Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
/*
 * Carsten Langgaard, carstenl@mips.com
 * Copyright (C) 2000 MIPS Technologies, Inc.  All rights reserved.
 *
 * ########################################################################
 *
 *  This program is free software; you can distribute it and/or modify it
 *  under the terms of the GNU General Public License (Version 2) as
 *  published by the Free Software Foundation.
 *
 *  This program is distributed in the hope it will be useful, but WITHOUT
 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 *  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 *  for more details.
 *
 *  You should have received a copy of the GNU General Public License along
 *  with this program; if not, write to the Free Software Foundation, Inc.,
 *  59 Temple Place - Suite 330, Boston MA 02111-1307, USA.
 *
 * ########################################################################
 *
 * Setting up the clock on the MIPS boards.
 *
 */

#include <linux/config.h>
#include <linux/init.h>
#include <linux/kernel_stat.h>
#include <linux/sched.h>
#include <linux/time.h>
#include <linux/spinlock.h>

#include <asm/mipsregs.h>
#include <asm/ptrace.h>

#include <linux/mc146818rtc.h>
#include <linux/timex.h>

#include <asm/mips-boards/generic.h>
#include <asm/mips-boards/prom.h>

extern volatile unsigned long wall_jiffies;
static long last_rtc_update = 0;
unsigned long missed_heart_beats = 0;

static unsigned long r4k_offset; /* Amount to increment compare reg each time */
static unsigned long r4k_cur;    /* What counter should be at next timer irq */

#define ALLINTS (IE_IRQ0 | IE_IRQ1 | IE_IRQ2 | IE_IRQ3 | IE_IRQ4 | IE_IRQ5)

#if defined(CONFIG_MIPS_ATLAS)
static char display_string[] = "        LINUX ON ATLAS       ";
#endif
#if defined(CONFIG_MIPS_MALTA)
static char display_string[] = "        LINUX ON MALTA       ";
#endif
static unsigned int display_count = 0;
#define MAX_DISPLAY_COUNT (sizeof(display_string) - 8) 

static unsigned int timer_tick_count=0;


static inline void ack_r4ktimer(unsigned long newval)
{
	write_32bit_cp0_register(CP0_COMPARE, newval);
}


/*
 * In order to set the CMOS clock precisely, set_rtc_mmss has to be
 * called 500 ms after the second nowtime has started, because when
 * nowtime is written into the registers of the CMOS clock, it will
 * jump to the next second precisely 500 ms later. Check the Motorola
 * MC146818A or Dallas DS12887 data sheet for details.
 *
 * BUG: This routine does not handle hour overflow properly; it just
 *      sets the minutes. Usually you won't notice until after reboot!
 */
static int set_rtc_mmss(unsigned long nowtime)
{
	int retval = 0;
	int real_seconds, real_minutes, cmos_minutes;
	unsigned char save_control, save_freq_select;

	save_control = CMOS_READ(RTC_CONTROL); /* tell the clock it's being set */
	CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);

	save_freq_select = CMOS_READ(RTC_FREQ_SELECT); /* stop and reset prescaler */
	CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);

	cmos_minutes = CMOS_READ(RTC_MINUTES);

	/*
	 * since we're only adjusting minutes and seconds,
	 * don't interfere with hour overflow. This avoids
	 * messing with unknown time zones but requires your
	 * RTC not to be off by more than 15 minutes
	 */
	real_seconds = nowtime % 60;
	real_minutes = nowtime / 60;
	if (((abs(real_minutes - cmos_minutes) + 15)/30) & 1)
		real_minutes += 30;		/* correct for half hour time zone */
	real_minutes %= 60;

	if (abs(real_minutes - cmos_minutes) < 30) {
		CMOS_WRITE(real_seconds,RTC_SECONDS);
		CMOS_WRITE(real_minutes,RTC_MINUTES);
	} else {
		printk(KERN_WARNING
		       "set_rtc_mmss: can't update from %d to %d\n",
		       cmos_minutes, real_minutes);
 		retval = -1;
	}

	/* The following flags have to be released exactly in this order,
	 * otherwise the DS12887 (popular MC146818A clone with integrated
	 * battery and quartz) will not reset the oscillator and will not
	 * update precisely 500 ms later. You won't find this mentioned in
	 * the Dallas Semiconductor data sheets, but who believes data
	 * sheets anyway ...                           -- Markus Kuhn
	 */
	CMOS_WRITE(save_control, RTC_CONTROL);
	CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);

	return retval;
}

/*
 * There are a lot of conceptually broken versions of the MIPS timer interrupt
 * handler floating around.  This one is rather different, but the algorithm
 * is provably more robust.
 */
void mips_timer_interrupt(struct pt_regs *regs)
{
	unsigned long flags;
	unsigned long seq;
	int irq = 7;

	if (r4k_offset == 0)
		goto null;

	do {
		kstat_cpu(0).irqs[irq]++;
		do_timer(regs);

