Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
/*
 *  arch/cris/arch-v32/kernel/kgdb.c
 *
 *  CRIS v32 version by Orjan Friberg, Axis Communications AB.
 *
 *  S390 version
 *    Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
 *    Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
 *
 *  Originally written by Glenn Engel, Lake Stevens Instrument Division
 *
 *  Contributed by HP Systems
 *
 *  Modified for SPARC by Stu Grossman, Cygnus Support.
 *
 *  Modified for Linux/MIPS (and MIPS in general) by Andreas Busse
 *  Send complaints, suggestions etc. to <andy@waldorf-gmbh.de>
 *
 *  Copyright (C) 1995 Andreas Busse
 */

/* FIXME: Check the documentation. */

/*
 *  kgdb usage notes:
 *  -----------------
 *
 * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be
 * built with different gcc flags: "-g" is added to get debug infos, and
 * "-fomit-frame-pointer" is omitted to make debugging easier. Since the
 * resulting kernel will be quite big (approx. > 7 MB), it will be stripped
 * before compresion. Such a kernel will behave just as usually, except if
 * given a "debug=<device>" command line option. (Only serial devices are
 * allowed for <device>, i.e. no printers or the like; possible values are
 * machine depedend and are the same as for the usual debug device, the one
 * for logging kernel messages.) If that option is given and the device can be
 * initialized, the kernel will connect to the remote gdb in trap_init(). The
 * serial parameters are fixed to 8N1 and 115200 bps, for easyness of
 * implementation.
 *
 * To start a debugging session, start that gdb with the debugging kernel
 * image (the one with the symbols, vmlinux.debug) named on the command line.
 * This file will be used by gdb to get symbol and debugging infos about the
 * kernel. Next, select remote debug mode by
 *    target remote <device>
 * where <device> is the name of the serial device over which the debugged
 * machine is connected. Maybe you have to adjust the baud rate by
 *    set remotebaud <rate>
 * or also other parameters with stty:
 *    shell stty ... </dev/...
 * If the kernel to debug has already booted, it waited for gdb and now
 * connects, and you'll see a breakpoint being reported. If the kernel isn't
 * running yet, start it now. The order of gdb and the kernel doesn't matter.
 * Another thing worth knowing about in the getting-started phase is how to
 * debug the remote protocol itself. This is activated with
 *    set remotedebug 1
 * gdb will then print out each packet sent or received. You'll also get some
 * messages about the gdb stub on the console of the debugged machine.
 *
 * If all that works, you can use lots of the usual debugging techniques on
 * the kernel, e.g. inspecting and changing variables/memory, setting
 * breakpoints, single stepping and so on. It's also possible to interrupt the
 * debugged kernel by pressing C-c in gdb. Have fun! :-)
 *
 * The gdb stub is entered (and thus the remote gdb gets control) in the
 * following situations:
 *
 *  - If breakpoint() is called. This is just after kgdb initialization, or if
 *    a breakpoint() call has been put somewhere into the kernel source.
 *    (Breakpoints can of course also be set the usual way in gdb.)
 *    In eLinux, we call breakpoint() in init/main.c after IRQ initialization.
 *
 *  - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel()
 *    are entered. All the CPU exceptions are mapped to (more or less..., see
 *    the hard_trap_info array below) appropriate signal, which are reported
 *    to gdb. die_if_kernel() is usually called after some kind of access
 *    error and thus is reported as SIGSEGV.
 *
 *  - When panic() is called. This is reported as SIGABRT.
 *
 *  - If C-c is received over the serial line, which is treated as
 *    SIGINT.
 *
 * Of course, all these signals are just faked for gdb, since there is no
 * signal concept as such for the kernel. It also isn't possible --obviously--
 * to set signal handlers from inside gdb, or restart the kernel with a
 * signal.
 *
 * Current limitations:
 *
 *  - While the kernel is stopped, interrupts are disabled for safety reasons
 *    (i.e., variables not changing magically or the like). But this also
 *    means that the clock isn't running anymore, and that interrupts from the
 *    hardware may get lost/not be served in time. This can cause some device
 *    errors...
 *
 *  - When single-stepping, only one instruction of the current thread is
 *    executed, but interrupts are allowed for that time and will be serviced
 *    if pending. Be prepared for that.
 *
 *  - All debugging happens in kernel virtual address space. There's no way to
 *    access physical memory not mapped in kernel space, or to access user
 *    space. A way to work around this is using get_user_long & Co. in gdb
 *    expressions, but only for the current process.
 *
 *  - Interrupting the kernel only works if interrupts are currently allowed,
 *    and the interrupt of the serial line isn't blocked by some other means
 *    (IPL too high, disabled, ...)
 *
 *  - The gdb stub is currently not reentrant, i.e. errors that happen therein
 *    (e.g. accessing invalid memory) may not be caught correctly. This could
 *    be removed in future by introducing a stack of struct registers.
 *
 */

/*
 *  To enable debugger support, two things need to happen.  One, a
 *  call to kgdb_init() is necessary in order to allow any breakpoints
 *  or error conditions to be properly intercepted and reported to gdb.
 *  Two, a breakpoint needs to be generated to begin communication.  This
 *  is most easily accomplished by a call to breakpoint().
 *
 *    The following gdb commands are supported:
 *
 * command          function                               Return value
 *
 *    g             return the value of the CPU registers  hex data or ENN
 *    G             set the value of the CPU registers     OK or ENN
 *
 *    mAA..AA,LLLL  Read LLLL bytes at address AA..AA      hex data or ENN
 *    MAA..AA,LLLL: Write LLLL bytes at address AA.AA      OK or ENN
 *
 *    c             Resume at current address              SNN   ( signal NN)
 *    cAA..AA       Continue at address AA..AA             SNN
 *
 *    s             Step one instruction                   SNN
 *    sAA..AA       Step one instruction from AA..AA       SNN
 *
 *    k             kill
 *
 *    ?             What was the last sigval ?             SNN   (signal NN)
 *
 *    bBB..BB	    Set baud rate to BB..BB		   OK or BNN, then sets
 *							   baud rate
 *
 * All commands and responses are sent with a packet which includes a
 * checksum.  A packet consists of
 *
 * $<packet info>#<checksum>.
 *
 * where
 * <packet info> :: <characters representing the command or response>
 * <checksum>    :: < two hex digits computed as modulo 256 sum of <packetinfo>>
 *
 * When a packet is received, it is first acknowledged with either '+' or '-'.
 * '+' indicates a successful transfer.  '-' indicates a failed transfer.
 *
 * Example:
 *
 * Host:                  Reply:
 * $m0,10#2a               +$00010203040506070809101112131415#42
 *
 */


#include <linux/string.h>
#include <linux/signal.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/linkage.h>
#include <linux/reboot.h>

#include <asm/setup.h>
#include <asm/ptrace.h>

#include <asm/irq.h>
#include <asm/arch/hwregs/reg_map.h>
#include <asm/arch/hwregs/reg_rdwr.h>
#include <asm/arch/hwregs/intr_vect_defs.h>
#include <asm/arch/hwregs/ser_defs.h>

