Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
/*
 * mm/rmap.c - physical to virtual reverse mappings
 *
 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
 * Released under the General Public License (GPL).
 *
 *
 * Simple, low overhead pte-based reverse mapping scheme.
 * This is kept modular because we may want to experiment
 * with object-based reverse mapping schemes. Please try
 * to keep this thing as modular as possible.
 */

/*
 * Locking:
 * - the page->pte.chain is protected by the PG_chainlock bit,
 *   which nests within the the mm->page_table_lock,
 *   which nests within the page lock.
 * - because swapout locking is opposite to the locking order
 *   in the page fault path, the swapout path uses trylocks
 *   on the mm->page_table_lock
 */
#include <linux/mm.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/rmap-locking.h>
#include <linux/cache.h>
#include <linux/percpu.h>

#include <asm/pgalloc.h>
#include <asm/rmap.h>
#include <asm/tlb.h>
#include <asm/tlbflush.h>

/* #define DEBUG_RMAP */

/*
 * Shared pages have a chain of pte_chain structures, used to locate
 * all the mappings to this page. We only need a pointer to the pte
 * here, the page struct for the page table page contains the process
 * it belongs to and the offset within that process.
 *
 * We use an array of pte pointers in this structure to minimise cache misses
 * while traversing reverse maps.
 */
#define NRPTE ((L1_CACHE_BYTES - sizeof(unsigned long))/sizeof(pte_addr_t))

/*
 * next_and_idx encodes both the address of the next pte_chain and the
 * offset of the highest-index used pte in ptes[].
 */
struct pte_chain {
	unsigned long next_and_idx;
	pte_addr_t ptes[NRPTE];
} ____cacheline_aligned;

kmem_cache_t	*pte_chain_cache;

static inline struct pte_chain *pte_chain_next(struct pte_chain *pte_chain)
{
	return (struct pte_chain *)(pte_chain->next_and_idx & ~NRPTE);
}

static inline struct pte_chain *pte_chain_ptr(unsigned long pte_chain_addr)
{
	return (struct pte_chain *)(pte_chain_addr & ~NRPTE);
}

static inline int pte_chain_idx(struct pte_chain *pte_chain)
{
	return pte_chain->next_and_idx & NRPTE;
}

static inline unsigned long
pte_chain_encode(struct pte_chain *pte_chain, int idx)
{
	return (unsigned long)pte_chain | idx;
}

/*
 * pte_chain list management policy:
 *
 * - If a page has a pte_chain list then it is shared by at least two processes,
 *   because a single sharing uses PageDirect. (Well, this isn't true yet,
 *   coz this code doesn't collapse singletons back to PageDirect on the remove
 *   path).
 * - A pte_chain list has free space only in the head member - all succeeding
 *   members are 100% full.
 * - If the head element has free space, it occurs in its leading slots.
 * - All free space in the pte_chain is at the start of the head member.
 * - Insertion into the pte_chain puts a pte pointer in the last free slot of
 *   the head member.
 * - Removal from a pte chain moves the head pte of the head member onto the
 *   victim pte and frees the head member if it became empty.
 */

/**
 ** VM stuff below this comment
 **/

/**
 * page_referenced - test if the page was referenced
 * @page: the page to test
 *
 * Quick test_and_clear_referenced for all mappings to a page,
 * returns the number of processes which referenced the page.
 * Caller needs to hold the pte_chain_lock.
 *
 * If the page has a single-entry pte_chain, collapse that back to a PageDirect
 * representation.  This way, it's only done under memory pressure.
 */
int page_referenced(struct page * page)
{
	struct pte_chain *pc;
	int referenced = 0;

	if (page_test_and_clear_young(page))
		mark_page_accessed(page);

	if (TestClearPageReferenced(page))
		referenced++;

	if (PageDirect(page)) {
		pte_t *pte = rmap_ptep_map(page->pte.direct);
		if (ptep_test_and_clear_young(pte))
			referenced++;
		rmap_ptep_unmap(pte);
	} else {
		int nr_chains = 0;