		/* Historical comment/code:
 		 * RTC time of day s updated approx. every 11 
 		 * minutes.  Because of how the numbers work out 
 		 * we need to make absolutely sure we do this update
 		 * within 500ms before the * next second starts, 
 		 * thus the following code.
 		 */
		do {
			seq = read_seqbegin_irqsave(&xtime_lock, flags);
			
			if ((time_status & STA_UNSYNC) == 0 
			    && xtime.tv_sec > last_rtc_update + 660 
			    && xtime.tv_usec >= 500000 - (tick >> 1) 
			    && xtime.tv_usec <= 500000 + (tick >> 1))
				if (set_rtc_mmss(xtime.tv_sec) == 0)
					last_rtc_update = xtime.tv_sec;
				else
					/* do it again in 60 s */
					last_rtc_update = xtime.tv_sec - 600; 
		} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));


		if ((timer_tick_count++ % HZ) == 0) {
		    mips_display_message(&display_string[display_count++]);
		    if (display_count == MAX_DISPLAY_COUNT)
		        display_count = 0;
		}

		r4k_cur += r4k_offset;
		ack_r4ktimer(r4k_cur);

	} while (((unsigned int)read_32bit_cp0_register(CP0_COUNT)
	         - (unsigned int)r4k_cur) < 0x7fffffff);

	return;

null:
	ack_r4ktimer(0);
}

/* 
 * Figure out the r4k offset, the amount to increment the compare
 * register for each time tick. 
 * Use the RTC to calculate offset.
 */
static unsigned long __init cal_r4koff(void)
{
	unsigned long count;
	unsigned int flags;

	local_irq_save(flags);

	/* Start counter exactly on falling edge of update flag */
	while (CMOS_READ(RTC_REG_A) & RTC_UIP);
	while (!(CMOS_READ(RTC_REG_A) & RTC_UIP));

	/* Start r4k counter. */
	write_32bit_cp0_register(CP0_COUNT, 0);

	/* Read counter exactly on falling edge of update flag */
	while (CMOS_READ(RTC_REG_A) & RTC_UIP);
	while (!(CMOS_READ(RTC_REG_A) & RTC_UIP));

	count = read_32bit_cp0_register(CP0_COUNT);

	/* restore interrupts */
	local_irq_restore(flags);

	return (count / HZ);
}

static unsigned long __init get_mips_time(void)
{
	unsigned int year, mon, day, hour, min, sec;
	unsigned char save_control;

	save_control = CMOS_READ(RTC_CONTROL);

	/* Freeze it. */
	CMOS_WRITE(save_control | RTC_SET, RTC_CONTROL);

	/* Read regs. */
	sec = CMOS_READ(RTC_SECONDS);
	min = CMOS_READ(RTC_MINUTES);
	hour = CMOS_READ(RTC_HOURS);

	if (!(save_control & RTC_24H))
	{
		if ((hour & 0xf) == 0xc)
		        hour &= 0x80;
	        if (hour & 0x80)
		        hour = (hour & 0xf) + 12;     
	}
	day = CMOS_READ(RTC_DAY_OF_MONTH);
	mon = CMOS_READ(RTC_MONTH);
	year = CMOS_READ(RTC_YEAR);

	/* Unfreeze clock. */
	CMOS_WRITE(save_control, RTC_CONTROL);

	if ((year += 1900) < 1970)
	        year += 100;

	return mktime(year, mon, day, hour, min, sec);
}

void __init time_init(void)
{
        unsigned int est_freq, flags;

        /* Set Data mode - binary. */ 
        CMOS_WRITE(CMOS_READ(RTC_CONTROL) | RTC_DM_BINARY, RTC_CONTROL);

	printk("calculating r4koff... ");
	r4k_offset = cal_r4koff();
	printk("%08lx(%d)\n", r4k_offset, (int) r4k_offset);

	est_freq = 2*r4k_offset*HZ;	
	est_freq += 5000;    /* round */
	est_freq -= est_freq%10000;
	printk("CPU frequency %d.%02d MHz\n", est_freq/1000000, 
	       (est_freq%1000000)*100/1000000);
	r4k_cur = (read_32bit_cp0_register(CP0_COUNT) + r4k_offset);

	write_32bit_cp0_register(CP0_COMPARE, r4k_cur);
	set_cp0_status(ST0_IM, ALLINTS);

