Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 | /* * kernel/mutex.c * * Mutexes: blocking mutual exclusion locks * * Started by Ingo Molnar: * * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com> * * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and * David Howells for suggestions and improvements. * * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline * from the -rt tree, where it was originally implemented for rtmutexes * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale * and Sven Dietrich. * * Also see Documentation/mutex-design.txt. */ #include <linux/mutex.h> #include <linux/sched.h> #include <linux/module.h> #include <linux/spinlock.h> #include <linux/interrupt.h> #include <linux/debug_locks.h> /* * In the DEBUG case we are using the "NULL fastpath" for mutexes, * which forces all calls into the slowpath: */ #ifdef CONFIG_DEBUG_MUTEXES # include "mutex-debug.h" # include <asm-generic/mutex-null.h> #else # include "mutex.h" # include <asm/mutex.h> #endif /*** * mutex_init - initialize the mutex * @lock: the mutex to be initialized * @key: the lock_class_key for the class; used by mutex lock debugging * * Initialize the mutex to unlocked state. * * It is not allowed to initialize an already locked mutex. */ void __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key) { atomic_set(&lock->count, 1); spin_lock_init(&lock->wait_lock); INIT_LIST_HEAD(&lock->wait_list); mutex_clear_owner(lock); debug_mutex_init(lock, name, key); } EXPORT_SYMBOL(__mutex_init); #ifndef CONFIG_DEBUG_LOCK_ALLOC /* * We split the mutex lock/unlock logic into separate fastpath and * slowpath functions, to reduce the register pressure on the fastpath. * We also put the fastpath first in the kernel image, to make sure the * branch is predicted by the CPU as default-untaken. */ static __used noinline void __sched __mutex_lock_slowpath(atomic_t *lock_count); /*** * mutex_lock - acquire the mutex * @lock: the mutex to be acquired * * Lock the mutex exclusively for this task. If the mutex is not * available right now, it will sleep until it can get it. * * The mutex must later on be released by the same task that * acquired it. Recursive locking is not allowed. The task * may not exit without first unlocking the mutex. Also, kernel * memory where the mutex resides mutex must not be freed with * the mutex still locked. The mutex must first be initialized * (or statically defined) before it can be locked. memset()-ing * the mutex to 0 is not allowed. * * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging * checks that will enforce the restrictions and will also do * deadlock debugging. ) * * This function is similar to (but not equivalent to) down(). */ void __sched mutex_lock(struct mutex *lock) { might_sleep(); /* * The locking fastpath is the 1->0 transition from * 'unlocked' into 'locked' state. */ __mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath); mutex_set_owner(lock); } EXPORT_SYMBOL(mutex_lock); #endif static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count); /*** * mutex_unlock - release the mutex * @lock: the mutex to be released * * Unlock a mutex that has been locked by this task previously. * * This function must not be used in interrupt context. Unlocking * of a not locked mutex is not allowed. * * This function is similar to (but not equivalent to) up(). */ void __sched mutex_unlock(struct mutex *lock) { /* * The unlocking fastpath is the 0->1 transition from 'locked' * into 'unlocked' state: */ #ifndef CONFIG_DEBUG_MUTEXES /* * When debugging is enabled we must not clear the owner before time, * the slow path will always be taken, and that clears the owner field * after verifying that it was indeed current. */ mutex_clear_owner(lock); #endif __mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath); } EXPORT_SYMBOL(mutex_unlock); /* * Lock a mutex (possibly interruptible), slowpath: */ static inline int __sched __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass, unsigned long ip) { struct task_struct *task = current; struct mutex_waiter waiter; unsigned long flags; preempt_disable(); mutex_acquire(&lock->dep_map, subclass, 0, ip); #if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES) && \ !defined(CONFIG_HAVE_DEFAULT_NO_SPIN_MUTEXES) /* * Optimistic spinning. * * We try to spin for acquisition when we find that there are no * pending