		/* Check all the page tables mapping this page. */
		for (pc = page->pte.chain; pc; pc = pte_chain_next(pc)) {
			int i;

			for (i = pte_chain_idx(pc); i < NRPTE; i++) {
				pte_addr_t pte_paddr = pc->ptes[i];
				pte_t *p;

				p = rmap_ptep_map(pte_paddr);
				if (ptep_test_and_clear_young(p))
					referenced++;
				rmap_ptep_unmap(p);
				nr_chains++;
			}
		}
		if (nr_chains == 1) {
			pc = page->pte.chain;
			page->pte.direct = pc->ptes[NRPTE-1];
			SetPageDirect(page);
			pc->ptes[NRPTE-1] = 0;
			__pte_chain_free(pc);
		}
	}
	return referenced;
}

/**
 * page_add_rmap - add reverse mapping entry to a page
 * @page: the page to add the mapping to
 * @ptep: the page table entry mapping this page
 *
 * Add a new pte reverse mapping to a page.
 * The caller needs to hold the mm->page_table_lock.
 */
struct pte_chain *
page_add_rmap(struct page *page, pte_t *ptep, struct pte_chain *pte_chain)
{
	pte_addr_t pte_paddr = ptep_to_paddr(ptep);
	struct pte_chain *cur_pte_chain;

	if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
		return pte_chain;

	pte_chain_lock(page);

	if (page->pte.direct == 0) {
		page->pte.direct = pte_paddr;
		SetPageDirect(page);
		inc_page_state(nr_mapped);
		goto out;
	}

	if (PageDirect(page)) {
		/* Convert a direct pointer into a pte_chain */
		ClearPageDirect(page);
		pte_chain->ptes[NRPTE-1] = page->pte.direct;
		pte_chain->ptes[NRPTE-2] = pte_paddr;
		pte_chain->next_and_idx = pte_chain_encode(NULL, NRPTE-2);
		page->pte.direct = 0;
		page->pte.chain = pte_chain;
		pte_chain = NULL;	/* We consumed it */
		goto out;
	}

	cur_pte_chain = page->pte.chain;
	if (cur_pte_chain->ptes[0]) {	/* It's full */
		pte_chain->next_and_idx = pte_chain_encode(cur_pte_chain,
								NRPTE - 1);
		page->pte.chain = pte_chain;
		pte_chain->ptes[NRPTE-1] = pte_paddr;
		pte_chain = NULL;	/* We consumed it */
		goto out;
	}
	cur_pte_chain->ptes[pte_chain_idx(cur_pte_chain) - 1] = pte_paddr;
	cur_pte_chain->next_and_idx--;
out:
	pte_chain_unlock(page);
	return pte_chain;
}

/**
 * page_remove_rmap - take down reverse mapping to a page
 * @page: page to remove mapping from
 * @ptep: page table entry to remove
 *
 * Removes the reverse mapping from the pte_chain of the page,
 * after that the caller can clear the page table entry and free
 * the page.
 * Caller needs to hold the mm->page_table_lock.
 */
void page_remove_rmap(struct page *page, pte_t *ptep)
{
	pte_addr_t pte_paddr = ptep_to_paddr(ptep);
	struct pte_chain *pc;

	if (!pfn_valid(page_to_pfn(page)) || PageReserved(page))
		return;

	pte_chain_lock(page);

	if (!page_mapped(page))
		goto out_unlock;	/* remap_page_range() from a driver? */

	if (PageDirect(page)) {
		if (page->pte.direct == pte_paddr) {
			page->pte.direct = 0;
			ClearPageDirect(page);
			goto out;
		}
	} else {
		struct pte_chain *start = page->pte.chain;
		struct pte_chain *next;
		int victim_i = pte_chain_idx(start);

		for (pc = start; pc; pc = next) {
			int i;

			next = pte_chain_next(pc);
			if (next)
				prefetch(next);
			for (i = pte_chain_idx(pc); i < NRPTE; i++) {
				pte_addr_t pa = pc->ptes[i];

				if (pa != pte_paddr)
					continue;
				pc->ptes[i] = start->ptes[victim_i];
				start->ptes[victim_i] = 0;
				if (victim_i == NRPTE-1) {
					/* Emptied a pte_chain */
					page->pte.chain = pte_chain_next(start);
					__pte_chain_free(start);
				} else {
					start->next_and_idx++;
				}
				goto out;
			}
		}
	}
out:
	if (page->pte.direct == 0 && page_test_and_clear_dirty(page))
		set_page_dirty(page);
	if (!page_mapped(page))
		dec_page_state(nr_mapped);
out_unlock:
	pte_chain_unlock(page);
	return;
}

