Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 | /* * linux/fs/exec.c * * Copyright (C) 1991, 1992 Linus Torvalds */ /* * #!-checking implemented by tytso. */ /* * Demand-loading implemented 01.12.91 - no need to read anything but * the header into memory. The inode of the executable is put into * "current->executable", and page faults do the actual loading. Clean. * * Once more I can proudly say that linux stood up to being changed: it * was less than 2 hours work to get demand-loading completely implemented. * * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, * current->executable is only used by the procfs. This allows a dispatch * table to check for several different types of binary formats. We keep * trying until we recognize the file or we run out of supported binary * formats. */ #include <linux/config.h> #include <linux/slab.h> #include <linux/file.h> #include <linux/mman.h> #include <linux/a.out.h> #include <linux/stat.h> #include <linux/fcntl.h> #include <linux/smp_lock.h> #include <linux/init.h> #include <linux/pagemap.h> #include <linux/highmem.h> #include <linux/spinlock.h> #include <linux/personality.h> #include <linux/binfmts.h> #define __NO_VERSION__ #include <linux/module.h> #include <asm/uaccess.h> #include <asm/pgalloc.h> #include <asm/mmu_context.h> #ifdef CONFIG_KMOD #include <linux/kmod.h> #endif int core_uses_pid; static struct linux_binfmt *formats; static rwlock_t binfmt_lock = RW_LOCK_UNLOCKED; int register_binfmt(struct linux_binfmt * fmt) { struct linux_binfmt ** tmp = &formats; if (!fmt) return -EINVAL; if (fmt->next) return -EBUSY; write_lock(&binfmt_lock); while (*tmp) { if (fmt == *tmp) { write_unlock(&binfmt_lock); return -EBUSY; } tmp = &(*tmp)->next; } fmt->next = formats; formats = fmt; write_unlock(&binfmt_lock); return 0; } int unregister_binfmt(struct linux_binfmt * fmt) { struct linux_binfmt ** tmp = &formats; write_lock(&binfmt_lock); while (*tmp) { if (fmt == *tmp) { *tmp = fmt->next; write_unlock(&binfmt_lock); return 0; } tmp = &(*tmp)->next; } write_unlock(&binfmt_lock); return -EINVAL; } static inline void put_binfmt(struct linux_binfmt * fmt) { if (fmt->module) __MOD_DEC_USE_COUNT(fmt->module); } /* * Note that a shared library must be both readable and executable due to * security reasons. * * Also note that we take the address to load from from the file itself. */ asmlinkage long sys_uselib(const char * library) { struct file * file; struct nameidata nd; int error; error = user_path_walk(library, &nd); if (error) goto out; error = -EINVAL; if (!S_ISREG(nd.dentry->d_inode->i_mode)) goto exit; error = permission(nd.dentry->d_inode, MAY_READ | MAY_EXEC); if (error) goto exit; file = dentry_open(nd.dentry, nd.mnt, O_RDONLY); error = PTR_ERR(file); if (IS_ERR(file)) goto out; error = -ENOEXEC; if(file->f_op && file->f_op->read) { struct linux_binfmt * fmt; read_lock(&binfmt_lock); for (fmt = formats ; fmt ; fmt = fmt->next) { if (!fmt->load_shlib) continue; if (!try_inc_mod_count(fmt->module)) continue; read_unlock(&binfmt_lock); error = fmt->load_shlib(file); read_lock(&binfmt_lock); put_binfmt(fmt); if (error != -ENOEXEC) break; } read_unlock(&binfmt_lock); } fput(file); out: return error; exit: path_release(&nd); goto out; } /* * count() counts the number of strings in array ARGV. */ static int count(char ** argv, int max) { int i = 0; if (argv != NULL) { for (;;) { char * p; if (get_user(p, argv)) return -EFAULT; if (!p) break; argv++; if(++i > max) return -E2BIG; } } return i; } /* * 'copy_strings()' copies argument/environment strings from user * memory to free pages in kernel mem. These are in a format ready * to be put directly into the top of new user memory. */ int copy_strings(int argc,char ** argv, struct linux_binprm *bprm) { while (argc-- > 0) { char *str; int len; unsigned long pos; if (get_user(str, argv+argc) || !