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad agbno"); return EINVAL; } isize = be32_to_cpu(icl->icl_isize); if (isize != mp->m_sb.sb_inodesize) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad isize"); return EINVAL; } count = be32_to_cpu(icl->icl_count); if (!count) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count"); return EINVAL; } length = be32_to_cpu(icl->icl_length); if (!length || length >= mp->m_sb.sb_agblocks) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad length"); return EINVAL; } /* existing allocation is fixed value */ ASSERT(count == mp->m_ialloc_inos); ASSERT(length == mp->m_ialloc_blks); if (count != mp->m_ialloc_inos || length != mp->m_ialloc_blks) { xfs_warn(log->l_mp, "xlog_recover_do_icreate_trans: bad count 2"); return EINVAL; } /* * Inode buffers can be freed. Do not replay the inode initialisation as * we could be overwriting something written after this inode buffer was * cancelled. * * XXX: we need to iterate all buffers and only init those that are not * cancelled. I think that a more fine grained factoring of * xfs_ialloc_inode_init may be appropriate here to enable this to be * done easily. */ if (xlog_check_buffer_cancelled(log, XFS_AGB_TO_DADDR(mp, agno, agbno), length, 0)) return 0; xfs_ialloc_inode_init(mp, NULL, buffer_list, agno, agbno, length, be32_to_cpu(icl->icl_gen)); return 0; } /* * Free up any resources allocated by the transaction * * Remember that EFIs, EFDs, and IUNLINKs are handled later. */ STATIC void xlog_recover_free_trans( struct xlog_recover *trans) { xlog_recover_item_t *item, *n; int i; list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) { /* Free the regions in the item. */ list_del(&item->ri_list); for (i = 0; i < item->ri_cnt; i++) kmem_free(item->ri_buf[i].i_addr); /* Free the item itself */ kmem_free(item->ri_buf); kmem_free(item); } /* Free the transaction recover structure */ kmem_free(trans); } STATIC void xlog_recover_buffer_ra_pass2( struct xlog *log, struct xlog_recover_item *item) { struct xfs_buf_log_format *buf_f = item->ri_buf[0].i_addr; struct xfs_mount *mp = log->l_mp; if (xlog_peek_buffer_cancelled(log, buf_f->blf_blkno, buf_f->blf_len, buf_f->blf_flags)) { return; } xfs_buf_readahead(mp->m_ddev_targp, buf_f->blf_blkno, buf_f->blf_len, NULL); } STATIC void xlog_recover_inode_ra_pass2( struct xlog *log, struct xlog_recover_item *item) { struct xfs_inode_log_format ilf_buf; struct xfs_inode_log_format *ilfp; struct xfs_mount *mp = log->l_mp; int error; if (item->ri_buf[0].i_len == sizeof(struct xfs_inode_log_format)) { ilfp = item->ri_buf[0].i_addr; } else { ilfp = &ilf_buf; memset(ilfp, 0, sizeof(*ilfp)); error = xfs_inode_item_format_convert(&item->ri_buf[0], ilfp); if (error) return; } if (xlog_peek_buffer_cancelled(log, ilfp->ilf_blkno, ilfp->ilf_len, 0)) return; xfs_buf_readahead(mp->m_ddev_targp, ilfp->ilf_blkno, ilfp->ilf_len, &xfs_inode_buf_ra_ops); } STATIC void xlog_recover_dquot_ra_pass2( struct xlog *log, struct xlog_recover_item *item) { struct xfs_mount *mp = log->l_mp; struct xfs_disk_dquot *recddq; struct xfs_dq_logformat *dq_f; uint type; if (mp->m_qflags == 0) return; recddq = item->ri_buf[1].i_addr; if (recddq == NULL) return; if (item->ri_buf[1].i_len < sizeof(struct xfs_disk_dquot)) return; type = recddq->d_flags & (XFS_DQ_USER | XFS_DQ_PROJ | XFS_DQ_GROUP); ASSERT(type); if (log->l_quotaoffs_flag & type) return; dq_f = item->ri_buf[0].i_addr; ASSERT(dq_f); ASSERT(dq_f->qlf_len == 1); xfs_buf_readahead(mp->m_ddev_targp, dq_f->qlf_blkno, XFS_FSB_TO_BB(mp, dq_f->qlf_len), NULL); } STATIC void xlog_recover_ra_pass2( struct xlog *log, struct xlog_recover_item *item) { switch (ITEM_TYPE(item)) { case XFS_LI_BUF: xlog_recover_buffer_ra_pass2(log, item); break; case XFS_LI_INODE: xlog_recover_inode_ra_pass2(log, item); break; case XFS_LI_DQUOT: xlog_recover_dquot_ra_pass2(log, item); break; case XFS_LI_EFI: case XFS_LI_EFD: case XFS_LI_QUOTAOFF: default: break; } } STATIC int xlog_recover_commit_pass1( struct xlog *log, struct xlog_recover *trans, struct xlog_recover_item *item) { trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS1); switch (ITEM_TYPE(item)) { case XFS_LI_BUF: return xlog_recover_buffer_pass1(log, item); case XFS_LI_QUOTAOFF: return xlog_recover_quotaoff_pass1(log, item); case