Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 | /* * mm/rmap.c - physical to virtual reverse mappings * * Copyright 2001, Rik van Riel <riel@conectiva.com.br> * Released under the General Public License (GPL). * * * Simple, low overhead pte-based reverse mapping scheme. * This is kept modular because we may want to experiment * with object-based reverse mapping schemes. Please try * to keep this thing as modular as possible. */ /* * Locking: * - the page->pte.chain is protected by the PG_chainlock bit, * which nests within the pagemap_lru_lock, then the * mm->page_table_lock, and then the page lock. * - because swapout locking is opposite to the locking order * in the page fault path, the swapout path uses trylocks * on the mm->page_table_lock */ #include <linux/mm.h> #include <linux/pagemap.h> #include <linux/swapops.h> #include <linux/slab.h> #include <linux/init.h> #include <asm/pgalloc.h> #include <asm/rmap.h> #include <asm/smplock.h> #include <asm/tlb.h> #include <asm/tlbflush.h> /* #define DEBUG_RMAP */ /* * Shared pages have a chain of pte_chain structures, used to locate * all the mappings to this page. We only need a pointer to the pte * here, the page struct for the page table page contains the process * it belongs to and the offset within that process. * * A singly linked list should be fine for most, if not all, workloads. * On fork-after-exec the mapping we'll be removing will still be near * the start of the list, on mixed application systems the short-lived * processes will have their mappings near the start of the list and * in systems with long-lived applications the relative overhead of * exit() will be lower since the applications are long-lived. */ struct pte_chain { struct pte_chain * next; pte_t * ptep; }; static kmem_cache_t *pte_chain_cache; static inline struct pte_chain * pte_chain_alloc(void); static inline void pte_chain_free(struct pte_chain *, struct pte_chain *, struct page *); /** * page_referenced - test if the page was referenced * @page: the page to test * * Quick test_and_clear_referenced for all mappings to a page, * returns the number of processes which referenced the page. * Caller needs to hold the pte_chain_lock. */ int page_referenced(struct page * page) { struct pte_chain * pc; int referenced = 0; if (TestClearPageReferenced(page)) referenced++; if (PageDirect(page)) { if (ptep_test_and_clear_young(page->pte.direct)) referenced++; } else { /* Check all the page tables mapping this page. */ for (pc = page->pte.chain; pc; pc = pc->next) { if (ptep_test_and_clear_young(pc->ptep)) referenced++; } } return referenced; } /** * page_add_rmap - add reverse mapping entry to a page * @page: the page to add the mapping to * @ptep: the page table entry mapping this page * * Add a new pte reverse mapping to a page. * The caller needs to hold the mm->page_table_lock. */ void page_add_rmap(struct page * page, pte_t * ptep) { struct pte_chain * pte_chain; unsigned long pfn = pte_pfn(*ptep); #ifdef DEBUG_RMAP if (!page || !ptep) BUG(); if (!pte_present(*ptep)) BUG(); if (!ptep_to_mm(ptep)) BUG(); #endif if (!pfn_valid(pfn) || PageReserved(page)) return; #ifdef DEBUG_RMAP pte_chain_lock(page); { struct pte_chain * pc; if (PageDirect(page)) { if (page->pte.direct == ptep) BUG(); } else { for (pc = page->pte.chain; pc; pc = pc->next) { if (pc->ptep == ptep) BUG(); } } } pte_chain_unlock(page); #endif pte_chain_lock(page); if (PageDirect(page)) { /* Convert a direct pointer into a pte_chain */ pte_chain = pte_chain_alloc(); pte_chain->ptep = page->pte.direct; pte_chain->next = NULL; page->pte.chain = pte_chain; ClearPageDirect(page); } if (page->pte.chain) { /* Hook up the pte_chain to the page. */ pte_chain = pte_chain_alloc(); pte_chain->ptep = ptep; pte_chain->next = page->pte.chain; page->pte.chain = pte_chain; } else { page->pte.direct = ptep; SetPageDirect(page); } pte_chain_unlock(page); inc_page_state(nr_reverse_maps); } /** * page_remove_rmap - take down reverse mapping to a page * @page: page to remove mapping from * @ptep: page table entry to remove * * Removes the reverse mapping from the pte_chain of the page, * after that the caller can clear the page table entry and free * the page. * Caller needs to hold the mm->page_table_lock. */ void page_remove_rmap(struct page * page, pte_t * ptep) { struct pte_chain * pc, * prev_pc = NULL; unsigned long pfn = page_to_pfn(page); if (!page || !ptep) BUG(); if (!pfn_valid(pfn) || PageReserved(page)) return; pte_chain_lock(page); if (PageDirect(page)) { if (page->pte.direct == ptep) { page->pte.direct = NULL; ClearPageDirect(page); goto out; } } else { for (pc = page->pte.chain; pc; prev_pc = pc, pc = pc->next) { if (pc->ptep == ptep) { pte_chain_free(pc, prev_pc, page); /* Check whether we can convert to direct */ pc = page->pte.chain; if (!pc->next) { page->pte.direct = pc->ptep; SetPageDirect(page); pte_chain_free(pc, NULL, NULL); } goto out; } } } #ifdef DEBUG_RMAP /* Not found. This should NEVER happen! */ printk(KERN_ERR "page_remove_rmap: pte_chain %p not present.