Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 | /* * arch/cris/arch-v32/kernel/kgdb.c * * CRIS v32 version by Orjan Friberg, Axis Communications AB. * * S390 version * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com), * * Originally written by Glenn Engel, Lake Stevens Instrument Division * * Contributed by HP Systems * * Modified for SPARC by Stu Grossman, Cygnus Support. * * Modified for Linux/MIPS (and MIPS in general) by Andreas Busse * Send complaints, suggestions etc. to <andy@waldorf-gmbh.de> * * Copyright (C) 1995 Andreas Busse */ /* FIXME: Check the documentation. */ /* * kgdb usage notes: * ----------------- * * If you select CONFIG_ETRAX_KGDB in the configuration, the kernel will be * built with different gcc flags: "-g" is added to get debug infos, and * "-fomit-frame-pointer" is omitted to make debugging easier. Since the * resulting kernel will be quite big (approx. > 7 MB), it will be stripped * before compresion. Such a kernel will behave just as usually, except if * given a "debug=<device>" command line option. (Only serial devices are * allowed for <device>, i.e. no printers or the like; possible values are * machine depedend and are the same as for the usual debug device, the one * for logging kernel messages.) If that option is given and the device can be * initialized, the kernel will connect to the remote gdb in trap_init(). The * serial parameters are fixed to 8N1 and 115200 bps, for easyness of * implementation. * * To start a debugging session, start that gdb with the debugging kernel * image (the one with the symbols, vmlinux.debug) named on the command line. * This file will be used by gdb to get symbol and debugging infos about the * kernel. Next, select remote debug mode by * target remote <device> * where <device> is the name of the serial device over which the debugged * machine is connected. Maybe you have to adjust the baud rate by * set remotebaud <rate> * or also other parameters with stty: * shell stty ... </dev/... * If the kernel to debug has already booted, it waited for gdb and now * connects, and you'll see a breakpoint being reported. If the kernel isn't * running yet, start it now. The order of gdb and the kernel doesn't matter. * Another thing worth knowing about in the getting-started phase is how to * debug the remote protocol itself. This is activated with * set remotedebug 1 * gdb will then print out each packet sent or received. You'll also get some * messages about the gdb stub on the console of the debugged machine. * * If all that works, you can use lots of the usual debugging techniques on * the kernel, e.g. inspecting and changing variables/memory, setting * breakpoints, single stepping and so on. It's also possible to interrupt the * debugged kernel by pressing C-c in gdb. Have fun! :-) * * The gdb stub is entered (and thus the remote gdb gets control) in the * following situations: * * - If breakpoint() is called. This is just after kgdb initialization, or if * a breakpoint() call has been put somewhere into the kernel source. * (Breakpoints can of course also be set the usual way in gdb.) * In eLinux, we call breakpoint() in init/main.c after IRQ initialization. * * - If there is a kernel exception, i.e. bad_super_trap() or die_if_kernel() * are entered. All the CPU exceptions are mapped to (more or less..., see * the hard_trap_info array below) appropriate signal, which are reported * to gdb. die_if_kernel() is usually called after some kind of access * error and thus is reported as SIGSEGV. * * - When panic() is called. This is reported as SIGABRT. * * - If C-c is received over the serial line, which is treated as * SIGINT. * * Of course, all these signals are just faked for gdb, since there is no * signal concept as such for the kernel. It also isn't possible --obviously-- * to set signal handlers from inside gdb, or restart the kernel with a * signal. * * Current limitations: * * - While the kernel is stopped, interrupts are disabled for safety reasons * (i.e., variables not changing magically or the like). But this also * means that the clock isn't running anymore, and that interrupts from the * hardware may get lost/not be served in time. This can cause some device * errors... * * - When single-stepping, only one instruction of the current thread is * executed, but interrupts are allowed for that time and will be serviced * if pending. Be prepared for that. * * - All debugging happens in kernel virtual address space. There's no way to * access physical memory not mapped in kernel space, or to access user * space. A way to work around this is using get_user_long & Co. in gdb * expressions, but only for the current process. * * - Interrupting the kernel only works if interrupts are currently allowed, * and the interrupt of the serial line isn't blocked by some other means * (IPL too high, disabled, ...) * * - The gdb stub is currently not reentrant, i.e. errors that happen therein * (e.g. accessing invalid memory) may not be caught correctly. This could * be removed in future by introducing a stack of struct registers. * */ /* * To enable debugger support, two things need to happen. One, a * call to kgdb_init() is necessary in order to allow any breakpoints * or error conditions to be properly intercepted and reported to gdb. * Two, a breakpoint needs to be generated to begin communication. This * is most easily accomplished by a call to breakpoint(). * * The following gdb commands are supported: * * command function Return value * * g return the value of the CPU registers hex data or ENN * G set the value of the CPU registers OK or ENN * * mAA..AA,LLLL Read LLLL bytes at address AA..AA hex data or ENN * MAA..AA,LLLL: Write LLLL