/**
 * try_to_unmap_one - worker function for try_to_unmap
 * @page: page to unmap
 * @ptep: page table entry to unmap from page
 *
 * Internal helper function for try_to_unmap, called for each page
 * table entry mapping a page. Because locking order here is opposite
 * to the locking order used by the page fault path, we use trylocks.
 * Locking:
 *	    page lock			shrink_list(), trylock
 *		pte_chain_lock		shrink_list()
 *		    mm->page_table_lock	try_to_unmap_one(), trylock
 */
static int FASTCALL(try_to_unmap_one(struct page *, pte_addr_t));
static int try_to_unmap_one(struct page * page, pte_addr_t paddr)
{
	pte_t *ptep = rmap_ptep_map(paddr);
	unsigned long address = ptep_to_address(ptep);
	struct mm_struct * mm = ptep_to_mm(ptep);
	struct vm_area_struct * vma;
	pte_t pte;
	int ret;

	if (!mm)
		BUG();

	/*
	 * We need the page_table_lock to protect us from page faults,
	 * munmap, fork, etc...
	 */
	if (!spin_trylock(&mm->page_table_lock)) {
		rmap_ptep_unmap(ptep);
		return SWAP_AGAIN;
	}


	/* During mremap, it's possible pages are not in a VMA. */
	vma = find_vma(mm, address);
	if (!vma) {
		ret = SWAP_FAIL;
		goto out_unlock;
	}

	/* The page is mlock()d, we cannot swap it out. */
	if (vma->vm_flags & VM_LOCKED) {
		ret = SWAP_FAIL;
		goto out_unlock;
	}

	/* Nuke the page table entry. */
	flush_cache_page(vma, address);
	pte = ptep_clear_flush(vma, address, ptep);

	if (PageSwapCache(page)) {
		/*
		 * Store the swap location in the pte.
		 * See handle_pte_fault() ...
		 */
		swp_entry_t entry = { .val = page->index };
		swap_duplicate(entry);
		set_pte(ptep, swp_entry_to_pte(entry));
		BUG_ON(pte_file(*ptep));
	} else {
		unsigned long pgidx;
		/*
		 * If a nonlinear mapping then store the file page offset
		 * in the pte.
		 */
		pgidx = (address - vma->vm_start) >> PAGE_SHIFT;
		pgidx += vma->vm_pgoff;
		pgidx >>= PAGE_CACHE_SHIFT - PAGE_SHIFT;
		if (page->index != pgidx) {
			set_pte(ptep, pgoff_to_pte(page->index));
			BUG_ON(!pte_file(*ptep));
		}
	}

	/* Move the dirty bit to the physical page now the pte is gone. */
	if (pte_dirty(pte))
		set_page_dirty(page);

	mm->rss--;
	page_cache_release(page);
	ret = SWAP_SUCCESS;

out_unlock:
	rmap_ptep_unmap(ptep);
	spin_unlock(&mm->page_table_lock);
	return ret;
}

/**
 * try_to_unmap - try to remove all page table mappings to a page
 * @page: the page to get unmapped
 *
 * Tries to remove all the page table entries which are mapping this
 * page, used in the pageout path.  Caller must hold the page lock
 * and its pte chain lock.  Return values are:
 *
 * SWAP_SUCCESS	- we succeeded in removing all mappings
 * SWAP_AGAIN	- we missed a trylock, try again later
 * SWAP_FAIL	- the page is unswappable
 */
int try_to_unmap(struct page * page)
{
	struct pte_chain *pc, *next_pc, *start;
	int ret = SWAP_SUCCESS;
	int victim_i;