XFS_LI_INODE: case XFS_LI_EFI: case XFS_LI_EFD: case XFS_LI_DQUOT: case XFS_LI_ICREATE: /* nothing to do in pass 1 */ return 0; default: xfs_warn(log->l_mp, "%s: invalid item type (%d)", __func__, ITEM_TYPE(item)); ASSERT(0); return XFS_ERROR(EIO); } } STATIC int xlog_recover_commit_pass2( struct xlog *log, struct xlog_recover *trans, struct list_head *buffer_list, struct xlog_recover_item *item) { trace_xfs_log_recover_item_recover(log, trans, item, XLOG_RECOVER_PASS2); switch (ITEM_TYPE(item)) { case XFS_LI_BUF: return xlog_recover_buffer_pass2(log, buffer_list, item, trans->r_lsn); case XFS_LI_INODE: return xlog_recover_inode_pass2(log, buffer_list, item, trans->r_lsn); case XFS_LI_EFI: return xlog_recover_efi_pass2(log, item, trans->r_lsn); case XFS_LI_EFD: return xlog_recover_efd_pass2(log, item); case XFS_LI_DQUOT: return xlog_recover_dquot_pass2(log, buffer_list, item, trans->r_lsn); case XFS_LI_ICREATE: return xlog_recover_do_icreate_pass2(log, buffer_list, item); case XFS_LI_QUOTAOFF: /* nothing to do in pass2 */ return 0; default: xfs_warn(log->l_mp, "%s: invalid item type (%d)", __func__, ITEM_TYPE(item)); ASSERT(0); return XFS_ERROR(EIO); } } STATIC int xlog_recover_items_pass2( struct xlog *log, struct xlog_recover *trans, struct list_head *buffer_list, struct list_head *item_list) { struct xlog_recover_item *item; int error = 0; list_for_each_entry(item, item_list, ri_list) { error = xlog_recover_commit_pass2(log, trans, buffer_list, item); if (error) return error; } return error; } /* * Perform the transaction. * * If the transaction modifies a buffer or inode, do it now. Otherwise, * EFIs and EFDs get queued up by adding entries into the AIL for them. */ STATIC int xlog_recover_commit_trans( struct xlog *log, struct xlog_recover *trans, int pass) { int error = 0; int error2; int items_queued = 0; struct xlog_recover_item *item; struct xlog_recover_item *next; LIST_HEAD (buffer_list); LIST_HEAD (ra_list); LIST_HEAD (done_list); #define XLOG_RECOVER_COMMIT_QUEUE_MAX 100 hlist_del(&trans->r_list); error = xlog_recover_reorder_trans(log, trans, pass); if (error) return error; list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) { switch (pass) { case XLOG_RECOVER_PASS1: error = xlog_recover_commit_pass1(log, trans, item); break; case XLOG_RECOVER_PASS2: xlog_recover_ra_pass2(log, item); list_move_tail(&item->ri_list, &ra_list); items_queued++; if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) { error = xlog_recover_items_pass2(log, trans, &buffer_list, &ra_list); list_splice_tail_init(&ra_list, &done_list); items_queued = 0; } break; default: ASSERT(0); } if (error) goto out; } out: if (!list_empty(&ra_list)) { if (!error) error = xlog_recover_items_pass2(log, trans, &buffer_list, &ra_list); list_splice_tail_init(&ra_list, &done_list); } if (!list_empty(&done_list)) list_splice_init(&done_list, &trans->r_itemq); xlog_recover_free_trans(trans); error2 = xfs_buf_delwri_submit(&buffer_list); return error ? error : error2; } STATIC int xlog_recover_unmount_trans( struct xlog *log, struct xlog_recover *trans) { /* Do nothing now */ xfs_warn(log->l_mp, "%s: Unmount LR", __func__); return 0; } /* * There are two valid states of the r_state field. 0 indicates that the * transaction structure is in a normal state. We have either seen the * start of the transaction or the last operation we added was not a partial * operation. If the last operation we added to the transaction was a * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS. * * NOTE: skip LRs with 0 data length. */ STATIC int xlog_recover_process_data( struct xlog *log, struct hlist_head rhash[], struct xlog_rec_header *rhead, xfs_caddr_t dp, int pass) { xfs_caddr_t lp; int num_logops; xlog_op_header_t *ohead; xlog_recover_t *trans; xlog_tid_t tid; int error; unsigned long hash; uint flags; lp = dp + be32_to_cpu(rhead->h_len); num_logops = be32_to_cpu(rhead->h_num_logops); /* check the log format matches our own - else we can't recover */ if (xlog_header_check_recover(log->l_mp, rhead)) return (XFS_ERROR(EIO)); while ((dp < lp) && num_logops) { ASSERT(dp + sizeof(xlog_op_header_t) <= lp); ohead = (xlog_op_header_t *)dp; dp += sizeof(xlog_op_header_t); if (ohead->oh_clientid != XFS_TRANSACTION && ohead->oh_clientid != XFS_LOG) { xfs_warn(log->l_mp, "%s: bad clientid 0x%x", __func__, ohead->oh_clientid); ASSERT(0); return (XFS_ERROR(EIO)); } tid = be32_to_cpu(ohead->oh_tid); hash = XLOG_RHASH(tid); trans = xlog_recover_find_tid(&rhash[hash], tid); if (trans == NULL) { /* not found; add new tid */ if (ohead->oh_flags & XLOG_START_TRANS) xlog_recover_new_tid(&rhash[hash], tid, be64_to_cpu(rhead->h_lsn)); } else { if (dp + be32_to_cpu(ohead->oh_len) > lp) { xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, be32_to_cpu(ohead->oh_len)); WARN_ON(1); return (XFS_ERROR(EIO)); } flags = ohead->oh_flags & ~XLOG_END_TRANS; if (flags & XLOG_WAS_CONT_TRANS) flags &= ~XLOG_CONTINUE_TRANS; switch (flags) { case XLOG_COMMIT_TRANS: error = xlog_recover_commit_trans(log, trans, pass); break; case XLOG_UNMOUNT_TRANS: error = xlog_recover_unmount_trans(log, trans); break; case XLOG_WAS_CONT_TRANS: error = xlog_recover_add_to_cont_trans(log, trans, dp, be32_to_cpu(ohead->oh_len)); break; case XLOG_START_TRANS: xfs_warn(log->l_mp, "%s: bad transaction", __func__); ASSERT(0); error = XFS_ERROR(EIO); break; case 0: case XLOG_CONTINUE_TRANS: error = xlog_recover_add_to_trans(log, trans, dp, be32_to_cpu(ohead->oh_len)); break; default: xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags); ASSERT(0); error = XFS_ERROR(EIO); break; } if (error) { xlog_recover_free_trans(trans); return error; } } dp += be32_to_cpu(ohead->oh_len); num_logops--; } return 0; } /* * Process an extent free intent item that was recovered from * the log. We need to free the extents that it describes. */ STATIC int xlog_recover_process_efi( xfs_mount_t *mp, xfs_efi_log_item_t *efip) { xfs_efd_log_item_t *efdp; xfs_trans_t *tp; int i; int error = 0; xfs_extent_t *extp; xfs_fsblock_t startblock_fsb; ASSERT(!test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)); /* * First check the validity of the extents described by the * EFI. If any are bad, then assume that all are bad and * just toss the EFI. */ for (i = 0; i < efip->efi_format.efi_nextents; i++) { extp = &(efip->efi_format.efi_extents[i]); startblock_fsb = XFS_BB_TO_FSB(mp, XFS_FSB_TO_DADDR(mp, extp->ext_start)); if ((startblock_fsb == 0) || (extp->ext_len == 0) || (startblock_fsb >= mp->m_sb.sb_dblocks) || (extp->ext_len >= mp->m_sb.sb_agblocks)) { /* * This will pull the EFI from the AIL and * free the memory associated with it. */ set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); xfs_efi_release(efip, efip->efi_format.efi_nextents); return XFS_ERROR(EIO); } } tp = xfs_trans_alloc(mp, 0); error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0); if (error) goto abort_error; efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents); for (i = 0; i < efip->efi_format.efi_nextents; i++) { extp = &(efip->efi_format.efi_extents[i]); error = xfs_free_extent(tp, extp->ext_start, extp->ext_len); if (error) goto abort_error; xfs_trans_log_efd_extent(tp, efdp, extp->ext_start, extp->ext_len); } set_bit(XFS_EFI_RECOVERED, &efip->efi_flags); error = xfs_trans_commit(tp, 0); return error; abort_error: xfs_trans_cancel(tp, XFS_TRANS_ABORT); return error; } /* * When this is called, all of the EFIs which did not have * corresponding EFDs should be in the AIL. What we do now * is free the extents associated with each one. * * Since we process the EFIs in normal transactions, they * will be removed at some point after the commit. This prevents * us from just walking down the list processing each one. * We'll use a flag in the EFI to skip those that we've already * processed and use the AIL iteration mechanism's generation * count to try to speed this up at least a bit. * * When we start, we know that the EFIs are the only things in * the AIL. As we process them, however, other items are added * to the AIL. Since everything added to the AIL must come after * everything already in the AIL, we stop processing as soon as * we see something other than an EFI in the AIL. */ STATIC int xlog_recover_process_efis( struct xlog *log) { xfs_log_item_t *lip; xfs_efi_log_item_t *efip; int error = 0; struct xfs_ail_cursor cur; struct xfs_ail *ailp; ailp = log->l_ailp; spin_lock(&ailp->xa_lock); lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); while (lip != NULL) { /* * We're done when we see