bytes at address AA.AA OK or ENN * * c Resume at current address SNN ( signal NN) * cAA..AA Continue at address AA..AA SNN * * s Step one instruction SNN * sAA..AA Step one instruction from AA..AA SNN * * k kill * * ? What was the last sigval ? SNN (signal NN) * * bBB..BB Set baud rate to BB..BB OK or BNN, then sets * baud rate * * All commands and responses are sent with a packet which includes a * checksum. A packet consists of * * $<packet info>#<checksum>. * * where * <packet info> :: <characters representing the command or response> * <checksum> :: < two hex digits computed as modulo 256 sum of <packetinfo>> * * When a packet is received, it is first acknowledged with either '+' or '-'. * '+' indicates a successful transfer. '-' indicates a failed transfer. * * Example: * * Host: Reply: * $m0,10#2a +$00010203040506070809101112131415#42 * */ #include <linux/string.h> #include <linux/signal.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/linkage.h> #include <linux/reboot.h> #include <asm/setup.h> #include <asm/ptrace.h> #include <asm/irq.h> #include <asm/arch/hwregs/reg_map.h> #include <asm/arch/hwregs/reg_rdwr.h> #include <asm/arch/hwregs/intr_vect_defs.h> #include <asm/arch/hwregs/ser_defs.h> /* From entry.S. */ extern void gdb_handle_exception(void); /* From kgdb_asm.S. */ extern void kgdb_handle_exception(void); static int kgdb_started = 0; /********************************* Register image ****************************/ typedef struct register_image { /* Offset */ unsigned int r0; /* 0x00 */ unsigned int r1; /* 0x04 */ unsigned int r2; /* 0x08 */ unsigned int r3; /* 0x0C */ unsigned int r4; /* 0x10 */ unsigned int r5; /* 0x14 */ unsigned int r6; /* 0x18 */ unsigned int r7; /* 0x1C */ unsigned int r8; /* 0x20; Frame pointer (if any) */ unsigned int r9; /* 0x24 */ unsigned int r10; /* 0x28 */ unsigned int r11; /* 0x2C */ unsigned int r12; /* 0x30 */ unsigned int r13; /* 0x34 */ unsigned int sp; /* 0x38; R14, Stack pointer */ unsigned int acr; /* 0x3C; R15, Address calculation register. */ unsigned char bz; /* 0x40; P0, 8-bit zero register */ unsigned char vr; /* 0x41; P1, Version register (8-bit) */ unsigned int pid; /* 0x42; P2, Process ID */ unsigned char srs; /* 0x46; P3, Support register select (8-bit) */ unsigned short wz; /* 0x47; P4, 16-bit zero register */ unsigned int exs; /* 0x49; P5, Exception status */ unsigned int eda; /* 0x4D; P6, Exception data address */ unsigned int mof; /* 0x51; P7, Multiply overflow register */ unsigned int dz; /* 0x55; P8, 32-bit zero register */ unsigned int ebp; /* 0x59; P9, Exception base pointer */ unsigned int erp; /* 0x5D; P10, Exception return pointer. Contains the PC we are interested in. */ unsigned int srp; /* 0x61; P11, Subroutine return pointer */ unsigned int nrp; /* 0x65; P12, NMI return pointer */ unsigned int ccs; /* 0x69; P13, Condition code stack */ unsigned int usp; /* 0x6D; P14, User mode stack pointer */ unsigned int spc; /* 0x71; P15, Single step PC */ unsigned int pc; /* 0x75; Pseudo register (for the most part set to ERP). */ } registers; typedef struct bp_register_image { /* Support register bank 0. */ unsigned int s0_0; unsigned int s1_0; unsigned int s2_0; unsigned int s3_0; unsigned int s4_0; unsigned int s5_0; unsigned int s6_0; unsigned int s7_0; unsigned int s8_0; unsigned int s9_0; unsigned int s10_0; unsigned int s11_0; unsigned int s12_0; unsigned int s13_0; unsigned int s14_0; unsigned int s15_0; /* Support register bank 1. */ unsigned int s0_1; unsigned int s1_1; unsigned int s2_1; unsigned int s3_1; unsigned int s4_1; unsigned int s5_1; unsigned int s6_1; unsigned int s7_1; unsigned int s8_1; unsigned int s9_1; unsigned int s10_1; unsigned int s11_1; unsigned int s12_1; unsigned int s13_1; unsigned int s14_1; unsigned int s15_1; /* Support register bank 2. */ unsigned int s0_2; unsigned int s1_2; unsigned int s2_2; unsigned int s3_2; unsigned int s4_2; unsigned int s5_2; unsigned int s6_2; unsigned int s7_2; unsigned int s8_2; unsigned int s9_2; unsigned int s10_2; unsigned int s11_2; unsigned int s12_2; unsigned int s13_2; unsigned int s14_2; unsigned int s15_2; /* Support register bank 3. */ unsigned int s0_3; /* BP_CTRL */ unsigned int s1_3; /* BP_I0_START */ unsigned int s2_3; /* BP_I0_END */ unsigned int s3_3; /* BP_D0_START */ unsigned int s4_3; /* BP_D0_END */ unsigned int s5_3; /* BP_D1_START */ unsigned int s6_3; /* BP_D1_END */ unsigned int s7_3; /* BP_D2_START */ unsigned int s8_3; /* BP_D2_END */ unsigned int s9_3; /* BP_D3_START */ unsigned int s10_3; /* BP_D3_END */ unsigned int s11_3; /* BP_D4_START */ unsigned int s12_3; /* BP_D4_END */ unsigned int s13_3; /* BP_D5_START */ unsigned int s14_3; /* BP_D5_END */ unsigned int s15_3; /* BP_RESERVED */ } support_registers; enum register_name { R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13, SP, ACR, BZ, VR, PID, SRS, WZ, EXS, EDA, MOF, DZ, EBP, ERP, SRP, NRP, CCS, USP, SPC, PC, S0, S1, S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14, S15 }; /* The register sizes of the registers in register_name. An unimplemented register is designated by size 0 in this array. */ static int register_size[] = { 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 1, 1, 4, 1, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 }; /* Contains the register image of the kernel. (Global so that they can be reached from assembler code.) */ registers reg; support_registers sreg; /************** Prototypes for local library functions ***********************/ /* Copy of strcpy from libc. */ static char *gdb_cris_strcpy(char *s1, const char *s2); /* Copy of strlen from libc. */ static int gdb_cris_strlen(const char *s); /* Copy of memchr from libc. */ static void *gdb_cris_memchr(const void *s, int c, int n); /* Copy of strtol from libc. Does only support base 16. */ static int gdb_cris_strtol(const char *s, char **endptr, int base); /********************** Prototypes for local functions. **********************/ /* Write a value to a specified register regno in the register image of the current thread. */ static int write_register(int regno, char *val); /* Read a value from a specified register in the register image. Returns the status of the read operation. The register value is returned in valptr. */ static int read_register(char regno, unsigned int *valptr); /* Serial port, reads one character. ETRAX 100 specific. from debugport.c */ int getDebugChar(void); #ifdef CONFIG_ETRAXFS_SIM int getDebugChar(void) { return socketread(); } #endif /* Serial port, writes one character. ETRAX 100 specific. from debugport.c */ void putDebugChar(int val); #ifdef CONFIG_ETRAXFS_SIM void putDebugChar(int val) { socketwrite((char *)&val, 1); } #endif /* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte, represented by int x. */ static char highhex(int x); /* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte, represented by int x. */ static char lowhex(int x); /* Returns the integer equivalent of a hexadecimal character. */ static int hex(char ch); /* Convert the memory, pointed to by mem into hexadecimal representation. Put the result in buf, and return a pointer to the last character in buf (null). */ static char *mem2hex(char *buf, unsigned char *mem, int count); /* Convert the array, in hexadecimal representation, pointed to by buf into binary representation. Put the result in mem, and return a pointer to the character after the last byte written. */ static unsigned char *hex2mem(unsigned char *mem, char *buf, int count); /* Put the content of the array, in binary representation, pointed to by buf into memory pointed to by mem, and return a pointer to the character after the last byte written. */ static unsigned char *bin2mem(unsigned char *mem, unsigned char *buf, int count); /* Await the sequence $<data>#<checksum> and store <data> in the array buffer returned. */ static void getpacket(char *buffer); /* Send $<data>#<checksum> from the <data> in the array buffer. */ static void putpacket(char *buffer); /* Build and send a response packet in order to inform the host the stub is stopped. */ static void stub_is_stopped(int sigval); /* All expected commands are sent from remote.c. Send a response according to the description in remote.c. Not static since it needs to be reached from assembler code. */ void handle_exception(int sigval); /* Performs a complete re-start from scratch. ETRAX specific. */ static void kill_restart(void); /******************** Prototypes for global functions. ***********************/ /* The string str is prepended with the GDB printout token and sent. */ void putDebugString(const unsigned char *str, int len); /* A static breakpoint to be used at startup. */ void breakpoint(void); /* Avoid warning as the internal_stack is not used in the C-code. */ #define USEDVAR(name) { if (name) { ; } } #define USEDFUN(name) { void (*pf)(void) = (void *)name; USEDVAR(pf) } /********************************** Packet I/O ******************************/ /* BUFMAX defines the maximum number of characters in inbound/outbound buffers */ /* FIXME: How do we know it's enough? */ #define BUFMAX 512 /* Run-length encoding maximum length. Send 64 at most. */ #define RUNLENMAX 64 /* Definition of all valid hexadecimal characters */ static const char hexchars[] = "0123456789abcdef"; /* The inbound/outbound buffers used in packet I/O */ static char input_buffer[BUFMAX]; static char output_buffer[BUFMAX]; /* Error and warning messages. */ enum error_type { SUCCESS, E01, E02, E03, E04, E05, E06, }; static char *error_message[] = { "", "E01 Set current or general thread - H[c,g] - internal error.", "E02 Change register content - P - cannot change read-only register.", "E03 Thread is not alive.", /* T, not used. */ "E04 The command is not supported - [s,C,S,!,R,d,r] - internal error.", "E05 Change register content - P - the register is not implemented..", "E06 Change memory content - M - internal error.", }; /********************************** Breakpoint *******************************/ /* Use an internal stack in the breakpoint and interrupt response routines. FIXME: How do we know the size of this stack is enough? Global so it can be reached from assembler code. */ #define INTERNAL_STACK_SIZE 1024 char internal_stack[INTERNAL_STACK_SIZE]; /* Due to the breakpoint return pointer, a state variable is needed to keep track of whether it is a static (compiled) or dynamic (gdb-invoked) breakpoint to be handled. A static breakpoint uses the content of register ERP as it is whereas a dynamic breakpoint requires subtraction with 2 in order to execute the instruction. The first breakpoint is static; all following are assumed to be dynamic. */ static int dynamic_bp = 0; /********************************* String library ****************************/ /* Single-step over library functions creates trap loops. */ /* Copy char s2[] to s1[]. */ static char* gdb_cris_strcpy(char *s1, const char *s2) { char *s = s1; for (s = s1; (*s++ = *s2++) != '\0'; ) ; return s1; } /* Find length of s[]. */ static int gdb_cris_strlen(const char *s) { const char *sc; for (sc = s; *sc != '\0'; sc++) ; return (sc - s); } /* Find first occurrence of c in s[n]. */ static void* gdb_cris_memchr(const void *s, int c, int n) { const unsigned char uc = c; const unsigned char *su; for (su = s; 0 < n; ++su, --n) if (*su == uc) return (void *)su; return NULL; } /******************************* Standard library ****************************/ /* Single-step over library functions creates trap loops. */ /* Convert string to long. */ static int gdb_cris_strtol(const char *s, char **endptr, int base) { char *s1; char *sd; int x = 0; for (s1 = (char*)s; (sd = gdb_cris_memchr(hexchars, *s1, base)) != NULL; ++s1) x = x * base + (sd - hexchars); if (endptr) { /* Unconverted suffix is stored in endptr unless endptr is NULL. */ *endptr = s1; } return x; } /********************************* Register image ****************************/ /* Write a value to a specified register in the register image of the current thread. Returns status code SUCCESS, E02 or E05. */ static int write_register(int regno, char *val) { int status = SUCCESS; if (regno >= R0 && regno <= ACR) { /* Consecutive 32-bit registers. */ hex2mem((unsigned char *)®.r0 + (regno - R0) * sizeof(unsigned int), val, sizeof(unsigned int)); } else if (regno == BZ || regno == VR || regno == WZ || regno == DZ) { /* Read-only registers. */ status = E02; } else if (regno == PID) { /* 32-bit register. (Even though we already checked SRS and WZ, we cannot combine this with the EXS - SPC write since SRS and WZ have different size.) */ hex2mem((unsigned char *)®.pid, val, sizeof(unsigned int)); } else if (regno == SRS) { /* 8-bit register. */ hex2mem((unsigned char *)®.srs, val, sizeof(unsigned char)); } else if (regno >= EXS && regno <= SPC) { /* Consecutive 32-bit registers. */ hex2mem((unsigned char *)®.exs + (regno - EXS) * sizeof(unsigned int), val, sizeof(unsigned int)); } else if (regno == PC) { /* Pseudo-register. Treat as read-only. */ status = E02; } else if (regno >= S0 && regno <= S15) { /* 32-bit registers. */ hex2mem((unsigned char *)&sreg.s0_0 + (reg.srs * 16 * sizeof(unsigned int)) + (regno - S0) * sizeof(unsigned int), val, sizeof(unsigned int)); } else { /* Non-existing register. */ status = E05; } return status; } /* Read a value from a specified register in the register image. Returns the value in the register or -1 for non-implemented registers. */ static int read_register(char regno, unsigned int *valptr) { int status = SUCCESS; /* We read the zero registers from the register struct (instead of just returning 0) to catch errors. */ if (regno >= R0 && regno <= ACR) { /* Consecutive 32-bit registers. */ *valptr = *(unsigned int *)((char *)®.r0 + (regno - R0) * sizeof(unsigned int)); } else if (regno == BZ || regno == VR) { /* Consecutive 8-bit registers. */ *valptr = (unsigned int)(*(unsigned char *) ((char *)®.bz + (regno - BZ) * sizeof(char))); } else if (regno == PID) { /* 32-bit register. */ *valptr = *(unsigned int *)((char *)®.pid); } else if (regno == SRS) { /* 8-bit register. */ *valptr = (unsigned int)(*(unsigned char *)((char *)®.srs)); } else if (regno == WZ) { /* 16-bit register. */ *valptr = (unsigned int)(*(unsigned short *)(char *)®.wz); } else if (regno >= EXS && regno <= PC) { /* Consecutive 32-bit registers. */ *valptr = *(unsigned int *)((char *)®.exs + (regno - EXS) * sizeof(unsigned int)); } else if (regno >= S0 && regno <= S15) { /* Consecutive 32-bit registers, located elsewhere. */ *valptr = *(unsigned int *)((char *)&sreg.s0_0 + (reg.srs * 16 * sizeof(unsigned int)) + (regno - S0) * sizeof(unsigned int)); } else { /* Non-existing register. */ status = E05; } return status; } /********************************** Packet I/O ******************************/ /* Returns the character equivalent of a nibble, bit 7, 6, 5, and 4 of a byte, represented by int x. */ static inline char highhex(int x) { return hexchars[(x >> 4) & 0xf]; } /* Returns the character equivalent of a nibble, bit 3, 2, 1, and 0 of a byte, represented by int x. */ static inline char lowhex(int x) { return hexchars[x & 0xf]; } /* Returns the integer equivalent of a hexadecimal character. */ static int hex(char ch) { if ((ch >= 'a') && (ch <= 'f')) return (ch - 'a' + 10); if ((ch >= '0') && (ch <= '9')) return (ch - '0'); if ((ch >= 'A') && (ch <= 'F')) return (ch - 'A' + 10); return -1; } /* Convert the memory, pointed to by mem into hexadecimal representation. Put the result in buf, and return a pointer to the last character in buf (null). */ static char * mem2hex(char *buf, unsigned char *mem, int count) { int i; int ch; if (mem == NULL) { /* Invalid address, caught by 'm' packet handler. */ for (i = 0; i < count; i++) { *buf++ = '0'; *buf++ = '0'; } } else { /* Valid mem address. */ for (i = 0; i < count; i++) { ch = *mem++; *buf++ = highhex (ch); *buf++ = lowhex (ch); } } /* Terminate properly. */ *buf = '\0'; return buf; } /* Same as mem2hex, but puts it in network byte order. */ static char * mem2hex_nbo(char *buf, unsigned char *mem, int count) { int i; int ch; mem += count - 1; for (i = 0; i < count; i++) { ch = *mem--; *buf++ = highhex (ch); *buf++ = lowhex (ch); } /* Terminate properly. */ *buf = '\0'; return buf; } /* Convert the array, in hexadecimal representation, pointed to by buf into binary representation. Put the result in mem, and return a pointer to the character after the last byte written. */ static unsigned char* hex2mem(unsigned char *mem, char *buf, int count) { int i; unsigned char ch; for (i = 0; i < count; i++) { ch = hex (*buf++) << 4; ch = ch + hex (*buf++); *mem++ = ch; } return mem; } /* Put the content of the array, in binary representation, pointed to by buf into memory pointed to by mem, and return a pointer to the character after the last byte written. Gdb will escape $, #, and the escape char (0x7d). */ static unsigned char* bin2mem(unsigned char *mem, unsigned char *buf, int count) { int i; unsigned char *next; for (i = 0; i < count; i++) { /* Check for any escaped characters. Be paranoid and only unescape chars that should be escaped. */ if (*buf == 0x7d) { next = buf + 1; if (*next == 0x3 || *next == 0x4 || *next == 0x5D) { /* #, $, ESC */ buf++; *buf += 0x20; } } *mem++ = *buf++; } return mem; } /* Await the sequence $<data>#<checksum> and store <data> in the array buffer returned. */ static void getpacket(char *buffer) { unsigned char checksum; unsigned char xmitcsum; int i; int count; char ch; do { while((ch = getDebugChar ()) != '$') /* Wait for the start character $ and ignore all other characters */; checksum = 0; xmitcsum = -1; count = 0; /* Read until a # or the end of the buffer is reached */ while (count < BUFMAX) { ch = getDebugChar(); if (ch == '#') break; checksum = checksum + ch; buffer[count] = ch; count = count + 1; } if (count >= BUFMAX) continue; buffer[count] = 0; if (ch == '#') { xmitcsum = hex(getDebugChar()) << 4; xmitcsum += hex(getDebugChar()); if (checksum != xmitcsum) { /* Wrong checksum */ putDebugChar('-'); } else { /* Correct checksum */ putDebugChar('+'); /* If sequence characters are received, reply with them */ if (buffer[2] == ':') { putDebugChar(buffer[0]); putDebugChar(buffer[1]); /* Remove the sequence characters from the buffer */ count = gdb_cris_strlen(buffer); for (i = 3; i <= count; i++) buffer[i - 3] = buffer[i]; } } } } while (checksum != xmitcsum); } /* Send $<data>#<checksum> from the <data> in the array buffer. */ static void putpacket(char *buffer) { int checksum; int runlen; int encode; do { char *src = buffer; putDebugChar('$'); checksum = 0; while (*src) { /* Do run length encoding */ putDebugChar(*src); checksum += *src; runlen = 0; while (runlen < RUNLENMAX && *src == src[runlen]) { runlen++; } if (runlen > 3) { /* Got a useful amount */ putDebugChar ('*'); checksum += '*'; encode = runlen + ' ' - 4; putDebugChar(encode); checksum += encode; src += runlen; } else { src++; } } putDebugChar('#'); putDebugChar(highhex (checksum)); putDebugChar(lowhex (checksum)); } while(kgdb_started && (getDebugChar() != '+')); } /* The string str is prepended with the GDB printout token and sent. Required in traditional implementations. */ void putDebugString(const unsigned char *str, int len) { /* Move SPC forward if we are single-stepping. */ asm("spchere:"); asm("move $spc, $r10"); asm("cmp.d spchere, $r10"); asm("bne nosstep"); asm("nop"); asm("move.d spccont, $r10"); asm("move $r10, $spc"); asm("nosstep:"); output_buffer[0] = 'O'; mem2hex(&output_buffer[1], (unsigned char *)str, len); putpacket(output_buffer); asm("spccont:"); } /********************************** Handle exceptions ************************/ /* Build and send a response packet in order to inform the host the stub is stopped. TAAn...:r...;n...:r...;n...:r...; AA = signal number n... = register number (hex) r... = register contents n... = `thread' r... = thread process ID. This is a hex integer. n... = other string not starting with valid hex digit. gdb should ignore this n,r pair and go on to the next. This way we can extend the protocol. */ static void stub_is_stopped(int sigval) { char *ptr = output_buffer; unsigned int reg_cont; /* Send trap type (converted to signal) */ *ptr++ = 'T'; *ptr++ = highhex(sigval); *ptr++ = lowhex(sigval); if (((reg.exs & 0xff00) >> 8) == 0xc) { /* Some kind of hardware watchpoint triggered. Find which one and determine its type (read/write/access). */ int S, bp, trig_bits = 0, rw_bits = 0; int trig_mask = 0; unsigned int *bp_d_regs = &sreg.s3_3; /* In a lot of cases, the stopped data address will simply be EDA. In some cases, we adjust it to match the watched data range. (We don't want to change the actual EDA though). */ unsigned int stopped_data_address; /* The S field of EXS. */ S = (reg.exs & 0xffff0000) >> 16; if (S & 1) { /* Instruction watchpoint. */ /* FIXME: Check against, and possibly adjust reported EDA. */ } else { /* Data watchpoint. Find the one that triggered. */ for (bp = 0; bp < 6; bp++) { /* Dx_RD, Dx_WR in the S field of EXS for this BP. */ int bitpos_trig = 1 + bp * 2; /* Dx_BPRD, Dx_BPWR in BP_CTRL for this BP. */ int bitpos_config = 2 + bp * 4; /* Get read/write trig bits for this BP. */ trig_bits = (S & (3 << bitpos_trig)) >> bitpos_trig; /* Read/write config bits for this BP. */ rw_bits = (sreg.s0_3 & (3 << bitpos_config)) >> bitpos_config; if (trig_bits) { /* Sanity check: the BP shouldn't trigger for accesses that it isn't configured for. */ if ((rw_bits == 0x1 && trig_bits != 0x1) || (rw_bits == 0x2 && trig_bits != 0x2)) panic("Invalid r/w trigging for this BP"); /* Mark this BP as trigged for future reference. */ trig_mask |= (1 << bp); if (reg.eda >= bp_d_regs[bp * 2] && reg.eda <= bp_d_regs[bp * 2 + 1]) { /* EDA withing range for this BP; it must be the one we're looking for. */ stopped_data_address = reg.eda; break; } } } if (bp < 6) { /* Found a trigged BP with EDA within its configured data range. */ } else if (trig_mask) { /* Something triggered, but EDA doesn't match any BP's range. */ for (bp = 0; bp < 6; bp++) { /* Dx_BPRD, Dx_BPWR in BP_CTRL for this BP. */ int bitpos_config = 2 + bp * 4; /* Read/write config bits for this BP (needed later). */ rw_bits = (sreg.s0_3 & (3 << bitpos_config)) >> bitpos_config; if (trig_mask & (1 << bp)) { /* EDA within 31 bytes of the configured start address? */ if (reg.eda + 31 >= bp_d_regs[bp * 2]) { /* Changing the reported address to match the start address of the first applicable BP. */ stopped_data_address = bp_d_regs[bp * 2]; break; } else { /* We continue since we might find another useful BP. */ printk("EDA doesn't match trigged BP's range"); } } } } /* No match yet? */ BUG_ON(bp >= 6); /* Note that we report the type according to what the BP is configured for (otherwise we'd never report an 'awatch'), not according to how