waiters and the lock owner is currently running on a * (different) CPU. * * The rationale is that if the lock owner is running, it is likely to * release the lock soon. * * Since this needs the lock owner, and this mutex implementation * doesn't track the owner atomically in the lock field, we need to * track it non-atomically. * * We can't do this for DEBUG_MUTEXES because that relies on wait_lock * to serialize everything. */ for (;;) { struct thread_info *owner; /* * If we own the BKL, then don't spin. The owner of * the mutex might be waiting on us to release the BKL. */ if (unlikely(current->lock_depth >= 0)) break; /* * If there's an owner, wait for it to either * release the lock or go to sleep. */ owner = ACCESS_ONCE(lock->owner); if (owner && !mutex_spin_on_owner(lock, owner)) break; if (atomic_cmpxchg(&lock->count, 1, 0) == 1) { lock_acquired(&lock->dep_map, ip); mutex_set_owner(lock); preempt_enable(); return 0; } /* * When there's no owner, we might have preempted between the * owner acquiring the lock and setting the owner field. If * we're an RT task that will live-lock because we won't let * the owner complete. */ if (!owner && (need_resched() || rt_task(task))) break; /* * The cpu_relax() call is a compiler barrier which forces * everything in this loop to be re-loaded. We don't need * memory barriers as we'll eventually observe the right * values at the cost of a few extra spins. */ cpu_relax(); } #endif spin_lock_mutex(&lock->wait_lock, flags); debug_mutex_lock_common(lock, &waiter); debug_mutex_add_waiter(lock, &waiter, task_thread_info(task)); /* add waiting tasks to the end of the waitqueue (FIFO): */ list_add_tail(&waiter.list, &lock->wait_list); waiter.task = task; if (atomic_xchg(&lock->count, -1) == 1) goto done; lock_contended(&lock->dep_map, ip); for (;;) { /* * Lets try to take the lock again - this is needed even if * we get here for the first time (shortly after failing to * acquire the lock), to make sure that we get a wakeup once * it's unlocked. Later on, if we sleep, this is the * operation that gives us the lock. We xchg it to -1, so * that when we release the lock, we properly wake up the * other waiters: */ if (atomic_xchg(&lock->count, -1) == 1) break; /* * got a signal? (This code gets eliminated in the * TASK_UNINTERRUPTIBLE case.) */ if (unlikely(signal_pending_state(state, task))) { mutex_remove_waiter(lock, &waiter, task_thread_info(task)); mutex_release(&lock->dep_map, 1, ip); spin_unlock_mutex(&lock->wait_lock, flags); debug_mutex_free_waiter(&waiter); preempt_enable(); return -EINTR; } __set_task_state(task, state); /* didnt get the lock, go to sleep: */ spin_unlock_mutex(&lock->wait_lock, flags); preempt_enable_no_resched(); schedule(); preempt_disable(); spin_lock_mutex(&lock->wait_lock, flags); } done: lock_acquired(&lock->dep_map, ip); /* got the lock - rejoice! */ mutex_remove_waiter(lock, &waiter, current_thread_info()); mutex_set_owner(lock); /* set it to 0 if there are no waiters left: */ if (likely(list_empty(&lock->wait_list))) atomic_set(&lock->count, 0); spin_unlock_mutex(&lock->wait_lock, flags); debug_mutex_free_waiter(&waiter); preempt_enable(); return 0; } #ifdef CONFIG_DEBUG_LOCK_ALLOC void __sched mutex_lock_nested(struct mutex *lock, unsigned int subclass) { might_sleep(); __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, _RET_IP_); } EXPORT_SYMBOL_GPL(mutex_lock_nested); int __sched mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass) { might_sleep(); return __mutex_lock_common(lock, TASK_KILLABLE, subclass, _RET_IP_); } EXPORT_SYMBOL_GPL(mutex_lock_killable_nested); int __sched mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass) { might_sleep(); return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, subclass, _RET_IP_); } EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested); #endif /* * Release the lock, slowpath: */ static inline void __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested) { struct mutex *lock = container_of(lock_count, struct mutex, count); unsigned long flags; spin_lock_mutex(&lock->wait_lock, flags); mutex_release(&lock->dep_map, nested, _RET_IP_); debug_mutex_unlock(lock); /* * some architectures leave the lock unlocked in the fastpath failure * case, others need to leave it locked. In the later case we have to * unlock it here */ if (__mutex_slowpath_needs_to_unlock()) atomic_set(&lock->count, 1); if (!list_empty(&lock->wait_list)) { /* get the first entry from the wait-list: */ struct mutex_waiter *waiter = list_entry(lock->wait_list.next, struct mutex_waiter, list); debug_mutex_wake_waiter(lock, waiter); wake_up_process(waiter->task); } spin_unlock_mutex(&lock->wait_lock, flags); } /* * Release the lock, slowpath: */ static __used noinline void __mutex_unlock_slowpath(atomic_t *lock_count) { __mutex_unlock_common_slowpath(lock_count, 1); } #ifndef CONFIG_DEBUG_LOCK_ALLOC /* * Here come the less common (and hence less performance-critical) APIs: * mutex_lock_interruptible() and mutex_trylock(). */ static noinline int __sched __mutex_lock_killable_slowpath(atomic_t *lock_count); static noinline int __sched __mutex_lock_interruptible_slowpath(atomic_t *lock_count); /*** * mutex_lock_interruptible - acquire the mutex, interruptable * @lock: the mutex to be acquired * * Lock the mutex like mutex_lock(), and return 0 if the mutex has * been acquired or sleep until the mutex becomes available. If a * signal arrives while waiting for the lock then this function * returns -EINTR. * * This function is similar to (but not equivalent to) down_interruptible(). */ int __sched mutex_lock_interruptible(struct mutex *lock) { int ret; might_sleep(); ret = __mutex_fastpath_lock_retval (&lock->count, __mutex_lock_interruptible_slowpath); if (!ret) mutex_set_owner(lock); return ret; } EXPORT_SYMBOL(mutex_lock_interruptible); int __sched mutex_lock_killable(struct mutex *lock) { int ret; might_sleep(); ret = __mutex_fastpath_lock_retval (&lock->count, __mutex_lock_killable_slowpath); if (!ret) mutex_set_owner(lock); return ret; } EXPORT_SYMBOL(mutex_lock_killable); static __used noinline void __sched __mutex_lock_slowpath(atomic_t *lock_count) { struct mutex *lock = container_of(lock_count, struct mutex, count); __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, _RET_IP_); } static noinline int __sched __mutex_lock_killable_slowpath(atomic_t *lock_count) { struct mutex *lock = container_of(lock_count, struct mutex, count); return __mutex_lock_common(lock, TASK_KILLABLE, 0, _RET_IP_); } static noinline int __sched __mutex_lock_interruptible_slowpath(atomic_t *lock_count) { struct mutex *lock = container_of(lock_count, struct mutex, count); return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, _RET_IP_); } #endif /* * Spinlock based trylock, we take the spinlock and check whether we * can get the lock: */ static inline int __mutex_trylock_slowpath(atomic_t *lock_count) { struct mutex *lock = container_of(lock_count, struct mutex, count); unsigned long flags; int prev; spin_lock_mutex(&lock->wait_lock, flags); prev = atomic_xchg(&lock->count, -1); if (likely(prev == 1)) { mutex_set_owner(lock); mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_); } /* Set it back to 0 if there are no waiters: */ if (likely(list_empty(&lock->wait_list))) atomic_set(&lock->count, 0); spin_unlock_mutex(&lock->wait_lock, flags); return prev == 1; } /*** * mutex_trylock - try acquire the mutex, without waiting * @lock: the mutex to be acquired * * Try to acquire the mutex atomically. Returns 1 if the mutex * has been acquired successfully, and 0 on contention. * * NOTE: this function follows the spin_trylock() convention, so * it is negated to the down_trylock() return values! Be careful * about this when converting semaphore users to mutexes. * * This function must not be used in interrupt context. The * mutex must be released by the same task that acquired it. */ int __sched mutex_trylock(struct mutex *lock) { int ret; ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath); if (ret) mutex_set_owner(lock); return ret; } EXPORT_SYMBOL(mutex_trylock); /** * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0 * @cnt: the atomic which we are to dec * @lock: the mutex to return holding if we dec to 0 * * return true and hold lock if we dec to 0, return false otherwise */ int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock) { /* dec if we can't possibly hit 0 */ if (atomic_add_unless(cnt, -1, 1)) return 0; /* we might hit 0, so take the lock */ mutex_lock(lock); if (!atomic_dec_and_test(cnt)) { /* when we actually did the dec, we didn't hit 0 */ mutex_unlock(lock); return 0; } /* we hit 0, and we hold the lock */ return 1; } EXPORT_SYMBOL(atomic_dec_and_mutex_lock); |