Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 | # # General architecture dependent options # config OPROFILE tristate "OProfile system profiling" depends on PROFILING depends on HAVE_OPROFILE select RING_BUFFER select RING_BUFFER_ALLOW_SWAP help OProfile is a profiling system capable of profiling the whole system, include the kernel, kernel modules, libraries, and applications. If unsure, say N. config OPROFILE_EVENT_MULTIPLEX bool "OProfile multiplexing support (EXPERIMENTAL)" default n depends on OPROFILE && X86 help The number of hardware counters is limited. The multiplexing feature enables OProfile to gather more events than counters are provided by the hardware. This is realized by switching between events at an user specified time interval. If unsure, say N. config HAVE_OPROFILE bool config OPROFILE_NMI_TIMER def_bool y depends on PERF_EVENTS && HAVE_PERF_EVENTS_NMI config KPROBES bool "Kprobes" depends on MODULES depends on HAVE_KPROBES select KALLSYMS help Kprobes allows you to trap at almost any kernel address and execute a callback function. register_kprobe() establishes a probepoint and specifies the callback. Kprobes is useful for kernel debugging, non-intrusive instrumentation and testing. If in doubt, say "N". config JUMP_LABEL bool "Optimize very unlikely/likely branches" depends on HAVE_ARCH_JUMP_LABEL help This option enables a transparent branch optimization that makes certain almost-always-true or almost-always-false branch conditions even cheaper to execute within the kernel. Certain performance-sensitive kernel code, such as trace points, scheduler functionality, networking code and KVM have such branches and include support for this optimization technique. If it is detected that the compiler has support for "asm goto", the kernel will compile such branches with just a nop instruction. When the condition flag is toggled to true, the nop will be converted to a jump instruction to execute the conditional block of instructions. This technique lowers overhead and stress on the branch prediction of the processor and generally makes the kernel faster. The update of the condition is slower, but those are always very rare. ( On 32-bit x86, the necessary options added to the compiler flags may increase the size of the kernel slightly. ) config OPTPROBES def_bool y depends on KPROBES && HAVE_OPTPROBES depends on !PREEMPT config KPROBES_ON_FTRACE def_bool y depends on KPROBES && HAVE_KPROBES_ON_FTRACE depends on DYNAMIC_FTRACE_WITH_REGS help If function tracer is enabled and the arch supports full passing of pt_regs to function tracing, then kprobes can optimize on top of function tracing. config UPROBES bool "Transparent user-space probes (EXPERIMENTAL)" depends on UPROBE_EVENT && PERF_EVENTS default n select PERCPU_RWSEM help Uprobes is the user-space counterpart to kprobes: they enable instrumentation applications (such as 'perf probe') to establish unintrusive probes in user-space binaries and libraries, by executing handler functions when the probes are hit by user-space applications. ( These probes come in the form of single-byte breakpoints, managed by the kernel and kept transparent to the probed application. ) If in doubt, say "N". config HAVE_64BIT_ALIGNED_ACCESS def_bool 64BIT && !HAVE_EFFICIENT_UNALIGNED_ACCESS help Some architectures require 64 bit accesses to be 64 bit aligned, which also requires structs containing 64 bit values to be 64 bit aligned too. This includes some 32 bit architectures which can do 64 bit accesses, as well as 64 bit architectures without unaligned access. This symbol should be selected by an architecture if 64 bit accesses are required to be 64 bit aligned in this way even though it is not a 64 bit architecture. See Documentation/unaligned-memory-access.txt for more information on the topic of unaligned memory accesses. config HAVE_EFFICIENT_UNALIGNED_ACCESS bool help Some architectures are unable to perform unaligned accesses without the use of