it trigged. We did check that the trigged bits match what the BP is configured for though. */ if (rw_bits == 0x1) { /* read */ strncpy(ptr, "rwatch", 6); ptr += 6; } else if (rw_bits == 0x2) { /* write */ strncpy(ptr, "watch", 5); ptr += 5; } else if (rw_bits == 0x3) { /* access */ strncpy(ptr, "awatch", 6); ptr += 6; } else { panic("Invalid r/w bits for this BP."); } *ptr++ = ':'; /* Note that we don't read_register(EDA, ...) */ ptr = mem2hex_nbo(ptr, (unsigned char *)&stopped_data_address, register_size[EDA]); *ptr++ = ';'; } } /* Only send PC, frame and stack pointer. */ read_register(PC, ®_cont); *ptr++ = highhex(PC); *ptr++ = lowhex(PC); *ptr++ = ':'; ptr = mem2hex(ptr, (unsigned char *)®_cont, register_size[PC]); *ptr++ = ';'; read_register(R8, ®_cont); *ptr++ = highhex(R8); *ptr++ = lowhex(R8); *ptr++ = ':'; ptr = mem2hex(ptr, (unsigned char *)®_cont, register_size[R8]); *ptr++ = ';'; read_register(SP, ®_cont); *ptr++ = highhex(SP); *ptr++ = lowhex(SP); *ptr++ = ':'; ptr = mem2hex(ptr, (unsigned char *)®_cont, register_size[SP]); *ptr++ = ';'; /* Send ERP as well; this will save us an entire register fetch in some cases. */ read_register(ERP, ®_cont); *ptr++ = highhex(ERP); *ptr++ = lowhex(ERP); *ptr++ = ':'; ptr = mem2hex(ptr, (unsigned char *)®_cont, register_size[ERP]); *ptr++ = ';'; /* null-terminate and send it off */ *ptr = 0; putpacket(output_buffer); } /* Returns the size of an instruction that has a delay slot. */ int insn_size(unsigned long pc) { unsigned short opcode = *(unsigned short *)pc; int size = 0; switch ((opcode & 0x0f00) >> 8) { case 0x0: case 0x9: case 0xb: size = 2; break; case 0xe: case 0xf: size = 6; break; case 0xd: /* Could be 4 or 6; check more bits. */ if ((opcode & 0xff) == 0xff) size = 4; else size = 6; break; default: panic("Couldn't find size of opcode 0x%x at 0x%lx\n", opcode, pc); } return size; } void register_fixup(int sigval) { /* Compensate for ACR push at the beginning of exception handler. */ reg.sp += 4; /* Standard case. */ reg.pc = reg.erp; if (reg.erp & 0x1) { /* Delay slot bit set. Report as stopped on proper instruction. */ if (reg.spc) { /* Rely on SPC if set. */ reg.pc = reg.spc; } else { /* Calculate the PC from the size of the instruction that the delay slot we're in belongs to. */ reg.pc += insn_size(reg.erp & ~1) - 1 ; } } if ((reg.exs & 0x3) == 0x0) { /* Bits 1 - 0 indicate the type of memory operation performed by the interrupted instruction. 0 means no memory operation, and EDA is undefined in that case. We zero it to avoid confusion. */ reg.eda = 0; } if (sigval == SIGTRAP) { /* Break 8, single step or hardware breakpoint exception. */ /* Check IDX field of EXS. */ if (((reg.exs & 0xff00) >> 8) == 0x18) { /* Break 8. */ /* Static (compiled) breakpoints must return to the next instruction in order to avoid infinite loops (default value of ERP). Dynamic (gdb-invoked) must subtract the size of the break instruction from the ERP so that the instruction that was originally in the break instruction's place will be run when we return from the exception. */ if (!dynamic_bp) { /* Assuming that all breakpoints are dynamic from now on. */ dynamic_bp = 1; } else { /* Only if not in a delay slot. */ if (!(reg.erp & 0x1)) { reg.erp -= 2; reg.pc -= 2; } } } else if (((reg.exs & 0xff00) >> 8) == 0x3) { /* Single step. */ /* Don't fiddle with S1. */ } else if (((reg.exs & 0xff00) >> 8) == 0xc) { /* Hardware watchpoint exception. */ /* SPC has been updated so that we will get a single step exception when we return, but we don't want that. */ reg.spc = 0; /* Don't fiddle with S1. */ } } else if (sigval == SIGINT) { /* Nothing special. */ } } static void insert_watchpoint(char type, int addr, int len) { /* Breakpoint/watchpoint types (GDB terminology): 0 = memory breakpoint for instructions (not supported; done via memory write instead) 1 = hardware breakpoint for instructions (supported) 2 = write watchpoint (supported) 3 = read watchpoint (supported) 4 = access watchpoint (supported) */ if (type < '1' || type > '4') { output_buffer[0] = 0; return; } /* Read watchpoints are set as access watchpoints, because of GDB's inability to deal with pure read watchpoints. */ if (type == '3') type = '4'; if (type == '1') { /* Hardware (instruction) breakpoint. */ /* Bit 0 in BP_CTRL holds the configuration for I0. */ if (sreg.s0_3 & 0x1) { /* Already in use. */ gdb_cris_strcpy(output_buffer, error_message[E04]); return; } /* Configure. */ sreg.s1_3 = addr; sreg.s2_3 = (addr + len - 1); sreg.s0_3 |= 1; } else { int bp; unsigned int *bp_d_regs = &sreg.s3_3; /* The watchpoint allocation scheme is the simplest possible. For example, if a region is watched for read and a write watch is requested, a new watchpoint will be used. Also, if a watch for a region that is already covered by one or more existing watchpoints, a new watchpoint will be used. */ /* First, find a free data watchpoint. */ for (bp = 0; bp < 6; bp++) { /* Each data watchpoint's control registers occupy 2 bits (hence the 3), starting at bit 2 for D0 (hence the 2) with 4 bits between for each watchpoint (yes, the 4). */ if (!