/* From entry.S. */
extern void gdb_handle_exception(void);
/* From kgdb_asm.S. */
extern void kgdb_handle_exception(void);

static int kgdb_started = 0;

/********************************* Register image ****************************/

typedef
struct register_image
{
	                      /* Offset */
	unsigned int   r0;    /* 0x00 */
	unsigned int   r1;    /* 0x04 */
	unsigned int   r2;    /* 0x08 */
	unsigned int   r3;    /* 0x0C */
	unsigned int   r4;    /* 0x10 */
	unsigned int   r5;    /* 0x14 */
	unsigned int   r6;    /* 0x18 */
	unsigned int   r7;    /* 0x1C */
	unsigned int   r8;    /* 0x20; Frame pointer (if any) */
	unsigned int   r9;    /* 0x24 */
	unsigned int   r10;   /* 0x28 */
	unsigned int   r11;   /* 0x2C */
	unsigned int   r12;   /* 0x30 */
	unsigned int   r13;   /* 0x34 */
	unsigned int   sp;    /* 0x38; R14, Stack pointer */
	unsigned int   acr;   /* 0x3C; R15, Address calculation register. */

	unsigned char  bz;    /* 0x40; P0, 8-bit zero register */
	unsigned char  vr;    /* 0x41; P1, Version register (8-bit) */
	unsigned int   pid;   /* 0x42; P2, Process ID */
	unsigned char  srs;   /* 0x46; P3, Support register select (8-bit) */
        unsigned short wz;    /* 0x47; P4, 16-bit zero register */
	unsigned int   exs;   /* 0x49; P5, Exception status */
	unsigned int   eda;   /* 0x4D; P6, Exception data address */
	unsigned int   mof;   /* 0x51; P7, Multiply overflow register */
	unsigned int   dz;    /* 0x55; P8, 32-bit zero register */
	unsigned int   ebp;   /* 0x59; P9, Exception base pointer */
	unsigned int   erp;   /* 0x5D; P10, Exception return pointer. Contains the PC we are interested in. */
	unsigned int   srp;   /* 0x61; P11, Subroutine return pointer */
	unsigned int   nrp;   /* 0x65; P12, NMI return pointer */
	unsigned int   ccs;   /* 0x69; P13, Condition code stack */
	unsigned int   usp;   /* 0x6D; P14, User mode stack pointer */
	unsigned int   spc;   /* 0x71; P15, Single step PC */
	unsigned int   pc;    /* 0x75; Pseudo register (for the most part set to ERP). */

} registers;

typedef
struct bp_register_image
{
	/* Support register bank 0. */
	unsigned int   s0_0;
	unsigned int   s1_0;
	unsigned int   s2_0;
	unsigned int   s3_0;
	unsigned int   s4_0;
	unsigned int   s5_0;
	unsigned int   s6_0;
	unsigned int   s7_0;
	unsigned int   s8_0;
	unsigned int   s9_0;
	unsigned int   s10_0;
	unsigned int   s11_0;
	unsigned int   s12_0;
	unsigned int   s13_0;
	unsigned int   s14_0;
	unsigned int   s15_0;

	/* Support register bank 1. */
	unsigned int   s0_1;
	unsigned int   s1_1;
	unsigned int   s2_1;
	unsigned int   s3_1;
	unsigned int   s4_1;
	unsigned int   s5_1;
	unsigned int   s6_1;
	unsigned int   s7_1;
	unsigned int   s8_1;
	unsigned int   s9_1;
	unsigned int   s10_1;
	unsigned int   s11_1;
	unsigned int   s12_1;
	unsigned int   s13_1;
	unsigned int   s14_1;
	unsigned int   s15_1;

	/* Support register bank 2. */
	unsigned int   s0_2;
	unsigned int   s1_2;
	unsigned int   s2_2;
	unsigned int   s3_2;
	unsigned int   s4_2;
	unsigned int   s5_2;
	unsigned int   s6_2;
	unsigned int   s7_2;
	unsigned int   s8_2;
	unsigned int   s9_2;
	unsigned int   s10_2;
	unsigned int   s11_2;
	unsigned int   s12_2;
	unsigned int   s13_2;
	unsigned int   s14_2;
	unsigned int   s15_2;

	/* Support register bank 3. */
	unsigned int   s0_3; /* BP_CTRL */
	unsigned int   s1_3; /* BP_I0_START */
	unsigned int   s2_3; /* BP_I0_END */
	unsigned int   s3_3; /* BP_D0_START */
	unsigned int   s4_3; /* BP_D0_END */
	unsigned int   s5_3; /* BP_D1_START */
	unsigned int   s6_3; /* BP_D1_END */
	unsigned int   s7_3; /* BP_D2_START */
	unsigned int   s8_3; /* BP_D2_END */
	unsigned int   s9_3; /* BP_D3_START */
	unsigned int   s10_3; /* BP_D3_END */
	unsigned int   s11_3; /* BP_D4_START */
	unsigned int   s12_3; /* BP_D4_END */
	unsigned int   s13_3; /* BP_D5_START */
	unsigned int   s14_3; /* BP_D5_END */
	unsigned int   s15_3; /* BP_RESERVED */

} support_registers;

enum register_name
{
	R0,  R1,  R2,  R3,
	R4,  R5,  R6,  R7,
	R8,  R9,  R10, R11,
	R12, R13, SP,  ACR,

	BZ,  VR,  PID, SRS,
	WZ,  EXS, EDA, MOF,
	DZ,  EBP, ERP, SRP,
	NRP, CCS, USP, SPC,
	PC,

	S0,  S1,  S2,  S3,
	S4,  S5,  S6,  S7,
	S8,  S9,  S10, S11,
	S12, S13, S14, S15

};

/* The register sizes of the registers in register_name. An unimplemented register
   is designated by size 0 in this array. */
static int register_size[] =
{
	4, 4, 4, 4,
	4, 4, 4, 4,
	4, 4, 4, 4,
	4, 4, 4, 4,

	1, 1, 4, 1,
	2, 4, 4, 4,
	4, 4, 4, 4,
	4, 4, 4, 4,

	4,

	4, 4, 4, 4,
	4, 4, 4, 4,
	4, 4, 4, 4,
	4, 4, 4

};

/* Contains the register image of the kernel.
   (Global so that they can be reached from assembler code.) */
registers reg;
support_registers sreg;

/************** Prototypes for local library functions ***********************/

/* Copy of strcpy from libc. */
static char *gdb_cris_strcpy(char *s1, const char *s2);

/* Copy of strlen from libc. */
static int gdb_cris_strlen(const char *s);

/* Copy of memchr from libc. */
static void *gdb_cris_memchr(const void *s, int c, int n);

/* Copy of strtol from libc. Does only support base 16. */
static int gdb_cris_strtol(const char *s, char **endptr, int base);