something other than an EFI. * There should be no EFIs left in the AIL now. */ if (lip->li_type != XFS_LI_EFI) { #ifdef DEBUG for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur)) ASSERT(lip->li_type != XFS_LI_EFI); #endif break; } /* * Skip EFIs that we've already processed. */ efip = (xfs_efi_log_item_t *)lip; if (test_bit(XFS_EFI_RECOVERED, &efip->efi_flags)) { lip = xfs_trans_ail_cursor_next(ailp, &cur); continue; } spin_unlock(&ailp->xa_lock); error = xlog_recover_process_efi(log->l_mp, efip); spin_lock(&ailp->xa_lock); if (error) goto out; lip = xfs_trans_ail_cursor_next(ailp, &cur); } out: xfs_trans_ail_cursor_done(ailp, &cur); spin_unlock(&ailp->xa_lock); return error; } /* * This routine performs a transaction to null out a bad inode pointer * in an agi unlinked inode hash bucket. */ STATIC void xlog_recover_clear_agi_bucket( xfs_mount_t *mp, xfs_agnumber_t agno, int bucket) { xfs_trans_t *tp; xfs_agi_t *agi; xfs_buf_t *agibp; int offset; int error; tp = xfs_trans_alloc(mp, XFS_TRANS_CLEAR_AGI_BUCKET); error = xfs_trans_reserve(tp, &M_RES(mp)->tr_clearagi, 0, 0); if (error) goto out_abort; error = xfs_read_agi(mp, tp, agno, &agibp); if (error) goto out_abort; agi = XFS_BUF_TO_AGI(agibp); agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO); offset = offsetof(xfs_agi_t, agi_unlinked) + (sizeof(xfs_agino_t) * bucket); xfs_trans_log_buf(tp, agibp, offset, (offset + sizeof(xfs_agino_t) - 1)); error = xfs_trans_commit(tp, 0); if (error) goto out_error; return; out_abort: xfs_trans_cancel(tp, XFS_TRANS_ABORT); out_error: xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno); return; } STATIC xfs_agino_t xlog_recover_process_one_iunlink( struct xfs_mount *mp, xfs_agnumber_t agno, xfs_agino_t agino, int bucket) { struct xfs_buf *ibp; struct xfs_dinode *dip; struct xfs_inode *ip; xfs_ino_t ino; int error; ino = XFS_AGINO_TO_INO(mp, agno, agino); error = xfs_iget(mp, NULL, ino, 0, 0, &ip); if (error) goto fail; /* * Get the on disk inode to find the next inode in the bucket. */ error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0, 0); if (error) goto fail_iput; ASSERT(ip->i_d.di_nlink == 0); ASSERT(ip->i_d.di_mode != 0); /* setup for the next pass */ agino = be32_to_cpu(dip->di_next_unlinked); xfs_buf_relse(ibp); /* * Prevent any DMAPI event from being sent when the reference on * the inode is dropped. */ ip->i_d.di_dmevmask = 0; IRELE(ip); return agino; fail_iput: IRELE(ip); fail: /* * We can't read in the inode this bucket points to, or this inode * is messed up. Just ditch this bucket of inodes. We will lose * some inodes and space, but at least we won't hang. * * Call xlog_recover_clear_agi_bucket() to perform a transaction to * clear the inode pointer in the bucket. */ xlog_recover_clear_agi_bucket(mp, agno, bucket); return NULLAGINO; } /* * xlog_iunlink_recover * * This is called during recovery to process any inodes which * we unlinked but not freed when the system crashed. These * inodes will be on the lists in the AGI blocks. What we do * here is scan all the AGIs and fully truncate and free any * inodes found on the lists. Each inode is removed from the * lists when it has been fully truncated and is freed. The * freeing of the inode and its removal from the list must be * atomic. */ STATIC void xlog_recover_process_iunlinks( struct xlog *log) { xfs_mount_t *mp; xfs_agnumber_t agno; xfs_agi_t *agi; xfs_buf_t *agibp; xfs_agino_t agino; int bucket; int error; uint mp_dmevmask; mp = log->l_mp; /* * Prevent any DMAPI event from being sent while in this function. */ mp_dmevmask = mp->m_dmevmask; mp->m_dmevmask = 0; for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { /* * Find the agi for this ag. */ error = xfs_read_agi(mp, NULL, agno, &agibp); if (error) { /* * AGI is b0rked. Don't process it. * * We should probably mark the filesystem as corrupt * after we've recovered all the ag's we can.... */ continue; } /* * Unlock the buffer so that it can be acquired in the normal * course of the transaction to truncate and free each inode. * Because we are not racing with anyone else here for the AGI * buffer, we don't even need to hold it locked to read the * initial unlinked bucket entries out of the buffer. We keep * buffer reference though, so that it stays pinned in memory * while we need the buffer. */ agi = XFS_BUF_TO_AGI(agibp); xfs_buf_unlock(agibp); for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) { agino = be32_to_cpu(agi->agi_unlinked[bucket]); while (agino != NULLAGINO) { agino = xlog_recover_process_one_iunlink(mp, agno, agino, bucket); } } xfs_buf_rele(agibp); } mp->m_dmevmask = mp_dmevmask; } /* * Upack the log buffer data and crc check it. If the check fails, issue a * warning if and only if the CRC in the header is non-zero. This makes the * check an advisory warning, and the zero CRC check will prevent failure * warnings from being emitted when upgrading the kernel from one that does not * add CRCs by default. * * When filesystems are CRC enabled, this CRC mismatch becomes a fatal log * corruption failure */ STATIC int xlog_unpack_data_crc( struct xlog_rec_header *rhead, xfs_caddr_t dp, struct xlog *log) { __le32 crc; crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len)); if (crc != rhead->h_crc) { if (rhead->h_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) { xfs_alert(log->l_mp, "log record CRC mismatch: found 0x%x, expected 0x%x.", le32_to_cpu(rhead->h_crc), le32_to_cpu(crc)); xfs_hex_dump(dp, 32); } /* * If we've detected a log record corruption, then we can't * recover past this point. Abort recovery if we are enforcing * CRC protection by punting an error back up the stack. */ if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) return EFSCORRUPTED; } return 0; } STATIC int xlog_unpack_data( struct xlog_rec_header *rhead, xfs_caddr_t dp, struct xlog *log) { int i, j, k; int error; error = xlog_unpack_data_crc(rhead, dp, log); if (error) return error; for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) && i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) { *(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i]; dp += BBSIZE; } if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead; for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) { j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); *(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k]; dp += BBSIZE; } } return 0; } STATIC int xlog_valid_rec_header( struct xlog *log, struct xlog_rec_header *rhead, xfs_daddr_t blkno) { int hlen; if (unlikely(rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))) { XFS_ERROR_REPORT("xlog_valid_rec_header(1)", XFS_ERRLEVEL_LOW, log->l_mp); return XFS_ERROR(EFSCORRUPTED); } if (unlikely( (!rhead->h_version || (be32_to_cpu(rhead->h_version) & (~XLOG_VERSION_OKBITS))))) { xfs_warn(log->l_mp, "%s: unrecognised log version (%d).", __func__, be32_to_cpu(rhead->h_version)); return XFS_ERROR(EIO); } /* LR body must have data or it wouldn't have been written */ hlen = be32_to_cpu(rhead->h_len); if (unlikely( hlen <= 0 || hlen > INT_MAX )) { XFS_ERROR_REPORT("xlog_valid_rec_header(2)", XFS_ERRLEVEL_LOW, log->l_mp); return XFS_ERROR(EFSCORRUPTED); } if (unlikely( blkno > log->l_logBBsize || blkno > INT_MAX )) { XFS_ERROR_REPORT("xlog_valid_rec_header(3)", XFS_ERRLEVEL_LOW, log->l_mp); return XFS_ERROR(EFSCORRUPTED); } return 0; } /* * Read the log from tail to head and process the log records found. * Handle the two cases where the tail and head are in the same cycle * and where the active portion of the log wraps around the end of * the physical log separately. The pass parameter is passed through * to the routines called to process the data and is not looked at * here. */ STATIC int xlog_do_recovery_pass( struct xlog *log, xfs_daddr_t head_blk, xfs_daddr_t tail_blk, int pass) { xlog_rec_header_t *rhead; xfs_daddr_t blk_no; xfs_caddr_t offset; xfs_buf_t *hbp, *dbp; int error = 0, h_size; int bblks, split_bblks; int hblks, split_hblks, wrapped_hblks; struct hlist_head rhash[XLOG_RHASH_SIZE]; ASSERT(head_blk != tail_blk); /* * Read the header of the tail block and get the iclog buffer size from * h_size. Use this to tell how many sectors make up the log header. */ if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { /* * When using variable length iclogs, read first sector of * iclog header and extract the header size from it. Get a * new hbp that is the correct size. */ hbp = xlog_get_bp(log, 1); if (!hbp) return ENOMEM; error = xlog_bread(log, tail_blk, 1, hbp, &offset); if (error) goto bread_err1; rhead = (xlog_rec_header_t *)offset; error = xlog_valid_rec_header(log, rhead, tail_blk); if (error) goto bread_err1; h_size = be32_to_cpu(rhead->h_size); if ((be32_to_cpu(rhead->h_version) & XLOG_VERSION_2) && (h_size > XLOG_HEADER_CYCLE_SIZE)) { hblks = h_size / XLOG_HEADER_CYCLE_SIZE; if (h_size % XLOG_HEADER_CYCLE_SIZE) hblks++; xlog_put_bp(hbp); hbp = xlog_get_bp(log, hblks); } else { hblks = 1; } } else { ASSERT(log->l_sectBBsize == 1); hblks = 1; hbp = xlog_get_bp(log, 1); h_size = XLOG_BIG_RECORD_BSIZE; } if (!hbp) return ENOMEM; dbp = xlog_get_bp(log, BTOBB(h_size)); if (!dbp) { xlog_put_bp(hbp); return ENOMEM; } memset(rhash, 0, sizeof(rhash)); if (tail_blk <= head_blk) { for (blk_no = tail_blk; blk_no < head_blk; ) { error = xlog_bread(log, blk_no, hblks, hbp, &offset); if (error) goto bread_err2; rhead = (xlog_rec_header_t *)offset; error = xlog_valid_rec_header(log, rhead, blk_no); if (error) goto bread_err2; /* blocks in data section */ bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); error = xlog_bread(log, blk_no + hblks, bblks, dbp, &offset); if (error) goto bread_err2; error = xlog_unpack_data(rhead, offset, log); if (error) goto bread_err2; error = xlog_recover_process_data(log, rhash, rhead, offset, pass); if (error) goto bread_err2; blk_no += bblks + hblks; } } else { /* * Perform recovery around the end of the physical log. * When the head is not on the same cycle number as the tail, * we can't do a sequential recovery as above. */ blk_no = tail_blk; while (blk_no < log->l_logBBsize) { /* * Check for header wrapping around physical end-of-log */ offset = hbp->b_addr; split_hblks = 0; wrapped_hblks = 0; if (blk_no + hblks <= log->l_logBBsize) { /* Read header in one read */ error = xlog_bread(log, blk_no, hblks, hbp, &offset); if (error) goto bread_err2; } else { /* This LR is split across physical log end */ if (blk_no != log->l_logBBsize) { /* some data before physical log end */ ASSERT(blk_no <= INT_MAX); split_hblks = log->l_logBBsize - (int)blk_no; ASSERT(split_hblks > 0); error = xlog_bread(log, blk_no, split_hblks, hbp, &offset); if (error) goto bread_err2; } /* * Note: this black magic still works with * large sector sizes (non-512) only because: * - we increased the buffer size originally * by 1 sector giving us enough extra space * for the second read; * - the log start is guaranteed to be sector * aligned; * - we read the log end (LR header start) * _first_, then the log start (LR header end) * - order is important. */ wrapped_hblks = hblks - split_hblks; error = xlog_bread_offset(log, 0, wrapped_hblks, hbp, offset + BBTOB(split_hblks)); if (error) goto bread_err2; } rhead = (xlog_rec_header_t *)offset; error = xlog_valid_rec_header(log, rhead, split_hblks ? blk_no : 0); if (error) goto bread_err2; bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); blk_no += hblks; /* Read in data for log record */ if (blk_no + bblks <= log->l_logBBsize) { error = xlog_bread(log, blk_no, bblks, dbp, &offset); if (error) goto bread_err2; } else { /* This log record is split across the * physical end of log */ offset = dbp->b_addr; split_bblks = 0; if (blk_no != log->l_logBBsize) { /* some data is before the physical * end of log */ ASSERT(!wrapped_hblks); ASSERT(blk_no <= INT_MAX); split_bblks = log->l_logBBsize - (int)blk_no; ASSERT(split_bblks > 0); error = xlog_bread(log, blk_no, split_bblks, dbp, &offset); if (error) goto bread_err2; } /* * Note: this black magic still works with * large sector sizes (non-512) only because: * - we increased the buffer size originally * by 1 sector giving us enough extra space * for the second read; * - the log start is guaranteed to be sector * aligned; * - we read the log end (LR header start) * _first_, then the log start (LR header end) * - order is important. */ error = xlog_bread_offset(log, 0, bblks - split_bblks, dbp, offset + BBTOB(split_bblks)); if (error) goto bread_err2; } error = xlog_unpack_data(rhead, offset, log); if (error) goto bread_err2; error = xlog_recover_process_data(log, rhash, rhead, offset, pass); if (error) goto bread_err2; blk_no += bblks; } ASSERT(blk_no >= log->l_logBBsize); blk_no -= log->l_logBBsize; /* read first part of physical log */ while (blk_no < head_blk) { error = xlog_bread(log, blk_no, hblks, hbp, &offset); if (error) goto bread_err2; rhead = (xlog_rec_header_t *)offset; error = xlog_valid_rec_header(log, rhead, blk_no); if (error) goto bread_err2; bblks = (int)BTOBB(be32_to_cpu(rhead->h_len)); error = xlog_bread(log, blk_no+hblks, bblks, dbp, &offset); if (error) goto bread_err2; error = xlog_unpack_data(rhead, offset, log); if (error) goto bread_err2; error = xlog_recover_process_data(log, rhash, rhead, offset, pass); if (error) goto bread_err2; blk_no += bblks + hblks; } } bread_err2: xlog_put_bp(dbp); bread_err1: xlog_put_bp(hbp); return error; } /* * Do the recovery of the log. We actually do this in two phases. * The two passes are necessary in order to implement the function * of cancelling a record written into the log. The first pass * determines those things which have been cancelled, and the * second pass replays log items normally except for those which * have been cancelled. The handling of the replay and cancellations * takes place in the log item type specific routines. * * The table of items which have cancel records in the log is allocated * and freed at this level, since only here do we know when all of * the log recovery has been completed. */ STATIC int xlog_do_log_recovery( struct xlog *log, xfs_daddr_t head_blk, xfs_daddr_t tail_blk) { int error, i; ASSERT(head_blk != tail_blk); /* * First do a pass to find all of the cancelled buf log items. * Store them in the buf_cancel_table for use in the second pass. */ log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE * sizeof(struct list_head), KM_SLEEP); for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) INIT_LIST_HEAD(&log->l_buf_cancel_table[i]); error = xlog_do_recovery_pass(log, head_blk, tail_blk, XLOG_RECOVER_PASS1); if (error != 0) { kmem_free(log->l_buf_cancel_table); log->l_buf_cancel_table = NULL; return error; } /* * Then do a second pass to actually recover the items in the log. * When it is complete free the table of buf cancel items. */ error = xlog_do_recovery_pass(log, head_blk, tail_blk, XLOG_RECOVER_PASS2); #ifdef DEBUG if (!error) { int i; for (i = 0; i < XLOG_BC_TABLE_SIZE; i++) ASSERT(list_empty(&log->l_buf_cancel_table[i])); } #endif /* DEBUG */ kmem_free(log->l_buf_cancel_table); log->l_buf_cancel_table = NULL; return error; } /* * Do the actual recovery */ STATIC int xlog_do_recover( struct xlog *log, xfs_daddr_t head_blk, xfs_daddr_t tail_blk) { int error; xfs_buf_t *bp; xfs_sb_t *sbp; /* * First replay the images in the log. */ error = xlog_do_log_recovery(log, head_blk, tail_blk); if (error) return error; /* * If IO errors happened during recovery, bail out. */ if (XFS_FORCED_SHUTDOWN(log->l_mp)) { return (EIO); } /* * We now update the tail_lsn since much of the recovery has completed * and there may be space available to use. If there were no extent * or iunlinks, we can free up the entire log and set the tail_lsn to * be the last_sync_lsn. This was set in xlog_find_tail to be the * lsn of the last known good LR on disk. If there are extent frees * or iunlinks they will have some entries in the AIL; so we look at * the AIL to determine how to set the tail_lsn. */ xlog_assign_tail_lsn(log->l_mp); /* * Now that we've finished replaying all buffer and inode * updates, re-read in the superblock and reverify it. */ bp = xfs_getsb(log->l_mp, 0); XFS_BUF_UNDONE(bp); ASSERT(!(XFS_BUF_ISWRITE(bp))); XFS_BUF_READ(bp); XFS_BUF_UNASYNC(bp); bp->b_ops = &xfs_sb_buf_ops; if (XFS_FORCED_SHUTDOWN(log->l_mp)) { xfs_buf_relse(bp); return XFS_ERROR(EIO); } xfs_buf_iorequest(bp); error = xfs_buf_iowait(bp); if (error) { xfs_buf_ioerror_alert(bp, __func__); ASSERT(0); xfs_buf_relse(bp); return error; } /* Convert superblock from on-disk format */ sbp = &log->l_mp->m_sb; xfs_sb_from_disk(sbp, XFS_BUF_TO_SBP(bp)); ASSERT(sbp->sb_magicnum == XFS_SB_MAGIC); ASSERT(xfs_sb_good_version(sbp)); xfs_buf_relse(bp); /* We've re-read the superblock so re-initialize per-cpu counters */ xfs_icsb_reinit_counters(log->l_mp); xlog_recover_check_summary(log); /* Normal transactions can now occur */ log->l_flags &= ~XLOG_ACTIVE_RECOVERY; return 0; } /* * Perform recovery and re-initialize some log variables in xlog_find_tail. * * Return error or zero. */ int xlog_recover( struct xlog *log) { xfs_daddr_t head_blk, tail_blk; int error; /* find the