get_unaligned/put_unaligned. Others are unable to perform such accesses efficiently (e.g. trap on unaligned access and require fixing it up in the exception handler.) This symbol should be selected by an architecture if it can perform unaligned accesses efficiently to allow different code paths to be selected for these cases. Some network drivers, for example, could opt to not fix up alignment problems with received packets if doing so would not help much. See Documentation/unaligned-memory-access.txt for more information on the topic of unaligned memory accesses. config ARCH_USE_BUILTIN_BSWAP bool help Modern versions of GCC (since 4.4) have builtin functions for handling byte-swapping. Using these, instead of the old inline assembler that the architecture code provides in the __arch_bswapXX() macros, allows the compiler to see what's happening and offers more opportunity for optimisation. In particular, the compiler will be able to combine the byteswap with a nearby load or store and use load-and-swap or store-and-swap instructions if the architecture has them. It should almost *never* result in code which is worse than the hand-coded assembler in <asm/swab.h>. But just in case it does, the use of the builtins is optional. Any architecture with load-and-swap or store-and-swap instructions should set this. And it shouldn't hurt to set it on architectures that don't have such instructions. config KRETPROBES def_bool y depends on KPROBES && HAVE_KRETPROBES config USER_RETURN_NOTIFIER bool depends on HAVE_USER_RETURN_NOTIFIER help Provide a kernel-internal notification when a cpu is about to switch to user mode. config HAVE_IOREMAP_PROT bool config HAVE_KPROBES bool config HAVE_KRETPROBES bool config HAVE_OPTPROBES bool config HAVE_KPROBES_ON_FTRACE bool config HAVE_NMI_WATCHDOG bool # # An arch should select this if it provides all these things: # # task_pt_regs() in asm/processor.h or asm/ptrace.h # arch_has_single_step() if there is hardware single-step support # arch_has_block_step() if there is hardware block-step support # asm/syscall.h supplying asm-generic/syscall.h interface # linux/regset.h user_regset interfaces # CORE_DUMP_USE_REGSET #define'd in linux/elf.h # TIF_SYSCALL_TRACE calls tracehook_report_syscall_{entry,exit} # TIF_NOTIFY_RESUME calls tracehook_notify_resume() # signal delivery calls tracehook_signal_handler() # config HAVE_ARCH_TRACEHOOK bool config HAVE_DMA_ATTRS bool config HAVE_DMA_CONTIGUOUS bool config USE_GENERIC_SMP_HELPERS bool config GENERIC_SMP_IDLE_THREAD bool config GENERIC_IDLE_POLL_SETUP bool # Select if arch init_task initializer is different to init/init_task.c config ARCH_INIT_TASK bool # Select if arch has its private alloc_task_struct() function config ARCH_TASK_STRUCT_ALLOCATOR bool # Select if arch has its private alloc_thread_info() function config ARCH_THREAD_INFO_ALLOCATOR bool config HAVE_REGS_AND_STACK_ACCESS_API bool help This symbol should be selected by an architecure if it supports the API needed to access registers and stack entries from pt_regs, declared in asm/ptrace.h For example the kprobes-based event tracer needs this API. config HAVE_CLK bool help The <linux/clk.h> calls support software clock gating and thus are a key power management tool on many systems. config HAVE_DMA_API_DEBUG bool config HAVE_HW_BREAKPOINT bool depends on PERF_EVENTS config HAVE_MIXED_BREAKPOINTS_REGS bool depends on HAVE_HW_BREAKPOINT help Depending on the arch implementation of hardware breakpoints, some of them have separate registers for data and instruction breakpoints addresses, others have mixed registers to store them but define the access type in a control register. Select this option if your arch implements breakpoints under the latter fashion. config HAVE_USER_RETURN_NOTIFIER bool config HAVE_PERF_EVENTS_NMI bool help System hardware can generate an NMI using the perf event subsystem. Also has support for calculating CPU cycle events to determine how many clock cycles in a given