/********************** Prototypes for local functions. **********************/

/* Write a value to a specified register regno in the register image
   of the current thread. */
static int write_register(int regno, char *val);

/* Read a value from a specified register in the register image. Returns the
   status of the read operation. The register value is returned in valptr. */
static int read_register(char regno, unsigned int *valptr);

/* Serial port, reads one character. ETRAX 100 specific. from debugport.c */
int getDebugChar(void);

#ifdef CONFIG_ETRAXFS_SIM
int getDebugChar(void)
{
  return socketread();
}
#endif

/* Serial port, writes one character. ETRAX 100 specific. from debugport.c */
void putDebugChar(int val);

#ifdef CONFIG_ETRAXFS_SIM
void putDebugChar(int val)
{
  socketwrite((char *)&val, 1);
}
#endif

/* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte,
   represented by int x. */
static char highhex(int x);

/* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte,
   represented by int x. */
static char lowhex(int x);

/* Returns the integer equivalent of a hexadecimal character. */
static int hex(char ch);

/* Convert the memory, pointed to by mem into hexadecimal representation.
   Put the result in buf, and return a pointer to the last character
   in buf (null). */
static char *mem2hex(char *buf, unsigned char *mem, int count);

/* Convert the array, in hexadecimal representation, pointed to by buf into
   binary representation. Put the result in mem, and return a pointer to
   the character after the last byte written. */
static unsigned char *hex2mem(unsigned char *mem, char *buf, int count);

/* Put the content of the array, in binary representation, pointed to by buf
   into memory pointed to by mem, and return a pointer to
   the character after the last byte written. */
static unsigned char *bin2mem(unsigned char *mem, unsigned char *buf, int count);

/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
   returned. */
static void getpacket(char *buffer);

/* Send $<data>#<checksum> from the <data> in the array buffer. */
static void putpacket(char *buffer);

/* Build and send a response packet in order to inform the host the
   stub is stopped. */
static void stub_is_stopped(int sigval);

/* All expected commands are sent from remote.c. Send a response according
   to the description in remote.c. Not static since it needs to be reached
   from assembler code. */
void handle_exception(int sigval);

/* Performs a complete re-start from scratch. ETRAX specific. */
static void kill_restart(void);

/******************** Prototypes for global functions. ***********************/

/* The string str is prepended with the GDB printout token and sent. */
void putDebugString(const unsigned char *str, int len);

/* A static breakpoint to be used at startup. */
void breakpoint(void);

/* Avoid warning as the internal_stack is not used in the C-code. */
#define USEDVAR(name)    { if (name) { ; } }
#define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) }

/********************************** Packet I/O ******************************/
/* BUFMAX defines the maximum number of characters in
   inbound/outbound buffers */
/* FIXME: How do we know it's enough? */
#define BUFMAX 512

/* Run-length encoding maximum length. Send 64 at most. */
#define RUNLENMAX 64

/* Definition of all valid hexadecimal characters */
static const char hexchars[] = "0123456789abcdef";

/* The inbound/outbound buffers used in packet I/O */
static char input_buffer[BUFMAX];
static char output_buffer[BUFMAX];

/* Error and warning messages. */
enum error_type
{
	SUCCESS, E01, E02, E03, E04, E05, E06,
};

static char *error_message[] =
{
	"",
	"E01 Set current or general thread - H[c,g] - internal error.",
	"E02 Change register content - P - cannot change read-only register.",
	"E03 Thread is not alive.", /* T, not used. */
	"E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.",
	"E05 Change register content - P - the register is not implemented..",
	"E06 Change memory content - M - internal error.",
};

/********************************** Breakpoint *******************************/
/* Use an internal stack in the breakpoint and interrupt response routines.
   FIXME: How do we know the size of this stack is enough?
   Global so it can be reached from assembler code. */
#define INTERNAL_STACK_SIZE 1024
char internal_stack[INTERNAL_STACK_SIZE];

/* Due to the breakpoint return pointer, a state variable is needed to keep
   track of whether it is a static (compiled) or dynamic (gdb-invoked)
   breakpoint to be handled. A static breakpoint uses the content of register
   ERP as it is whereas a dynamic breakpoint requires subtraction with 2
   in order to execute the instruction. The first breakpoint is static; all
   following are assumed to be dynamic. */
static int dynamic_bp = 0;

/********************************* String library ****************************/
/* Single-step over library functions creates trap loops. */

/* Copy char s2[] to s1[]. */
static char*
gdb_cris_strcpy(char *s1, const char *s2)
{
	char *s = s1;

	for (s = s1; (*s++ = *s2++) != '\0'; )
		;
	return s1;
}

/* Find length of s[]. */
static int
gdb_cris_strlen(const char *s)
{
	const char *sc;

	for (sc = s; *sc != '\0'; sc++)
		;
	return (sc - s);
}

/* Find first occurrence of c in s[n]. */
static void*
gdb_cris_memchr(const void *s, int c, int n)
{
	const unsigned char uc = c;
	const unsigned char *su;

	for (su = s; 0 < n; ++su, --n)
		if (*su == uc)
			return (void *)su;
	return NULL;
}
/******************************* Standard library ****************************/
/* Single-step over library functions creates trap loops. */
/* Convert string to long. */
static int
gdb_cris_strtol(const char *s, char **endptr, int base)
{
	char *s1;
	char *sd;
	int x = 0;

	for (s1 = (char*)s; (sd = gdb_cris_memchr(hexchars, *s1, base)) != NULL; ++s1)
		x = x * base + (sd - hexchars);

        if (endptr) {
                /* Unconverted suffix is stored in endptr unless endptr is NULL. */
                *endptr = s1;
        }

	return x;
}

/********************************* Register image ****************************/

/* Write a value to a specified register in the register image of the current
   thread. Returns status code SUCCESS, E02 or E05. */
static int
write_register(int regno, char *val)
{
	int status = SUCCESS;

        if (regno >= R0 && regno <= ACR) {
		/* Consecutive 32-bit registers. */
		hex2mem((unsigned char *)&reg.r0 + (regno - R0) * sizeof(unsigned int),
			val, sizeof(unsigned int));

	} else if (regno == BZ || regno == VR || regno == WZ || regno == DZ) {
		/* Read-only registers. */
		status = E02;

	} else if (regno == PID) {
		/* 32-bit register. (Even though we already checked SRS and WZ, we cannot
		   combine this with the EXS - SPC write since SRS and WZ have different size.) */
		hex2mem((unsigned char *)&reg.pid, val, sizeof(unsigned int));

	} else if (regno == SRS) {
		/* 8-bit register. */
		hex2mem((unsigned char *)&reg.srs, val, sizeof(unsigned char));

	} else if (regno >= EXS && regno <= SPC) {
		/* Consecutive 32-bit registers. */
		hex2mem((unsigned char *)&reg.exs + (regno - EXS) * sizeof(unsigned int),
			 val, sizeof(unsigned int));

       } else if (regno == PC) {
               /* Pseudo-register. Treat as read-only. */
               status = E02;