\n", ptep); printk(KERN_ERR "page_remove_rmap: only found: "); if (PageDirect(page)) { printk("%p ", page->pte.direct); } else { for (pc = page->pte.chain; pc; pc = pc->next) printk("%p ", pc->ptep); } printk("\n"); printk(KERN_ERR "page_remove_rmap: driver cleared PG_reserved ?\n"); #endif out: dec_page_state(nr_reverse_maps); pte_chain_unlock(page); return; } /** * try_to_unmap_one - worker function for try_to_unmap * @page: page to unmap * @ptep: page table entry to unmap from page * * Internal helper function for try_to_unmap, called for each page * table entry mapping a page. Because locking order here is opposite * to the locking order used by the page fault path, we use trylocks. * Locking: * pagemap_lru_lock page_launder() * page lock page_launder(), trylock * pte_chain_lock page_launder() * mm->page_table_lock try_to_unmap_one(), trylock */ static int FASTCALL(try_to_unmap_one(struct page *, pte_t *)); static int try_to_unmap_one(struct page * page, pte_t * ptep) { unsigned long address = ptep_to_address(ptep); struct mm_struct * mm = ptep_to_mm(ptep); struct vm_area_struct * vma; pte_t pte; int ret; if (!mm) BUG(); /* * We need the page_table_lock to protect us from page faults, * munmap, fork, etc... */ if (!spin_trylock(&mm->page_table_lock)) return SWAP_AGAIN; /* During mremap, it's possible pages are not in a VMA. */ vma = find_vma(mm, address); if (!vma) { ret = SWAP_FAIL; goto out_unlock; } /* The page is mlock()d, we cannot swap it out. */ if (vma->vm_flags & VM_LOCKED) { ret = SWAP_FAIL; goto out_unlock; } /* Nuke the page table entry. */ pte = ptep_get_and_clear(ptep); flush_tlb_page(vma, address); flush_cache_page(vma, address); /* Store the swap location in the pte. See handle_pte_fault() ... */ if (PageSwapCache(page)) { swp_entry_t entry; entry.val = page->index; swap_duplicate(entry); set_pte(ptep, swp_entry_to_pte(entry)); } /* Move the dirty bit to the physical page now the pte is gone. */ if (pte_dirty(pte)) set_page_dirty(page); mm->rss--; page_cache_release(page); ret = SWAP_SUCCESS; out_unlock: spin_unlock(&mm->page_table_lock); return ret; } /** * try_to_unmap - try to remove all page table mappings to a page * @page: the page to get unmapped * * Tries to remove all the page table entries which are mapping this * page, used in the pageout path. Caller must hold pagemap_lru_lock * and the page lock. Return values are: * * SWAP_SUCCESS - we succeeded in removing all mappings * SWAP_AGAIN - we missed a trylock, try again later * SWAP_FAIL - the page is unswappable * SWAP_ERROR - an error occurred */ int try_to_unmap(struct page * page) { struct pte_chain * pc, * next_pc, * prev_pc = NULL; int ret = SWAP_SUCCESS; /* This page should not be on the pageout lists. */ if (PageReserved(page)) BUG(); if (!PageLocked(page)) BUG(); /* We need backing store to swap out a page. */ if (!page->mapping) BUG(); if (PageDirect(page)) { ret = try_to_unmap_one(page, page->pte.direct); if (ret == SWAP_SUCCESS) { page->pte.direct = NULL; ClearPageDirect(page); } } else { for (pc = page->pte.chain; pc; pc = next_pc) { next_pc = pc->next; switch (try_to_unmap_one(page, pc->ptep)) { case SWAP_SUCCESS: /* Free the pte_chain struct. */ pte_chain_free(pc, prev_pc, page); break; case SWAP_AGAIN: /* Skip this pte, remembering status. */ prev_pc = pc; ret = SWAP_AGAIN; continue; case SWAP_FAIL: ret = SWAP_FAIL; break; case SWAP_ERROR: ret = SWAP_ERROR; break; } } /* Check whether we can convert to direct pte pointer */ pc = page->pte.chain; if (pc && !pc->next) { page->pte.direct = pc->ptep; SetPageDirect(page); pte_chain_free(pc, NULL, NULL); } } return ret; } /** ** No more VM stuff below this comment, only pte_chain helper ** functions. **/ /** * pte_chain_free - free pte_chain structure * @pte_chain: pte_chain struct to free * @prev_pte_chain: previous pte_chain on the list (may be NULL) * @page: page this pte_chain hangs off (may be NULL) * * This function unlinks pte_chain from the singly linked list it * may be on and adds the pte_chain to the free list. May also be * called for new pte_chain structures which aren't on any list yet. * Caller needs to hold the pte_chain_lock if the page is non-NULL. */ static inline void pte_chain_free(struct pte_chain * pte_chain, struct pte_chain * prev_pte_chain, struct page * page) { if (prev_pte_chain) prev_pte_chain->next = pte_chain->next; else if (page) page->pte.chain = pte_chain->next; kmem_cache_free(pte_chain_cache, pte_chain); } /** * pte_chain_alloc - allocate a pte_chain struct * * Returns a pointer to a fresh pte_chain structure. Allocates new * pte_chain structures as required. * Caller needs to hold the page's pte_chain_lock. */ static inline struct pte_chain *pte_chain_alloc(void) { return kmem_cache_alloc(pte_chain_cache, GFP_ATOMIC); } void __init pte_chain_init(void) { pte_chain_cache = kmem_cache_create( "pte_chain", sizeof(struct pte_chain), 0, 0, NULL, NULL); if (!pte_chain_cache) panic("failed to create pte_chain cache!\n"); } |