(sreg.s0_3 & (0x3 << (2 + (bp * 4))))) { break; } } if (bp > 5) { /* We're out of watchpoints. */ gdb_cris_strcpy(output_buffer, error_message[E04]); return; } /* Configure the control register first. */ if (type == '3' || type == '4') { /* Trigger on read. */ sreg.s0_3 |= (1 << (2 + bp * 4)); } if (type == '2' || type == '4') { /* Trigger on write. */ sreg.s0_3 |= (2 << (2 + bp * 4)); } /* Ugly pointer arithmetics to configure the watched range. */ bp_d_regs[bp * 2] = addr; bp_d_regs[bp * 2 + 1] = (addr + len - 1); } /* Set the S1 flag to enable watchpoints. */ reg.ccs |= (1 << (S_CCS_BITNR + CCS_SHIFT)); gdb_cris_strcpy(output_buffer, "OK"); } static void remove_watchpoint(char type, int addr, int len) { /* Breakpoint/watchpoint types: 0 = memory breakpoint for instructions (not supported; done via memory write instead) 1 = hardware breakpoint for instructions (supported) 2 = write watchpoint (supported) 3 = read watchpoint (supported) 4 = access watchpoint (supported) */ if (type < '1' || type > '4') { output_buffer[0] = 0; return; } /* Read watchpoints are set as access watchpoints, because of GDB's inability to deal with pure read watchpoints. */ if (type == '3') type = '4'; if (type == '1') { /* Hardware breakpoint. */ /* Bit 0 in BP_CTRL holds the configuration for I0. */ if (!(sreg.s0_3 & 0x1)) { /* Not in use. */ gdb_cris_strcpy(output_buffer, error_message[E04]); return; } /* Deconfigure. */ sreg.s1_3 = 0; sreg.s2_3 = 0; sreg.s0_3 &= ~1; } else { int bp; unsigned int *bp_d_regs = &sreg.s3_3; /* Try to find a watchpoint that is configured for the specified range, then check that read/write also matches. */ /* Ugly pointer arithmetic, since I cannot rely on a single switch (addr) as there may be several watchpoints with the same start address for example. */ for (bp = 0; bp < 6; bp++) { if (bp_d_regs[bp * 2] == addr && bp_d_regs[bp * 2 + 1] == (addr + len - 1)) { /* Matching range. */ int bitpos = 2 + bp * 4; int rw_bits; /* Read/write bits for this BP. */ rw_bits = (sreg.s0_3 & (0x3 << bitpos)) >> bitpos; if ((type == '3' && rw_bits == 0x1) || (type == '2' && rw_bits == 0x2) || (type == '4' && rw_bits == 0x3)) { /* Read/write matched. */ break; } } } if (bp > 5) { /* No watchpoint matched. */ gdb_cris_strcpy(output_buffer, error_message[E04]); return; } /* Found a matching watchpoint. Now, deconfigure it by both disabling read/write in bp_ctrl and zeroing its start/end addresses. */ sreg.s0_3 &= ~(3 << (2 + (bp * 4))); bp_d_regs[bp * 2] = 0; bp_d_regs[bp * 2 + 1] = 0; } /* Note that we don't clear the S1 flag here. It's done when continuing. */ gdb_cris_strcpy(output_buffer, "OK"); } /* All expected commands are sent from remote.c. Send a response according to the description in remote.c. */ void handle_exception(int sigval) { /* Avoid warning of not used. */ USEDFUN(handle_exception); USEDVAR(internal_stack[0]); register_fixup(sigval); /* Send response. */ stub_is_stopped(sigval); for (;;) { output_buffer[0] = '\0'; getpacket(input_buffer); switch (input_buffer[0]) { case 'g': /* Read registers: g Success: Each byte of register data is described by two hex digits. Registers are in the internal order for GDB, and the bytes in a register are in the same order the machine uses. Failure: void. */ { char *buf; /* General and special registers. */ buf = mem2hex(output_buffer, (char *)®, sizeof(registers)); /* Support registers. */ /* -1 because of the null termination that mem2hex adds. */ mem2hex(buf, (char *)&sreg + (reg.srs * 16 * sizeof(unsigned int)), 16 * sizeof(unsigned int)); break; } case 'G': /* Write registers. GXX..XX Each byte of register data is described by two hex digits. Success: OK Failure: void. */ /* General and special registers. */ hex2mem((char *)®, &input_buffer[1], sizeof(registers)); /* Support registers. */ hex2mem((char *)&sreg + (reg.srs * 16 * sizeof(unsigned int)), &input_buffer[1] + sizeof(registers), 16 * sizeof(unsigned int)); gdb_cris_strcpy(output_buffer, "OK"); break; case 'P': /* Write register. Pn...=r... Write register n..., hex value without 0x, with value r..., which contains a hex value without 0x and two hex digits for each byte in the register (target byte order). P1f=11223344 means set register 31 to 44332211. Success: OK Failure: E02, E05 */ { char *suffix; int regno = gdb_cris_strtol(&input_buffer[1], &suffix, 16); int status; status = write_register(regno, suffix+1); switch (status) { case E02: /* Do not support read-only registers. */ gdb_cris_strcpy(output_buffer, error_message[E02]); break; case E05: /* Do not support non-existing registers. */ gdb_cris_strcpy(output_buffer, error_message[E05]); break; default: /* Valid register number. */ gdb_cris_strcpy(output_buffer, "OK"); break; } } break; case 'm': /* Read from memory. mAA..AA,LLLL AA..AA is the address and LLLL is the length. Success: XX..XX is the memory content. Can be fewer bytes than requested if only part of the data may be read. m6000120a,6c means retrieve 108 byte from base address 6000120a. Failure: void. */ { char *suffix; unsigned char *addr = (unsigned char *)gdb_cris_strtol(&input_buffer[1], &suffix, 16); int len = gdb_cris_strtol(suffix+1, 0, 16); /* Bogus read (i.e. outside the kernel's segment)? . */ if (!((unsigned int)addr >= 0xc0000000 && (unsigned int)addr < 0xd0000000)) addr = NULL; mem2hex(output_buffer, addr, len); } break; case 'X': /* Write to memory. XAA..AA,LLLL:XX..XX AA..AA is the start address, LLLL is the number of bytes, and XX..XX is the binary data. Success: OK Failure: void. */ case 'M': /* Write to memory. MAA..AA,LLLL:XX..XX AA..AA is the start address, LLLL is the number of bytes, and XX..XX is the hexadecimal data. Success: OK Failure: void. */ { char *lenptr; char *dataptr; unsigned char *addr = (unsigned char *)gdb_cris_strtol(&input_buffer[1], &lenptr, 16); int len = gdb_cris_strtol(lenptr+1, &dataptr, 16); if (*lenptr == ',' && *dataptr == ':') { if (input_buffer[0] == 'M') { hex2mem(addr, dataptr + 1, len); } else /* X */ { bin2mem(addr, dataptr + 1, len); } gdb_cris_strcpy(output_buffer, "OK"); } else { gdb_cris_strcpy(output_buffer, error_message[E06]); } } break; case 'c': /* Continue execution. cAA..AA AA..AA is the address where execution is resumed. If AA..AA is omitted, resume at the present address. Success: return to the