       } else if (regno >= S0 && regno <= S15) {
               /* 32-bit registers. */
               hex2mem((unsigned char *)&sreg.s0_0 + (reg.srs * 16 * sizeof(unsigned int)) + (regno - S0) * sizeof(unsigned int), val, sizeof(unsigned int));
	} else {
		/* Non-existing register. */
		status = E05;
	}
	return status;
}

/* Read a value from a specified register in the register image. Returns the
   value in the register or -1 for non-implemented registers. */
static int
read_register(char regno, unsigned int *valptr)
{
	int status = SUCCESS;

	/* We read the zero registers from the register struct (instead of just returning 0)
	   to catch errors. */

	if (regno >= R0 && regno <= ACR) {
		/* Consecutive 32-bit registers. */
		*valptr = *(unsigned int *)((char *)&reg.r0 + (regno - R0) * sizeof(unsigned int));

	} else if (regno == BZ || regno == VR) {
		/* Consecutive 8-bit registers. */
		*valptr = (unsigned int)(*(unsigned char *)
                                         ((char *)&reg.bz + (regno - BZ) * sizeof(char)));

	} else if (regno == PID) {
		/* 32-bit register. */
		*valptr =  *(unsigned int *)((char *)&reg.pid);

	} else if (regno == SRS) {
		/* 8-bit register. */
		*valptr = (unsigned int)(*(unsigned char *)((char *)&reg.srs));

	} else if (regno == WZ) {
		/* 16-bit register. */
		*valptr = (unsigned int)(*(unsigned short *)(char *)&reg.wz);

	} else if (regno >= EXS && regno <= PC) {
		/* Consecutive 32-bit registers. */
		*valptr = *(unsigned int *)((char *)&reg.exs + (regno - EXS) * sizeof(unsigned int));

	} else if (regno >= S0 && regno <= S15) {
		/* Consecutive 32-bit registers, located elsewhere. */
		*valptr = *(unsigned int *)((char *)&sreg.s0_0 + (reg.srs * 16 * sizeof(unsigned int)) + (regno - S0) * sizeof(unsigned int));

	} else {
		/* Non-existing register. */
		status = E05;
	}
	return status;

}

/********************************** Packet I/O ******************************/
/* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte,
   represented by int x. */
static inline char
highhex(int x)
{
	return hexchars[(x >> 4) & 0xf];
}

/* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte,
   represented by int x. */
static inline char
lowhex(int x)
{
	return hexchars[x & 0xf];
}

/* Returns the integer equivalent of a hexadecimal character. */
static int
hex(char ch)
{
	if ((ch >= 'a') && (ch <= 'f'))
		return (ch - 'a' + 10);
	if ((ch >= '0') && (ch <= '9'))
		return (ch - '0');
	if ((ch >= 'A') && (ch <= 'F'))
		return (ch - 'A' + 10);
	return -1;
}

/* Convert the memory, pointed to by mem into hexadecimal representation.
   Put the result in buf, and return a pointer to the last character
   in buf (null). */

static char *
mem2hex(char *buf, unsigned char *mem, int count)
{
	int i;
	int ch;

        if (mem == NULL) {
		/* Invalid address, caught by 'm' packet handler. */
                for (i = 0; i < count; i++) {
                        *buf++ = '0';
                        *buf++ = '0';
                }
        } else {
                /* Valid mem address. */
		for (i = 0; i < count; i++) {
			ch = *mem++;
			*buf++ = highhex (ch);
			*buf++ = lowhex (ch);
		}
        }
        /* Terminate properly. */
	*buf = '\0';
	return buf;
}

/* Same as mem2hex, but puts it in network byte order. */
static char *
mem2hex_nbo(char *buf, unsigned char *mem, int count)
{
	int i;
	int ch;

	mem += count - 1;
	for (i = 0; i < count; i++) {
		ch = *mem--;
		*buf++ = highhex (ch);
		*buf++ = lowhex (ch);
        }

        /* Terminate properly. */
	*buf = '\0';
	return buf;
}

/* Convert the array, in hexadecimal representation, pointed to by buf into
   binary representation. Put the result in mem, and return a pointer to
   the character after the last byte written. */
static unsigned char*
hex2mem(unsigned char *mem, char *buf, int count)
{
	int i;
	unsigned char ch;
	for (i = 0; i < count; i++) {
		ch = hex (*buf++) << 4;
		ch = ch + hex (*buf++);
		*mem++ = ch;
	}
	return mem;
}

/* Put the content of the array, in binary representation, pointed to by buf
   into memory pointed to by mem, and return a pointer to the character after
   the last byte written.
   Gdb will escape $, #, and the escape char (0x7d). */
static unsigned char*
bin2mem(unsigned char *mem, unsigned char *buf, int count)
{
	int i;
	unsigned char *next;
	for (i = 0; i < count; i++) {
		/* Check for any escaped characters. Be paranoid and
		   only unescape chars that should be escaped. */
		if (*buf == 0x7d) {
			next = buf + 1;
			if (*next == 0x3 || *next == 0x4 || *next == 0x5D) {
				 /* #, $, ESC */
				buf++;
				*buf += 0x20;
			}
		}
		*mem++ = *buf++;
	}
	return mem;
}

/* Await the sequence $<data>#<checksum> and store <data> in the array buffer
   returned. */
static void
getpacket(char *buffer)
{
	unsigned char checksum;
	unsigned char xmitcsum;
	int i;
	int count;
	char ch;

	do {
		while((ch = getDebugChar ()) != '$')
			/* Wait for the start character $ and ignore all other characters */;
		checksum = 0;
		xmitcsum = -1;
		count = 0;
		/* Read until a # or the end of the buffer is reached */
		while (count < BUFMAX) {
			ch = getDebugChar();
			if (ch == '#')
				break;
			checksum = checksum + ch;
			buffer[count] = ch;
			count = count + 1;
		}

		if (count >= BUFMAX)
			continue;

		buffer[count] = 0;

		if (ch == '#') {
			xmitcsum = hex(getDebugChar()) << 4;
			xmitcsum += hex(getDebugChar());
			if (checksum != xmitcsum) {
				/* Wrong checksum */
				putDebugChar('-');
			} else {
				/* Correct checksum */
				putDebugChar('+');
				/* If sequence characters are received, reply with them */
				if (buffer[2] == ':') {
					putDebugChar(buffer[0]);
					putDebugChar(buffer[1]);
					/* Remove the sequence characters from the buffer */
					count = gdb_cris_strlen(buffer);
					for (i = 3; i <= count; i++)
						buffer[i - 3] = buffer[i];
				}
			}
		}
	} while (checksum != xmitcsum);
}