period. config HAVE_PERF_REGS bool help Support selective register dumps for perf events. This includes bit-mapping of each registers and a unique architecture id. config HAVE_PERF_USER_STACK_DUMP bool help Support user stack dumps for perf event samples. This needs access to the user stack pointer which is not unified across architectures. config HAVE_ARCH_JUMP_LABEL bool config HAVE_RCU_TABLE_FREE bool config ARCH_HAVE_NMI_SAFE_CMPXCHG bool config HAVE_ALIGNED_STRUCT_PAGE bool help This makes sure that struct pages are double word aligned and that e.g. the SLUB allocator can perform double word atomic operations on a struct page for better performance. However selecting this might increase the size of a struct page by a word. config HAVE_CMPXCHG_LOCAL bool config HAVE_CMPXCHG_DOUBLE bool config ARCH_WANT_IPC_PARSE_VERSION bool config ARCH_WANT_COMPAT_IPC_PARSE_VERSION bool config ARCH_WANT_OLD_COMPAT_IPC select ARCH_WANT_COMPAT_IPC_PARSE_VERSION bool config HAVE_ARCH_SECCOMP_FILTER bool help An arch should select this symbol if it provides all of these things: - syscall_get_arch() - syscall_get_arguments() - syscall_rollback() - syscall_set_return_value() - SIGSYS siginfo_t support - secure_computing is called from a ptrace_event()-safe context - secure_computing return value is checked and a return value of -1 results in the system call being skipped immediately. config SECCOMP_FILTER def_bool y depends on HAVE_ARCH_SECCOMP_FILTER && SECCOMP && NET help Enable tasks to build secure computing environments defined in terms of Berkeley Packet Filter programs which implement task-defined system call filtering polices. See Documentation/prctl/seccomp_filter.txt for details. config HAVE_CONTEXT_TRACKING bool help Provide kernel/user boundaries probes necessary for subsystems that need it, such as userspace RCU extended quiescent state. Syscalls need to be wrapped inside user_exit()-user_enter() through the slow path using TIF_NOHZ flag. Exceptions handlers must be wrapped as well. Irqs are already protected inside rcu_irq_enter/rcu_irq_exit() but preemption or signal handling on irq exit still need to be protected. config HAVE_VIRT_CPU_ACCOUNTING bool config HAVE_IRQ_TIME_ACCOUNTING bool help Archs need to ensure they use a high enough resolution clock to support irq time accounting and then call enable_sched_clock_irqtime(). config HAVE_ARCH_TRANSPARENT_HUGEPAGE bool config HAVE_ARCH_SOFT_DIRTY bool config HAVE_MOD_ARCH_SPECIFIC bool help The arch uses struct mod_arch_specific to store data. Many arches just need a simple module loader without arch specific data - those should not enable this. config MODULES_USE_ELF_RELA bool help Modules only use ELF RELA relocations. Modules with ELF REL relocations will give an error. config MODULES_USE_ELF_REL bool help Modules only use ELF REL relocations. Modules with ELF RELA relocations will give an error. config HAVE_UNDERSCORE_SYMBOL_PREFIX bool help Some architectures generate an _ in front of C symbols; things like module loading and assembly files need to know about this. # # ABI hall of shame # config CLONE_BACKWARDS bool help Architecture has tls passed as the 4th argument of clone(2), not the 5th one. config CLONE_BACKWARDS2 bool help Architecture has the first two arguments of clone(2) swapped. config CLONE_BACKWARDS3 bool help Architecture has tls passed as the 3rd argument of clone(2), not the 5th one. config ODD_RT_SIGACTION bool help Architecture has unusual rt_sigaction(2) arguments config OLD_SIGSUSPEND bool help Architecture has old sigsuspend(2) syscall, of one-argument variety config OLD_SIGSUSPEND3 bool help Even weirder antique ABI - three-argument sigsuspend(2) config OLD_SIGACTION bool help Architecture has old sigaction(2) syscall. Nope, not the same as OLD_SIGSUSPEND | OLD_SIGSUSPEND3 - alpha has sigsuspend(2), but fairly different variant of sigaction(2), thanks to OSF/1 compatibility... config COMPAT_OLD_SIGACTION bool source "kernel/gcov/Kconfig" |