tail of the log */ if ((error = xlog_find_tail(log, &head_blk, &tail_blk))) return error; if (tail_blk != head_blk) { /* There used to be a comment here: * * disallow recovery on read-only mounts. note -- mount * checks for ENOSPC and turns it into an intelligent * error message. * ...but this is no longer true. Now, unless you specify * NORECOVERY (in which case this function would never be * called), we just go ahead and recover. We do this all * under the vfs layer, so we can get away with it unless * the device itself is read-only, in which case we fail. */ if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) { return error; } /* * Version 5 superblock log feature mask validation. We know the * log is dirty so check if there are any unknown log features * in what we need to recover. If there are unknown features * (e.g. unsupported transactions, then simply reject the * attempt at recovery before touching anything. */ if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 && xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb, XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) { xfs_warn(log->l_mp, "Superblock has unknown incompatible log features (0x%x) enabled.\n" "The log can not be fully and/or safely recovered by this kernel.\n" "Please recover the log on a kernel that supports the unknown features.", (log->l_mp->m_sb.sb_features_log_incompat & XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)); return EINVAL; } xfs_notice(log->l_mp, "Starting recovery (logdev: %s)", log->l_mp->m_logname ? log->l_mp->m_logname : "internal"); error = xlog_do_recover(log, head_blk, tail_blk); log->l_flags |= XLOG_RECOVERY_NEEDED; } return error; } /* * In the first part of recovery we replay inodes and buffers and build * up the list of extent free items which need to be processed. Here * we process the extent free items and clean up the on disk unlinked * inode lists. This is separated from the first part of recovery so * that the root and real-time bitmap inodes can be read in from disk in * between the two stages. This is necessary so that we can free space * in the real-time portion of the file system. */ int xlog_recover_finish( struct xlog *log) { /* * Now we're ready to do the transactions needed for the * rest of recovery. Start with completing all the extent * free intent records and then process the unlinked inode * lists. At this point, we essentially run in normal mode * except that we're still performing recovery actions * rather than accepting new requests. */ if (log->l_flags & XLOG_RECOVERY_NEEDED) { int error; error = xlog_recover_process_efis(log); if (error) { xfs_alert(log->l_mp, "Failed to recover EFIs"); return error; } /* * Sync the log to get all the EFIs out of the AIL. * This isn't absolutely necessary, but it helps in * case the unlink transactions would have problems * pushing the EFIs out of the way. */ xfs_log_force(log->l_mp, XFS_LOG_SYNC); xlog_recover_process_iunlinks(log); xlog_recover_check_summary(log); xfs_notice(log->l_mp, "Ending recovery (logdev: %s)", log->l_mp->m_logname ? log->l_mp->m_logname : "internal"); log->l_flags &= ~XLOG_RECOVERY_NEEDED; } else { xfs_info(log->l_mp, "Ending clean mount"); } return 0; } #if defined(DEBUG) /* * Read all of the agf and agi counters and check that they * are consistent with the superblock counters. */ void xlog_recover_check_summary( struct xlog *log) { xfs_mount_t *mp; xfs_agf_t *agfp; xfs_buf_t *agfbp; xfs_buf_t *agibp; xfs_agnumber_t agno; __uint64_t freeblks; __uint64_t itotal; __uint64_t ifree; int error; mp = log->l_mp; freeblks = 0LL; itotal = 0LL; ifree = 0LL; for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { error = xfs_read_agf(mp, NULL, agno, 0, &agfbp); if (error) { xfs_alert(mp, "%s agf read failed agno %d error %d", __func__, agno, error); } else { agfp = XFS_BUF_TO_AGF(agfbp); freeblks += be32_to_cpu(agfp->agf_freeblks) + be32_to_cpu(agfp->agf_flcount); xfs_buf_relse(agfbp); } error = xfs_read_agi(mp, NULL, agno, &agibp); if (error) { xfs_alert(mp, "%s agi read failed agno %d error %d", __func__, agno, error); } else { struct xfs_agi *agi = XFS_BUF_TO_AGI(agibp); itotal += be32_to_cpu(agi->agi_count); ifree += be32_to_cpu(agi->agi_freecount); xfs_buf_relse(agibp); } } } #endif /* DEBUG */ |