/* Send $<data>#<checksum> from the <data> in the array buffer. */

static void
putpacket(char *buffer)
{
	int checksum;
	int runlen;
	int encode;

	do {
		char *src = buffer;
		putDebugChar('$');
		checksum = 0;
		while (*src) {
			/* Do run length encoding */
			putDebugChar(*src);
			checksum += *src;
			runlen = 0;
			while (runlen < RUNLENMAX && *src == src[runlen]) {
				runlen++;
			}
			if (runlen > 3) {
				/* Got a useful amount */
				putDebugChar ('*');
				checksum += '*';
				encode = runlen + ' ' - 4;
				putDebugChar(encode);
				checksum += encode;
				src += runlen;
			} else {
				src++;
			}
		}
		putDebugChar('#');
		putDebugChar(highhex (checksum));
		putDebugChar(lowhex (checksum));
	} while(kgdb_started && (getDebugChar() != '+'));
}

/* The string str is prepended with the GDB printout token and sent. Required
   in traditional implementations. */
void
putDebugString(const unsigned char *str, int len)
{
	/* Move SPC forward if we are single-stepping. */
	asm("spchere:");
	asm("move $spc, $r10");
	asm("cmp.d spchere, $r10");
	asm("bne nosstep");
	asm("nop");
	asm("move.d spccont, $r10");
	asm("move $r10, $spc");
	asm("nosstep:");

        output_buffer[0] = 'O';
        mem2hex(&output_buffer[1], (unsigned char *)str, len);
        putpacket(output_buffer);

	asm("spccont:");
}

/********************************** Handle exceptions ************************/
/* Build and send a response packet in order to inform the host the
   stub is stopped. TAAn...:r...;n...:r...;n...:r...;
                    AA = signal number
                    n... = register number (hex)
                    r... = register contents
                    n... = `thread'
                    r... = thread process ID.  This is a hex integer.
                    n... = other string not starting with valid hex digit.
                    gdb should ignore this n,r pair and go on to the next.
                    This way we can extend the protocol. */
static void
stub_is_stopped(int sigval)
{
	char *ptr = output_buffer;
	unsigned int reg_cont;

	/* Send trap type (converted to signal) */

	*ptr++ = 'T';
	*ptr++ = highhex(sigval);
	*ptr++ = lowhex(sigval);

	if (((reg.exs & 0xff00) >> 8) == 0xc) {

		/* Some kind of hardware watchpoint triggered. Find which one
		   and determine its type (read/write/access).  */
		int S, bp, trig_bits = 0, rw_bits = 0;
		int trig_mask = 0;
		unsigned int *bp_d_regs = &sreg.s3_3;
		/* In a lot of cases, the stopped data address will simply be EDA.
		   In some cases, we adjust it to match the watched data range.
		   (We don't want to change the actual EDA though). */
		unsigned int stopped_data_address;
		/* The S field of EXS. */
		S = (reg.exs & 0xffff0000) >> 16;

		if (S & 1) {
			/* Instruction watchpoint. */
			/* FIXME: Check against, and possibly adjust reported EDA. */
		} else {
			/* Data watchpoint.  Find the one that triggered. */
			for (bp = 0; bp < 6; bp++) {

				/* Dx_RD, Dx_WR in the S field of EXS for this BP. */
				int bitpos_trig = 1 + bp * 2;
				/* Dx_BPRD, Dx_BPWR in BP_CTRL for this BP. */
				int bitpos_config = 2 + bp * 4;

				/* Get read/write trig bits for this BP. */
				trig_bits = (S & (3 << bitpos_trig)) >> bitpos_trig;

				/* Read/write config bits for this BP. */
				rw_bits = (sreg.s0_3 & (3 << bitpos_config)) >> bitpos_config;
				if (trig_bits) {
					/* Sanity check: the BP shouldn't trigger for accesses
					   that it isn't configured for. */
					if ((rw_bits == 0x1 && trig_bits != 0x1) ||
					    (rw_bits == 0x2 && trig_bits != 0x2))
						panic("Invalid r/w trigging for this BP");

					/* Mark this BP as trigged for future reference. */
					trig_mask |= (1 << bp);

					if (reg.eda >= bp_d_regs[bp * 2] &&
					    reg.eda <= bp_d_regs[bp * 2 + 1]) {
						/* EDA withing range for this BP; it must be the one
						   we're looking for. */
						stopped_data_address = reg.eda;
						break;
					}
				}
			}
			if (bp < 6) {
				/* Found a trigged BP with EDA within its configured data range. */
			} else if (trig_mask) {
				/* Something triggered, but EDA doesn't match any BP's range. */
				for (bp = 0; bp < 6; bp++) {
					/* Dx_BPRD, Dx_BPWR in BP_CTRL for this BP. */
					int bitpos_config = 2 + bp * 4;

					/* Read/write config bits for this BP (needed later). */
					rw_bits = (sreg.s0_3 & (3 << bitpos_config)) >> bitpos_config;

					if (trig_mask & (1 << bp)) {
						/* EDA within 31 bytes of the configured start address? */
						if (reg.eda + 31 >= bp_d_regs[bp * 2]) {
							/* Changing the reported address to match
							   the start address of the first applicable BP. */
							stopped_data_address = bp_d_regs[bp * 2];
							break;
						} else {
							/* We continue since we might find another useful BP. */
							printk("EDA doesn't match trigged BP's range");
						}
					}
				}
			}

			/* No match yet? */
			BUG_ON(bp >= 6);
			/* Note that we report the type according to what the BP is configured
			   for (otherwise we'd never report an 'awatch'), not according to how
			   it trigged. We did check that the trigged bits match what the BP is
			   configured for though. */
			if (rw_bits == 0x1) {
				/* read */
				strncpy(ptr, "rwatch", 6);
				ptr += 6;
			} else if (rw_bits == 0x2) {
				/* write */
				strncpy(ptr, "watch", 5);
				ptr += 5;
			} else if (rw_bits == 0x3) {
				/* access */
				strncpy(ptr, "awatch", 6);
				ptr += 6;
			} else {
				panic("Invalid r/w bits for this BP.");
			}

			*ptr++ = ':';
			/* Note that we don't read_register(EDA, ...) */
			ptr = mem2hex_nbo(ptr, (unsigned char *)&stopped_data_address, register_size[EDA]);
			*ptr++ = ';';
		}
	}
	/* Only send PC, frame and stack pointer. */
	read_register(PC, &reg_cont);
	*ptr++ = highhex(PC);
	*ptr++ = lowhex(PC);
	*ptr++ = ':';
	ptr = mem2hex(ptr, (unsigned char *)&reg_cont, register_size[PC]);
	*ptr++ = ';';

	read_register(R8, &reg_cont);
	*ptr++ = highhex(R8);
	*ptr++ = lowhex(R8);
	*ptr++ = ':';
	ptr = mem2hex(ptr, (unsigned char *)&reg_cont, register_size[R8]);
	*ptr++ = ';';

	read_register(SP, &reg_cont);
	*ptr++ = highhex(SP);
	*ptr++ = lowhex(SP);
	*ptr++ = ':';
	ptr = mem2hex(ptr, (unsigned char *)&reg_cont, register_size[SP]);
	*ptr++ = ';';