executing thread. Failure: will never know. */ if (input_buffer[1] != '\0') { /* FIXME: Doesn't handle address argument. */ gdb_cris_strcpy(output_buffer, error_message[E04]); break; } /* Before continuing, make sure everything is set up correctly. */ /* Set the SPC to some unlikely value. */ reg.spc = 0; /* Set the S1 flag to 0 unless some watchpoint is enabled (since setting S1 to 0 would also disable watchpoints). (Note that bits 26-31 in BP_CTRL are reserved, so don't check against those). */ if ((sreg.s0_3 & 0x3fff) == 0) { reg.ccs &= ~(1 << (S_CCS_BITNR + CCS_SHIFT)); } return; case 's': /* Step. sAA..AA AA..AA is the address where execution is resumed. If AA..AA is omitted, resume at the present address. Success: return to the executing thread. Failure: will never know. */ if (input_buffer[1] != '\0') { /* FIXME: Doesn't handle address argument. */ gdb_cris_strcpy(output_buffer, error_message[E04]); break; } /* Set the SPC to PC, which is where we'll return (deduced previously). */ reg.spc = reg.pc; /* Set the S1 (first stacked, not current) flag, which will kick into action when we rfe. */ reg.ccs |= (1 << (S_CCS_BITNR + CCS_SHIFT)); return; case 'Z': /* Insert breakpoint or watchpoint, Ztype,addr,length. Remote protocol says: A remote target shall return an empty string for an unrecognized breakpoint or watchpoint packet type. */ { char *lenptr; char *dataptr; int addr = gdb_cris_strtol(&input_buffer[3], &lenptr, 16); int len = gdb_cris_strtol(lenptr + 1, &dataptr, 16); char type = input_buffer[1]; insert_watchpoint(type, addr, len); break; } case 'z': /* Remove breakpoint or watchpoint, Ztype,addr,length. Remote protocol says: A remote target shall return an empty string for an unrecognized breakpoint or watchpoint packet type. */ { char *lenptr; char *dataptr; int addr = gdb_cris_strtol(&input_buffer[3], &lenptr, 16); int len = gdb_cris_strtol(lenptr + 1, &dataptr, 16); char type = input_buffer[1]; remove_watchpoint(type, addr, len); break; } case '?': /* The last signal which caused a stop. ? Success: SAA, where AA is the signal number. Failure: void. */ output_buffer[0] = 'S'; output_buffer[1] = highhex(sigval); output_buffer[2] = lowhex(sigval); output_buffer[3] = 0; break; case 'D': /* Detach from host. D Success: OK, and return to the executing thread. Failure: will never know */ putpacket("OK"); return; case 'k': case 'r': /* kill request or reset request. Success: restart of target. Failure: will never know. */ kill_restart(); break; case 'C': case 'S': case '!': case 'R': case 'd': /* Continue with signal sig. Csig;AA..AA Step with signal sig. Ssig;AA..AA Use the extended remote protocol. ! Restart the target system. R0 Toggle debug flag. d Search backwards. tAA:PP,MM Not supported: E04 */ /* FIXME: What's the difference between not supported and ignored (below)? */ gdb_cris_strcpy(output_buffer, error_message[E04]); break; default: /* The stub should ignore other request and send an empty response ($#<checksum>). This way we can extend the protocol and GDB can tell whether the stub it is talking to uses the old or the new. */ output_buffer[0] = 0; break; } putpacket(output_buffer); } } void kgdb_init(void) { reg_intr_vect_rw_mask intr_mask; reg_ser_rw_intr_mask ser_intr_mask; /* Configure the kgdb serial port. */ #if defined(CONFIG_ETRAX_KGDB_PORT0) /* Note: no shortcut registered (not handled by multiple_interrupt). See entry.S. */ set_exception_vector(SER0_INTR_VECT, kgdb_handle_exception); /* Enable the ser irq in the global config. */ intr_mask = REG_RD(intr_vect, regi_irq, rw_mask); intr_mask.ser0 = 1; REG_WR(intr_vect, regi_irq, rw_mask, intr_mask); ser_intr_mask = REG_RD(ser, regi_ser0, rw_intr_mask); ser_intr_mask.data_avail = regk_ser_yes; REG_WR(ser, regi_ser0, rw_intr_mask, ser_intr_mask); #elif defined(CONFIG_ETRAX_KGDB_PORT1) /* Note: no shortcut registered (not handled by multiple_interrupt). See entry.S. */ set_exception_vector(SER1_INTR_VECT, kgdb_handle_exception); /* Enable the ser irq in the global config. */ intr_mask = REG_RD(intr_vect, regi_irq, rw_mask); intr_mask.ser1 = 1; REG_WR(intr_vect, regi_irq, rw_mask, intr_mask); ser_intr_mask = REG_RD(ser, regi_ser1, rw_intr_mask); ser_intr_mask.data_avail = regk_ser_yes; REG_WR(ser, regi_ser1, rw_intr_mask, ser_intr_mask); #elif defined(CONFIG_ETRAX_KGDB_PORT2) /* Note: no shortcut registered (not handled by multiple_interrupt). See entry.S. */ set_exception_vector(SER2_INTR_VECT, kgdb_handle_exception); /* Enable the ser irq in the global config. */ intr_mask = REG_RD(intr_vect, regi_irq, rw_mask); intr_mask.ser2 = 1; REG_WR(intr_vect, regi_irq, rw_mask, intr_mask); ser_intr_mask = REG_RD(ser, regi_ser2, rw_intr_mask); ser_intr_mask.data_avail = regk_ser_yes; REG_WR(ser, regi_ser2, rw_intr_mask, ser_intr_mask); #elif defined(CONFIG_ETRAX_KGDB_PORT3) /* Note: no shortcut registered (not handled by multiple_interrupt). See entry.S. */ set_exception_vector(SER3_INTR_VECT, kgdb_handle_exception); /* Enable the ser irq in the global config. */ intr_mask = REG_RD(intr_vect, regi_irq, rw_mask); intr_mask.ser3 = 1; REG_WR(intr_vect, regi_irq, rw_mask, intr_mask); ser_intr_mask = REG_RD(ser, regi_ser3, rw_intr_mask); ser_intr_mask.data_avail = regk_ser_yes; REG_WR(ser, regi_ser3, rw_intr_mask, ser_intr_mask); #endif } /* Performs a complete re-start from scratch. */ static void kill_restart(void) { machine_restart(""); } /* Use this static breakpoint in the start-up only. */ void breakpoint(void) { kgdb_started = 1; dynamic_bp = 0; /* This is a static, not a dynamic breakpoint. */ __asm__ volatile ("break 8"); /* Jump to kgdb_handle_breakpoint. */ } /****************************** End of file **********************************/ |