	/* Read time from the RTC chipset. */
	write_seqlock_irqsave (&xtime_lock, flags);
	xtime.tv_sec = get_mips_time();
	xtime.tv_usec = 0;
	write_sequnlock_irqrestore(&xtime_lock, flags);
}

/* This is for machines which generate the exact clock. */
#define USECS_PER_JIFFY (1000000/HZ)
#define USECS_PER_JIFFY_FRAC (0x100000000*1000000/HZ&0xffffffff)

/* Cycle counter value at the previous timer interrupt.. */

static unsigned int timerhi = 0, timerlo = 0;

/*
 * FIXME: Does playing with the RP bit in c0_status interfere with this code?
 */
static unsigned long do_fast_gettimeoffset(void)
{
	u32 count;
	unsigned long res, tmp;

	/* Last jiffy when do_fast_gettimeoffset() was called. */
	static unsigned long last_jiffies=0;
	unsigned long quotient;

	/*
	 * Cached "1/(clocks per usec)*2^32" value.
	 * It has to be recalculated once each jiffy.
	 */
	static unsigned long cached_quotient=0;

	tmp = jiffies;

	quotient = cached_quotient;

	if (tmp && last_jiffies != tmp) {
		last_jiffies = tmp;
		__asm__(".set\tnoreorder\n\t"
			".set\tnoat\n\t"
			".set\tmips3\n\t"
			"lwu\t%0,%2\n\t"
			"dsll32\t$1,%1,0\n\t"
			"or\t$1,$1,%0\n\t"
			"ddivu\t$0,$1,%3\n\t"
			"mflo\t$1\n\t"
			"dsll32\t%0,%4,0\n\t"
			"nop\n\t"
			"ddivu\t$0,%0,$1\n\t"
			"mflo\t%0\n\t"
			".set\tmips0\n\t"
			".set\tat\n\t"
			".set\treorder"
			:"=&r" (quotient)
			:"r" (timerhi),
			 "m" (timerlo),
			 "r" (tmp),
			 "r" (USECS_PER_JIFFY)
			:"$1");
		cached_quotient = quotient;
	}

	/* Get last timer tick in absolute kernel time */
	count = read_32bit_cp0_register(CP0_COUNT);

	/* .. relative to previous jiffy (32 bits is enough) */
	count -= timerlo;

	__asm__("multu\t%1,%2\n\t"
		"mfhi\t%0"
		:"=r" (res)
		:"r" (count),
		 "r" (quotient));

	/*
 	 * Due to possible jiffies inconsistencies, we need to check 
	 * the result so that we'll get a timer that is monotonic.
	 */
	if (res >= USECS_PER_JIFFY)
		res = USECS_PER_JIFFY-1;

	return res;
}

void do_gettimeofday(struct timeval *tv)
{
	unsigned long flags;
	unsigned long seq;

	do {
		seq = read_seqbegin_irqsave(&xtime_lock, flags);

		*tv = xtime;
		tv->tv_usec += do_fast_gettimeoffset();

		/*
		 * xtime is atomically updated in timer_bh. 
		 * jiffies - wall_jiffies
		 * is nonzero if the timer bottom half hasnt executed yet.
		 */
		if (jiffies - wall_jiffies)
			tv->tv_usec += USECS_PER_JIFFY;

	} while (read_seqretry_irqrestore(&xtime_lock, seq, flags));


	if (tv->tv_usec >= 1000000) {
		tv->tv_usec -= 1000000;
		tv->tv_sec++;
	}
}

void do_settimeofday(struct timeval *tv)
{
	write_seqlock_irq (&xtime_lock);

	/* This is revolting. We need to set the xtime.tv_usec correctly.
	 * However, the value in this location is is value at the last tick.
	 * Discover what correction gettimeofday would have done, and then
	 * undo it!
	 */
	tv->tv_usec -= do_fast_gettimeoffset();

	if (tv->tv_usec < 0) {
		tv->tv_usec += 1000000;
		tv->tv_sec--;
	}

	xtime = *tv;
	time_adjust = 0;		/* stop active adjtime() */
	time_status |= STA_UNSYNC;
	time_maxerror = NTP_PHASE_LIMIT;
	time_esterror = NTP_PHASE_LIMIT;

	write_sequnlock_irq (&xtime_lock);
}