	/* Send ERP as well; this will save us an entire register fetch in some cases. */
        read_register(ERP, &reg_cont);
        *ptr++ = highhex(ERP);
        *ptr++ = lowhex(ERP);
        *ptr++ = ':';
        ptr = mem2hex(ptr, (unsigned char *)&reg_cont, register_size[ERP]);
        *ptr++ = ';';

	/* null-terminate and send it off */
	*ptr = 0;
	putpacket(output_buffer);
}

/* Returns the size of an instruction that has a delay slot. */

int insn_size(unsigned long pc)
{
	unsigned short opcode = *(unsigned short *)pc;
	int size = 0;

	switch ((opcode & 0x0f00) >> 8) {
	case 0x0:
	case 0x9:
	case 0xb:
		size = 2;
		break;
	case 0xe:
	case 0xf:
		size = 6;
		break;
	case 0xd:
		/* Could be 4 or 6; check more bits. */
		if ((opcode & 0xff) == 0xff)
			size = 4;
		else
			size = 6;
		break;
	default:
		panic("Couldn't find size of opcode 0x%x at 0x%lx\n", opcode, pc);
	}

	return size;
}

void register_fixup(int sigval)
{
	/* Compensate for ACR push at the beginning of exception handler. */
	reg.sp += 4;

	/* Standard case. */
	reg.pc = reg.erp;
	if (reg.erp & 0x1) {
		/* Delay slot bit set.  Report as stopped on proper instruction.  */
		if (reg.spc) {
			/* Rely on SPC if set. */
			reg.pc = reg.spc;
		} else {
			/* Calculate the PC from the size of the instruction
			   that the delay slot we're in belongs to. */
			reg.pc += insn_size(reg.erp & ~1) - 1 ;
		}
	}

	if ((reg.exs & 0x3) == 0x0) {
		/* Bits 1 - 0 indicate the type of memory operation performed
		   by the interrupted instruction. 0 means no memory operation,
		   and EDA is undefined in that case. We zero it to avoid confusion. */
		reg.eda = 0;
	}

	if (sigval == SIGTRAP) {
		/* Break 8, single step or hardware breakpoint exception. */

		/* Check IDX field of EXS. */
		if (((reg.exs & 0xff00) >> 8) == 0x18) {

			/* Break 8. */

                        /* Static (compiled) breakpoints must return to the next instruction
			   in order to avoid infinite loops (default value of ERP). Dynamic
			   (gdb-invoked) must subtract the size of the break instruction from
			   the ERP so that the instruction that was originally in the break
			   instruction's place will be run when we return from the exception. */
			if (!dynamic_bp) {
				/* Assuming that all breakpoints are dynamic from now on. */
				dynamic_bp = 1;
			} else {

				/* Only if not in a delay slot. */
				if (!(reg.erp & 0x1)) {
					reg.erp -= 2;
					reg.pc -= 2;
				}
			}

		} else if (((reg.exs & 0xff00) >> 8) == 0x3) {
			/* Single step. */
			/* Don't fiddle with S1. */

		} else if (((reg.exs & 0xff00) >> 8) == 0xc) {

			/* Hardware watchpoint exception. */

			/* SPC has been updated so that we will get a single step exception
			   when we return, but we don't want that. */
			reg.spc = 0;

			/* Don't fiddle with S1. */
		}

	} else if (sigval == SIGINT) {
		/* Nothing special. */
	}
}

static void insert_watchpoint(char type, int addr, int len)
{
	/* Breakpoint/watchpoint types (GDB terminology):
	   0 = memory breakpoint for instructions
	   (not supported; done via memory write instead)
	   1 = hardware breakpoint for instructions (supported)
	   2 = write watchpoint (supported)
	   3 = read watchpoint (supported)
	   4 = access watchpoint (supported) */

	if (type < '1' || type > '4') {
		output_buffer[0] = 0;
		return;
	}

	/* Read watchpoints are set as access watchpoints, because of GDB's
	   inability to deal with pure read watchpoints. */
	if (type == '3')
		type = '4';

	if (type == '1') {
		/* Hardware (instruction) breakpoint. */
		/* Bit 0 in BP_CTRL holds the configuration for I0. */
		if (sreg.s0_3 & 0x1) {
			/* Already in use. */
			gdb_cris_strcpy(output_buffer, error_message[E04]);
			return;
		}
		/* Configure. */
		sreg.s1_3 = addr;
		sreg.s2_3 = (addr + len - 1);
		sreg.s0_3 |= 1;
	} else {
		int bp;
		unsigned int *bp_d_regs = &sreg.s3_3;

		/* The watchpoint allocation scheme is the simplest possible.
		   For example, if a region is watched for read and
		   a write watch is requested, a new watchpoint will
		   be used. Also, if a watch for a region that is already
		   covered by one or more existing watchpoints, a new
		   watchpoint will be used. */

		/* First, find a free data watchpoint. */
		for (bp = 0; bp < 6; bp++) {
			/* Each data watchpoint's control registers occupy 2 bits
			   (hence the 3), starting at bit 2 for D0 (hence the 2)
			   with 4 bits between for each watchpoint (yes, the 4). */
			if (!(sreg.s0_3 & (0x3 << (2 + (bp * 4))))) {
				break;
			}
		}

		if (bp > 5) {
			/* We're out of watchpoints. */
			gdb_cris_strcpy(output_buffer, error_message[E04]);
			return;
		}

		/* Configure the control register first. */
		if (type == '3' || type == '4') {
			/* Trigger on read. */
			sreg.s0_3 |= (1 << (2 + bp * 4));
		}
		if (type == '2' || type == '4') {
			/* Trigger on write. */
			sreg.s0_3 |= (2 << (2 + bp * 4));
		}

		/* Ugly pointer arithmetics to configure the watched range. */
		bp_d_regs[bp * 2] = addr;
		bp_d_regs[bp * 2 + 1] = (addr + len - 1);
	}

	/* Set the S1 flag to enable watchpoints. */
	reg.ccs |= (1 << (S_CCS_BITNR + CCS_SHIFT));
	gdb_cris_strcpy(output_buffer, "OK");
}

static void remove_watchpoint(char type, int addr, int len)
{
	/* Breakpoint/watchpoint types:
	   0 = memory breakpoint for instructions
	   (not supported; done via memory write instead)
	   1 = hardware breakpoint for instructions (supported)
	   2 = write watchpoint (supported)
	   3 = read watchpoint (supported)
	   4 = access watchpoint (supported) */
	if (type < '1' || type > '4') {
		output_buffer[0] = 0;
		return;
	}

	/* Read watchpoints are set as access watchpoints, because of GDB's
	   inability to deal with pure read watchpoints. */
	if (type == '3')
		type = '4';

	if (type == '1') {
		/* Hardware breakpoint. */
		/* Bit 0 in BP_CTRL holds the configuration for I0. */
		if (!(sreg.s0_3 & 0x1)) {
			/* Not in use. */
			gdb_cris_strcpy(output_buffer, error_message[E04]);
			return;
		}
		/* Deconfigure. */
		sreg.s1_3 = 0;
		sreg.s2_3 = 0;
		sreg.s0_3 &= ~1;
	} else {
		int bp;
		unsigned int *bp_d_regs = &sreg.s3_3;
		/* Try to find a watchpoint that is configured for the
		   specified range, then check that read/write also matches. */

