Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 | /* * mm/rmap.c - physical to virtual reverse mappings * * Copyright 2001, Rik van Riel <riel@conectiva.com.br> * Released under the General Public License (GPL). * * * Simple, low overhead pte-based reverse mapping scheme. * This is kept modular because we may want to experiment * with object-based reverse mapping schemes. Please try * to keep this thing as modular as possible. */ /* * Locking: * - the page->pte.chain is protected by the PG_chainlock bit, * which nests within the the mm->page_table_lock, * which nests within the page lock. * - because swapout locking is opposite to the locking order * in the page fault path, the swapout path uses trylocks * on the mm->page_table_lock */ #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/swap.h> #include <linux/swapops.h> #include <linux/slab.h> #include <linux/init.h> #include <linux/rmap-locking.h> #include <linux/cache.h> #include <linux/percpu.h> #include <asm/pgalloc.h> #include <asm/rmap.h> #include <asm/tlb.h> #include <asm/tlbflush.h> /* #define DEBUG_RMAP */ /* * Shared pages have a chain of pte_chain structures, used to locate * all the mappings to this page. We only need a pointer to the pte * here, the page struct for the page table page contains the process * it belongs to and the offset within that process. * * We use an array of pte pointers in this structure to minimise cache misses * while traversing reverse maps. */ #define NRPTE ((L1_CACHE_BYTES - sizeof(unsigned long))/sizeof(pte_addr_t)) /* * next_and_idx encodes both the address of the next pte_chain and the * offset of the highest-index used pte in ptes[]. */ struct pte_chain { unsigned long next_and_idx; pte_addr_t ptes[NRPTE]; } ____cacheline_aligned; kmem_cache_t *pte_chain_cache; static inline struct pte_chain *pte_chain_next(struct pte_chain *pte_chain) { return (struct pte_chain *)(pte_chain->next_and_idx & ~NRPTE); } static inline struct pte_chain *pte_chain_ptr(unsigned long pte_chain_addr) { return (struct pte_chain *)(pte_chain_addr & ~NRPTE); } static inline int pte_chain_idx(struct pte_chain *pte_chain) { return pte_chain->next_and_idx & NRPTE; } static inline unsigned long pte_chain_encode(struct pte_chain *pte_chain, int idx) { return (unsigned long)pte_chain | idx; } /* * pte_chain list management policy: * * - If a page has a pte_chain list then it is shared by at least two processes, * because a single sharing uses PageDirect. (Well, this isn't true yet, * coz this code doesn't collapse singletons back to PageDirect on the remove * path). * - A pte_chain list has free space only in the head member - all succeeding * members are 100% full. * - If the head element has free space, it occurs in its leading slots. * - All free space in the pte_chain is at the start of the head member. * - Insertion into the pte_chain puts a pte pointer in the last free slot of * the head member. * - Removal from a pte chain moves the head pte of the head member onto the * victim pte and frees the head member if it became empty. */ /** ** VM stuff below this comment **/ /** * page_referenced - test if the page was referenced * @page: the page to test * * Quick test_and_clear_referenced for all mappings to a page, * returns the number of processes which referenced the page. * Caller needs to hold the pte_chain_lock. * * If the page has a single-entry pte_chain, collapse that back to a PageDirect * representation. This way, it's only done under memory pressure. */ int page_referenced(struct page * page) { struct pte_chain *pc; int referenced = 0; if (page_test_and_clear_young(page)) mark_page_accessed(page); if (TestClearPageReferenced(page)) referenced++; if (PageDirect(page)) { pte_t *pte = rmap_ptep_map(page->pte.direct); if (ptep_test_and_clear_young(pte)) referenced++; rmap_ptep_unmap(pte); } else { int nr_chains = 0; /* Check all the page tables mapping this page. */ for (pc = page->pte.chain; pc; pc = pte_chain_next(pc)) { int i; for (i = pte_chain_idx(pc); i < NRPTE; i++) { pte_addr_t pte_paddr = pc->ptes[i]; pte_t *p; p = rmap_ptep_map(pte_paddr); if (ptep_test_and_clear_young(p)) referenced++; rmap_ptep_unmap(p); nr_chains++; } } if (nr_chains == 1) { pc = page->pte.chain; page->pte.direct = pc->ptes[NRPTE-1]; SetPageDirect(page); pc->ptes[NRPTE-1] = 0; __pte_chain_free(pc); } } return referenced; } /** * page_add_rmap - add reverse mapping entry to a page * @page: the page to add the mapping to * @ptep: the page table entry mapping this page * * Add a new pte reverse mapping to a page. * The caller needs to hold the mm->page_table_lock. */ struct pte_chain * page_add_rmap(struct page *page, pte_t *ptep, struct pte_chain *pte_chain) { pte_addr_t pte_paddr = ptep_to_paddr(ptep); struct pte_chain *cur_pte_chain; if (!pfn_valid(page_to_pfn(page)) || PageReserved(page)) return pte_chain; pte_chain_lock(page); if (page->pte.direct == 0) { page->pte.direct = pte_paddr; SetPageDirect(page); inc_page_state(nr_mapped); goto out; } if (PageDirect(page)) { /* Convert a direct pointer into a pte_chain */ ClearPageDirect(page); pte_chain->ptes[NRPTE-1] = page->pte.direct; pte_chain->ptes[NRPTE-2] = pte_paddr; pte_chain->next_and_idx = pte_chain_encode(NULL, NRPTE-2); page->pte.direct = 0; page->pte.chain = pte_chain; pte_chain = NULL; /* We consumed it */ goto out; } cur_pte_chain = page->pte.chain; if (cur_pte_chain->ptes[0]) { /* It's full */ pte_chain->next_and_idx = pte_chain_encode(cur_pte_chain, NRPTE - 1); page->pte.chain = pte_chain; pte_chain->ptes[NRPTE-1] = pte_paddr; pte_chain = NULL; /* We consumed it */ goto out; } cur_pte_chain->ptes[pte_chain_idx(cur_pte_chain) - 1] = pte_paddr; cur_pte_chain->next_and_idx--; out: pte_chain_unlock(page); return pte_chain; } /** * page_remove_rmap - take down reverse mapping to a page * @page: page to remove mapping from * @ptep: page table entry to remove * * Removes the reverse mapping from the pte_chain of the page, * after that the caller can clear the page table entry and free * the page. * Caller needs to hold the mm->page_table_lock. */ void page_remove_rmap(struct page *page, pte_t *ptep) { pte_addr_t pte_paddr = ptep_to_paddr(ptep); struct pte_chain *pc; if (!pfn_valid(page_to_pfn(page)) || PageReserved(page)) return; pte_chain_lock(page); if (!page_mapped(page)) goto out_unlock; /* remap_page_range() from a driver? */ if (PageDirect(page)) { if (page->pte.direct == pte_paddr) { page->pte.direct = 0; ClearPageDirect(page); goto out; } } else { struct pte_chain *start = page->pte.chain; struct pte_chain *next; int victim_i = pte_chain_idx(start); for (pc = start; pc; pc = next) { int i; next = pte_chain_next(pc); if (next) prefetch(next); for (i = pte_chain_idx(pc); i < NRPTE; i++) { pte_addr_t pa = pc->ptes[i]; if (pa != pte_paddr) continue; pc->ptes[i] = start->ptes[victim_i]; start->ptes[victim_i] = 0; if (victim_i == NRPTE-1) { /* Emptied a pte_chain */ page->pte.chain = pte_chain_next(start); __pte_chain_free(start); } else { start->next_and_idx++; } goto out; } } } out: if (page->pte.direct == 0 && page_test_and_clear_dirty(page)) set_page_dirty(page); if (!page_mapped(page)) dec_page_state(nr_mapped); out_unlock: pte_chain_unlock(page); return; } /** * try_to_unmap_one - worker function for try_to_unmap * @page: page to unmap * @ptep: page table entry to unmap from page * * Internal helper function for try_to_unmap, called for each page * table entry mapping a page. Because locking order here is opposite * to the locking order used by the page fault path, we use trylocks. * Locking: * page lock shrink_list(), trylock * pte_chain_lock shrink_list() * mm->page_table_lock try_to_unmap_one(), trylock */ static int FASTCALL(try_to_unmap_one(struct page *, pte_addr_t)); static int try_to_unmap_one(struct page * page, pte_addr_t paddr) { pte_t *ptep = rmap_ptep_map(paddr); unsigned long address = ptep_to_address(ptep); struct mm_struct * mm = ptep_to_mm(ptep); struct vm_area_struct * vma; pte_t pte; int ret; if (!mm) BUG(); /* * We need the page_table_lock to protect us from page faults, * munmap, fork, etc... */ if (!spin_trylock(&mm->page_table_lock)) { rmap_ptep_unmap(ptep); return SWAP_AGAIN; } /* During mremap, it's possible pages are not in a VMA. */ vma = find_vma(mm, address); if (!vma) { ret = SWAP_FAIL; goto out_unlock; } /* The page is mlock()d, we cannot swap it out. */ if (vma->vm_flags & VM_LOCKED) { ret = SWAP_FAIL; goto out_unlock; } /* Nuke the page table entry. */ flush_cache_page(vma, address); pte = ptep_clear_flush(vma, address, ptep); if (PageSwapCache(page)) { /* * Store the swap location in the pte. * See handle_pte_fault() ... */ swp_entry_t entry = { .val = page->index }; swap_duplicate(entry); set_pte(ptep, swp_entry_to_pte(entry)); BUG_ON(pte_file(*ptep)); } else { unsigned long pgidx; /* * If a nonlinear mapping then store the file page offset * in the pte. */ pgidx = (address - vma->vm_start) >> PAGE_SHIFT; pgidx += vma->vm_pgoff; pgidx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT; if (page->index != pgidx) { set_pte(ptep, pgoff_to_pte(page->index)); BUG_ON(!pte_file(*ptep)); } } /* Move the dirty bit to the physical page now the pte is gone. */ if (pte_dirty(pte)) set_page_dirty(page); mm->rss--; page_cache_release(page); ret = SWAP_SUCCESS; out_unlock: rmap_ptep_unmap(ptep); spin_unlock(&mm->page_table_lock); return ret; } /** * try_to_unmap - try to remove all page table mappings to a page * @page: the page to get unmapped * * Tries to remove all the page table entries which are mapping this * page, used in the pageout path. Caller must hold the page lock * and its pte chain lock. Return values are: * * SWAP_SUCCESS - we succeeded in removing all mappings * SWAP_AGAIN - we missed a trylock, try again later * SWAP_FAIL - the page is unswappable */ int try_to_unmap(struct page * page) { struct pte_chain *pc, *next_pc, *start; int ret = SWAP_SUCCESS; int victim_i; /* This page should not be on the pageout lists. */ if (PageReserved(page)) BUG(); if (!PageLocked(page)) BUG(); /* We need backing store to swap out a page. */ if (!page->mapping) BUG(); if (PageDirect(page)) { ret = try_to_unmap_one(page, page->pte.direct); if (ret == SWAP_SUCCESS) { if (page_test_and_clear_dirty(page)) set_page_dirty(page); page->pte.direct = 0; ClearPageDirect(page); } goto out; } start = page->pte.chain; victim_i = pte_chain_idx(start); for (pc = start; pc; pc = next_pc) { int i; next_pc = pte_chain_next(pc); if (next_pc) prefetch(next_pc); for (i = pte_chain_idx(pc); i < NRPTE; i++) { pte_addr_t pte_paddr = pc->ptes[i]; switch (try_to_unmap_one(page, pte_paddr)) { case SWAP_SUCCESS: /* * Release a slot. If we're releasing the * first pte in the first pte_chain then * pc->ptes[i] and start->ptes[victim_i] both * refer to the same thing. It works out. */ pc->ptes[i] = start->ptes[victim_i]; start->ptes[victim_i] = 0; victim_i++; if (victim_i == NRPTE) { page->pte.chain = pte_chain_next(start); __pte_chain_free(start); start = page->pte.chain; victim_i = 0; } else { start->next_and_idx++; } if (page->pte.direct == 0 && page_test_and_clear_dirty(page)) set_page_dirty(page); break; case SWAP_AGAIN: /* Skip this pte, remembering status. */ ret = SWAP_AGAIN; continue; case SWAP_FAIL: ret = SWAP_FAIL; goto out; } } } out: if (!page_mapped(page)) dec_page_state(nr_mapped); return ret; } /** ** No more VM stuff below this comment, only pte_chain helper ** functions. **/ static void pte_chain_ctor(void *p, kmem_cache_t *cachep, unsigned long flags) { struct pte_chain *pc = p; memset(pc, 0, sizeof(*pc)); } DEFINE_PER_CPU(struct pte_chain *, local_pte_chain) = 0; /** * __pte_chain_free - free pte_chain structure * @pte_chain: pte_chain struct to free */ void __pte_chain_free(struct pte_chain *pte_chain) { struct pte_chain **pte_chainp; pte_chainp = &get_cpu_var(local_pte_chain); if (pte_chain->next_and_idx) pte_chain->next_and_idx = 0; if (*pte_chainp) kmem_cache_free(pte_chain_cache, *pte_chainp); *pte_chainp = pte_chain; put_cpu_var(local_pte_chain); } /* * pte_chain_alloc(): allocate a pte_chain structure for use by page_add_rmap(). * * The caller of page_add_rmap() must perform the allocation because * page_add_rmap() is invariably called under spinlock. Often, page_add_rmap() * will not actually use the pte_chain, because there is space available in one * of the existing pte_chains which are attached to the page. So the case of * allocating and then freeing a single pte_chain is specially optimised here, * with a one-deep per-cpu cache. */ struct pte_chain *pte_chain_alloc(int gfp_flags) { struct pte_chain *ret; struct pte_chain **pte_chainp; might_sleep_if(gfp_flags & __GFP_WAIT); pte_chainp = &get_cpu_var(local_pte_chain); if (*pte_chainp) { ret = *pte_chainp; *pte_chainp = NULL; put_cpu_var(local_pte_chain); } else { put_cpu_var(local_pte_chain); ret = kmem_cache_alloc(pte_chain_cache, gfp_flags); } return ret; } void __init pte_chain_init(void) { pte_chain_cache = kmem_cache_create( "pte_chain", sizeof(struct pte_chain), 0, SLAB_MUST_HWCACHE_ALIGN, pte_chain_ctor, NULL); if (!pte_chain_cache) panic("failed to create pte_chain cache!\n"); } |