	/* This page should not be on the pageout lists. */
	if (PageReserved(page))
		BUG();
	if (!PageLocked(page))
		BUG();
	/* We need backing store to swap out a page. */
	if (!page->mapping)
		BUG();

	if (PageDirect(page)) {
		ret = try_to_unmap_one(page, page->pte.direct);
		if (ret == SWAP_SUCCESS) {
			if (page_test_and_clear_dirty(page))
				set_page_dirty(page);
			page->pte.direct = 0;
			ClearPageDirect(page);
		}
		goto out;
	}		

	start = page->pte.chain;
	victim_i = pte_chain_idx(start);
	for (pc = start; pc; pc = next_pc) {
		int i;

		next_pc = pte_chain_next(pc);
		if (next_pc)
			prefetch(next_pc);
		for (i = pte_chain_idx(pc); i < NRPTE; i++) {
			pte_addr_t pte_paddr = pc->ptes[i];

			switch (try_to_unmap_one(page, pte_paddr)) {
			case SWAP_SUCCESS:
				/*
				 * Release a slot.  If we're releasing the
				 * first pte in the first pte_chain then
				 * pc->ptes[i] and start->ptes[victim_i] both
				 * refer to the same thing.  It works out.
				 */
				pc->ptes[i] = start->ptes[victim_i];
				start->ptes[victim_i] = 0;
				victim_i++;
				if (victim_i == NRPTE) {
					page->pte.chain = pte_chain_next(start);
					__pte_chain_free(start);
					start = page->pte.chain;
					victim_i = 0;
				} else {
					start->next_and_idx++;
				}
				if (page->pte.direct == 0 &&
				    page_test_and_clear_dirty(page))
					set_page_dirty(page);
				break;
			case SWAP_AGAIN:
				/* Skip this pte, remembering status. */
				ret = SWAP_AGAIN;
				continue;
			case SWAP_FAIL:
				ret = SWAP_FAIL;
				goto out;
			}
		}
	}
out:
	if (!page_mapped(page))
		dec_page_state(nr_mapped);
	return ret;
}

/**
 ** No more VM stuff below this comment, only pte_chain helper
 ** functions.
 **/

static void pte_chain_ctor(void *p, kmem_cache_t *cachep, unsigned long flags)
{
	struct pte_chain *pc = p;

	memset(pc, 0, sizeof(*pc));
}

DEFINE_PER_CPU(struct pte_chain *, local_pte_chain) = 0;

/**
 * __pte_chain_free - free pte_chain structure
 * @pte_chain: pte_chain struct to free
 */
void __pte_chain_free(struct pte_chain *pte_chain)
{
	struct pte_chain **pte_chainp;

	pte_chainp = &get_cpu_var(local_pte_chain);
	if (pte_chain->next_and_idx)
		pte_chain->next_and_idx = 0;
	if (*pte_chainp)
		kmem_cache_free(pte_chain_cache, *pte_chainp);
	*pte_chainp = pte_chain;
	put_cpu_var(local_pte_chain);
}

/*
 * pte_chain_alloc(): allocate a pte_chain structure for use by page_add_rmap().
 *
 * The caller of page_add_rmap() must perform the allocation because
 * page_add_rmap() is invariably called under spinlock.  Often, page_add_rmap()
 * will not actually use the pte_chain, because there is space available in one
 * of the existing pte_chains which are attached to the page.  So the case of
 * allocating and then freeing a single pte_chain is specially optimised here,
 * with a one-deep per-cpu cache.
 */
struct pte_chain *pte_chain_alloc(int gfp_flags)
{
	struct pte_chain *ret;
	struct pte_chain **pte_chainp;

	might_sleep_if(gfp_flags & __GFP_WAIT);

	pte_chainp = &get_cpu_var(local_pte_chain);
	if (*pte_chainp) {
		ret = *pte_chainp;
		*pte_chainp = NULL;
		put_cpu_var(local_pte_chain);
	} else {
		put_cpu_var(local_pte_chain);
		ret = kmem_cache_alloc(pte_chain_cache, gfp_flags);
	}
	return ret;
}

void __init pte_chain_init(void)
{
	pte_chain_cache = kmem_cache_create(	"pte_chain",
						sizeof(struct pte_chain),
						0,
						SLAB_MUST_HWCACHE_ALIGN,
						pte_chain_ctor,
						NULL);

	if (!pte_chain_cache)
		panic("failed to create pte_chain cache!\n");
}