		/* Ugly pointer arithmetic, since I cannot rely on a
		   single switch (addr) as there may be several watchpoints with
		   the same start address for example. */

		for (bp = 0; bp < 6; bp++) {
			if (bp_d_regs[bp * 2] == addr &&
			    bp_d_regs[bp * 2 + 1] == (addr + len - 1)) {
				/* Matching range. */
				int bitpos = 2 + bp * 4;
				int rw_bits;

				/* Read/write bits for this BP. */
				rw_bits = (sreg.s0_3 & (0x3 << bitpos)) >> bitpos;

				if ((type == '3' && rw_bits == 0x1) ||
				    (type == '2' && rw_bits == 0x2) ||
				    (type == '4' && rw_bits == 0x3)) {
					/* Read/write matched. */
					break;
				}
			}
		}

		if (bp > 5) {
			/* No watchpoint matched. */
			gdb_cris_strcpy(output_buffer, error_message[E04]);
			return;
		}

		/* Found a matching watchpoint. Now, deconfigure it by
		   both disabling read/write in bp_ctrl and zeroing its
		   start/end addresses. */
		sreg.s0_3 &= ~(3 << (2 + (bp * 4)));
		bp_d_regs[bp * 2] = 0;
		bp_d_regs[bp * 2 + 1] = 0;
	}

	/* Note that we don't clear the S1 flag here. It's done when continuing.  */
	gdb_cris_strcpy(output_buffer, "OK");
}



/* All expected commands are sent from remote.c. Send a response according
   to the description in remote.c. */
void
handle_exception(int sigval)
{
	/* Avoid warning of not used. */

	USEDFUN(handle_exception);
	USEDVAR(internal_stack[0]);

	register_fixup(sigval);

	/* Send response. */
	stub_is_stopped(sigval);

	for (;;) {
		output_buffer[0] = '\0';
		getpacket(input_buffer);
		switch (input_buffer[0]) {
			case 'g':
				/* Read registers: g
				   Success: Each byte of register data is described by two hex digits.
				   Registers are in the internal order for GDB, and the bytes
				   in a register  are in the same order the machine uses.
				   Failure: void. */
			{
				char *buf;
				/* General and special registers. */
				buf = mem2hex(output_buffer, (char *)&reg, sizeof(registers));
				/* Support registers. */
				/* -1 because of the null termination that mem2hex adds. */
				mem2hex(buf,
					(char *)&sreg + (reg.srs * 16 * sizeof(unsigned int)),
					16 * sizeof(unsigned int));
				break;
			}
			case 'G':
				/* Write registers. GXX..XX
				   Each byte of register data  is described by two hex digits.
				   Success: OK
				   Failure: void. */
				/* General and special registers. */
				hex2mem((char *)&reg, &input_buffer[1], sizeof(registers));
				/* Support registers. */
				hex2mem((char *)&sreg + (reg.srs * 16 * sizeof(unsigned int)),
					&input_buffer[1] + sizeof(registers),
					16 * sizeof(unsigned int));
				gdb_cris_strcpy(output_buffer, "OK");
				break;

			case 'P':
				/* Write register. Pn...=r...
				   Write register n..., hex value without 0x, with value r...,
				   which contains a hex value without 0x and two hex digits
				   for each byte in the register (target byte order). P1f=11223344 means
				   set register 31 to 44332211.
				   Success: OK
				   Failure: E02, E05 */
				{
					char *suffix;
					int regno = gdb_cris_strtol(&input_buffer[1], &suffix, 16);
					int status;

					status = write_register(regno, suffix+1);

					switch (status) {
						case E02:
							/* Do not support read-only registers. */
							gdb_cris_strcpy(output_buffer, error_message[E02]);
							break;
						case E05:
							/* Do not support non-existing registers. */
							gdb_cris_strcpy(output_buffer, error_message[E05]);
							break;
						default:
							/* Valid register number. */
							gdb_cris_strcpy(output_buffer, "OK");
							break;
					}
				}
				break;

			case 'm':
				/* Read from memory. mAA..AA,LLLL
				   AA..AA is the address and LLLL is the length.
				   Success: XX..XX is the memory content.  Can be fewer bytes than
				   requested if only part of the data may be read. m6000120a,6c means
				   retrieve 108 byte from base address 6000120a.
				   Failure: void. */
				{
                                        char *suffix;
					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&input_buffer[1],
                                                                                               &suffix, 16);
					int len = gdb_cris_strtol(suffix+1, 0, 16);

					/* Bogus read (i.e. outside the kernel's
					   segment)? . */
					if (!((unsigned int)addr >= 0xc0000000 &&
					      (unsigned int)addr < 0xd0000000))
						addr = NULL;

                                        mem2hex(output_buffer, addr, len);
                                }
				break;

			case 'X':
				/* Write to memory. XAA..AA,LLLL:XX..XX
				   AA..AA is the start address,  LLLL is the number of bytes, and
				   XX..XX is the binary data.
				   Success: OK
				   Failure: void. */
			case 'M':
				/* Write to memory. MAA..AA,LLLL:XX..XX
				   AA..AA is the start address,  LLLL is the number of bytes, and
				   XX..XX is the hexadecimal data.
				   Success: OK
				   Failure: void. */
				{
					char *lenptr;
					char *dataptr;
					unsigned char *addr = (unsigned char *)gdb_cris_strtol(&input_buffer[1],
										      &lenptr, 16);
					int len = gdb_cris_strtol(lenptr+1, &dataptr, 16);
					if (*lenptr == ',' && *dataptr == ':') {
						if (input_buffer[0] == 'M') {
							hex2mem(addr, dataptr + 1, len);
						} else /* X */ {
							bin2mem(addr, dataptr + 1, len);
						}
						gdb_cris_strcpy(output_buffer, "OK");
					}
					else {
						gdb_cris_strcpy(output_buffer, error_message[E06]);
					}
				}
				break;

			case 'c':
				/* Continue execution. cAA..AA
				   AA..AA is the address where execution is resumed. If AA..AA is
				   omitted, resume at the present address.
				   Success: return to the executing thread.
				   Failure: will never know. */

				if (input_buffer[1] != '\0') {
					/* FIXME: Doesn't handle address argument. */
					gdb_cris_strcpy(output_buffer, error_message[E04]);
					break;
				}

				/* Before continuing, make sure everything is set up correctly. */

				/* Set the SPC to some unlikely value.  */
				reg.spc = 0;
				/* Set the S1 flag to 0 unless some watchpoint is enabled (since setting
				   S1 to 0 would also disable watchpoints). (Note that bits 26-31 in BP_CTRL
				   are reserved, so don't check against those). */
				if ((sreg.s0_3 & 0x3fff) == 0) {
					reg.ccs &= ~(1 << (S_CCS_BITNR + CCS_SHIFT));
				}

				return;

			case 's':
				/* Step. sAA..AA
				   AA..AA is the address where execution is resumed. If AA..AA is
				   omitted, resume at the present address. Success: return to the
				   executing thread. Failure: will never know. */

				if (input_buffer[1] != '\0') {
					/* FIXME: Doesn't handle address argument. */
					gdb_cris_strcpy(output_buffer, error_message[E04]);
					break;
				}

				/* Set the SPC to PC, which is where we'll return
				   (deduced previously). */
				reg.spc = reg.pc;

				/* Set the S1 (first stacked, not current) flag, which will
				   kick into action when we rfe. */
				reg.ccs |= (1 << (S_CCS_BITNR + CCS_SHIFT));
				return;

                       case 'Z':

                               /* Insert breakpoint or watchpoint, Ztype,addr,length.
                                  Remote protocol says: A remote target shall return an empty string
                                  for an unrecognized breakpoint or watchpoint packet type. */
                               {
                                       char *lenptr;
                                       char *dataptr;
                                       int addr = gdb_cris_strtol(&input_buffer[3], &lenptr, 16);
                                       int len = gdb_cris_strtol(lenptr + 1, &dataptr, 16);
                                       char type = input_buffer[1];

				       insert_watchpoint(type, addr, len);
                                       break;
                               }

                       case 'z':
                               /* Remove breakpoint or watchpoint, Ztype,addr,length.
                                  Remote protocol says: A remote target shall return an empty string
                                  for an unrecognized breakpoint or watchpoint packet type. */
                               {
                                       char *lenptr;
                                       char *dataptr;
                                       int addr = gdb_cris_strtol(&input_buffer[3], &lenptr, 16);
                                       int len = gdb_cris_strtol(lenptr + 1, &dataptr, 16);
                                       char type = input_buffer[1];

                                       remove_watchpoint(type, addr, len);
                                       break;
                               }


			case '?':
				/* The last signal which caused a stop. ?
				   Success: SAA, where AA is the signal number.
				   Failure: void. */
				output_buffer[0] = 'S';
				output_buffer[1] = highhex(sigval);
				output_buffer[2] = lowhex(sigval);
				output_buffer[3] = 0;
				break;

			case 'D':
				/* Detach from host. D
				   Success: OK, and return to the executing thread.
				   Failure: will never know */
				putpacket("OK");
				return;

			case 'k':
			case 'r':
				/* kill request or reset request.
				   Success: restart of target.
				   Failure: will never know. */
				kill_restart();
				break;

			case 'C':
			case 'S':
			case '!':
			case 'R':
			case 'd':
				/* Continue with signal sig. Csig;AA..AA
				   Step with signal sig. Ssig;AA..AA
				   Use the extended remote protocol. !
				   Restart the target system. R0
				   Toggle debug flag. d
				   Search backwards. tAA:PP,MM
				   Not supported: E04 */

				/* FIXME: What's the difference between not supported
				   and ignored (below)? */
				gdb_cris_strcpy(output_buffer, error_message[E04]);
				break;

			default:
				/* The stub should ignore other request and send an empty
				   response ($#<checksum>). This way we can extend the protocol and GDB
				   can tell whether the stub it is talking to uses the old or the new. */
				output_buffer[0] = 0;
				break;
		}
		putpacket(output_buffer);
	}
}

void
kgdb_init(void)
{
	reg_intr_vect_rw_mask intr_mask;
	reg_ser_rw_intr_mask ser_intr_mask;

	/* Configure the kgdb serial port. */
#if defined(CONFIG_ETRAX_KGDB_PORT0)
	/* Note: no shortcut registered (not handled by multiple_interrupt).
	   See entry.S.  */
	set_exception_vector(SER0_INTR_VECT, kgdb_handle_exception);
	/* Enable the ser irq in the global config. */
	intr_mask = REG_RD(intr_vect, regi_irq, rw_mask);
	intr_mask.ser0 = 1;
	REG_WR(intr_vect, regi_irq, rw_mask, intr_mask);

	ser_intr_mask = REG_RD(ser, regi_ser0, rw_intr_mask);
	ser_intr_mask.data_avail = regk_ser_yes;
	REG_WR(ser, regi_ser0, rw_intr_mask, ser_intr_mask);
#elif defined(CONFIG_ETRAX_KGDB_PORT1)
	/* Note: no shortcut registered (not handled by multiple_interrupt).
	   See entry.S.  */
	set_exception_vector(SER1_INTR_VECT, kgdb_handle_exception);
	/* Enable the ser irq in the global config. */
	intr_mask = REG_RD(intr_vect, regi_irq, rw_mask);
	intr_mask.ser1 = 1;
	REG_WR(intr_vect, regi_irq, rw_mask, intr_mask);

	ser_intr_mask = REG_RD(ser, regi_ser1, rw_intr_mask);
	ser_intr_mask.data_avail = regk_ser_yes;
	REG_WR(ser, regi_ser1, rw_intr_mask, ser_intr_mask);
#elif defined(CONFIG_ETRAX_KGDB_PORT2)
	/* Note: no shortcut registered (not handled by multiple_interrupt).
	   See entry.S.  */
	set_exception_vector(SER2_INTR_VECT, kgdb_handle_exception);
	/* Enable the ser irq in the global config. */
	intr_mask = REG_RD(intr_vect, regi_irq, rw_mask);
	intr_mask.ser2 = 1;
	REG_WR(intr_vect, regi_irq, rw_mask, intr_mask);

	ser_intr_mask = REG_RD(ser, regi_ser2, rw_intr_mask);
	ser_intr_mask.data_avail = regk_ser_yes;
	REG_WR(ser, regi_ser2, rw_intr_mask, ser_intr_mask);
#elif defined(CONFIG_ETRAX_KGDB_PORT3)
	/* Note: no shortcut registered (not handled by multiple_interrupt).
	   See entry.S.  */
	set_exception_vector(SER3_INTR_VECT, kgdb_handle_exception);
	/* Enable the ser irq in the global config. */
	intr_mask = REG_RD(intr_vect, regi_irq, rw_mask);
	intr_mask.ser3 = 1;
	REG_WR(intr_vect, regi_irq, rw_mask, intr_mask);

	ser_intr_mask = REG_RD(ser, regi_ser3, rw_intr_mask);
	ser_intr_mask.data_avail = regk_ser_yes;
	REG_WR(ser, regi_ser3, rw_intr_mask, ser_intr_mask);
#endif

}
/* Performs a complete re-start from scratch. */
static void
kill_restart(void)
{
	machine_restart("");
}

/* Use this static breakpoint in the start-up only. */

void
breakpoint(void)
{
	kgdb_started = 1;
	dynamic_bp = 0;     /* This is a static, not a dynamic breakpoint. */
	__asm__ volatile ("break 8"); /* Jump to kgdb_handle_breakpoint. */
}

/****************************** End of file **********************************/