(len = strnlen_user(str, bprm->p))) return -EFAULT; if (bprm->p < len) return -E2BIG; bprm->p -= len; /* XXX: add architecture specific overflow check here. */ pos = bprm->p; while (len > 0) { char *kaddr; int i, new, err; struct page *page; int offset, bytes_to_copy; offset = pos % PAGE_SIZE; i = pos/PAGE_SIZE; page = bprm->page[i]; new = 0; if (!page) { page = alloc_page(GFP_HIGHUSER); bprm->page[i] = page; if (!page) return -ENOMEM; new = 1; } kaddr = kmap(page); if (new && offset) memset(kaddr, 0, offset); bytes_to_copy = PAGE_SIZE - offset; if (bytes_to_copy > len) { bytes_to_copy = len; if (new) memset(kaddr+offset+len, 0, PAGE_SIZE-offset-len); } err = copy_from_user(kaddr + offset, str, bytes_to_copy); kunmap(page); if (err) return -EFAULT; pos += bytes_to_copy; str += bytes_to_copy; len -= bytes_to_copy; } } return 0; } /* * Like copy_strings, but get argv and its values from kernel memory. */ int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) { int r; mm_segment_t oldfs = get_fs(); set_fs(KERNEL_DS); r = copy_strings(argc, argv, bprm); set_fs(oldfs); return r; } /* * This routine is used to map in a page into an address space: needed by * execve() for the initial stack and environment pages. * * tsk->mmap_sem is held for writing. */ void put_dirty_page(struct task_struct * tsk, struct page *page, unsigned long address) { pgd_t * pgd; pmd_t * pmd; pte_t * pte; if (page_count(page) != 1) printk(KERN_ERR "mem_map disagrees with %p at %08lx\n", page, address); pgd = pgd_offset(tsk->mm, address); spin_lock(&tsk->mm->page_table_lock); pmd = pmd_alloc(tsk->mm, pgd, address); if (!pmd) goto out; pte = pte_alloc_map(tsk->mm, pmd, address); if (!pte) goto out; if (!pte_none(*pte)) { pte_unmap(pte); goto out; } lru_cache_add(page); flush_dcache_page(page); flush_page_to_ram(page); set_pte(pte, pte_mkdirty(pte_mkwrite(mk_pte(page, PAGE_COPY)))); pte_unmap(pte); tsk->mm->rss++; spin_unlock(&tsk->mm->page_table_lock); /* no need for flush_tlb */ return; out: spin_unlock(&tsk->mm->page_table_lock); __free_page(page); force_sig(SIGKILL, tsk); return; } int setup_arg_pages(struct linux_binprm *bprm) { unsigned long stack_base; struct vm_area_struct *mpnt; int i; stack_base = STACK_TOP - MAX_ARG_PAGES*PAGE_SIZE; bprm->p += stack_base; if (bprm->loader) bprm->loader += stack_base; bprm->exec += stack_base; mpnt = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL); if (!mpnt) return -ENOMEM; down_write(¤t->mm->mmap_sem); { mpnt->vm_mm = current->mm; mpnt->vm_start = PAGE_MASK & (unsigned long) bprm->p; mpnt->vm_end = STACK_TOP; mpnt->vm_page_prot = PAGE_COPY; mpnt->vm_flags = VM_STACK_FLAGS; mpnt->vm_ops = NULL; mpnt->vm_pgoff = 0; mpnt->vm_file = NULL; mpnt->vm_private_data = (void *) 0; insert_vm_struct(current->mm, mpnt); current->mm->total_vm = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT; } for (i = 0 ; i < MAX_ARG_PAGES ; i++) { struct page *page = bprm->page[i]; if (page) { bprm->page[i] = NULL; put_dirty_page(current,page,stack_base); } stack_base += PAGE_SIZE; } up_write(¤t->mm->mmap_sem); return 0; } struct file *open_exec(const char *name) { struct nameidata nd; int err = path_lookup(name, LOOKUP_FOLLOW, &nd); struct file *file = ERR_PTR(err); if (!err) { struct inode *inode = nd.dentry->d_inode; file = ERR_PTR(-EACCES); if (!(nd.mnt->mnt_flags & MNT_NOEXEC) && S_ISREG(inode->i_mode)) { int err = permission(inode, MAY_EXEC); if (!err && !(inode->i_mode & 0111)) err = -EACCES; file = ERR_PTR(err); if (!err) { file = dentry_open(nd.dentry, nd.mnt, O_RDONLY); if (!IS_ERR(file)) { err = deny_write_access(file); if (err) { fput(file); file = ERR_PTR(err); } } out: return file; } } path_release(&nd); } goto out; } int kernel_read(struct file *file, unsigned long offset, char * addr, unsigned long count) { mm_segment_t old_fs; loff_t pos = offset; int result = -ENOSYS; if (!file->f_op->read) goto fail; old_fs = get_fs(); set_fs(get_ds()); result = file->f_op->read(file, addr, count, &pos); set_fs(old_fs); fail: return result; } static int exec_mmap(void) { struct mm_struct * mm, * old_mm; old_mm = current->mm; if (old_mm && atomic_read(&old_mm->mm_users) == 1) { mm_release(); exit_mmap(old_mm); return 0; } mm = mm_alloc(); if (mm) { struct mm_struct *active_mm; if (init_new_context(current, mm)) { mmdrop(mm); return -ENOMEM; } /* Add it to the list of mm's */ spin_lock(&mmlist_lock); list_add(&mm->mmlist, &init_mm.mmlist); mmlist_nr++; spin_unlock(&mmlist_lock); task_lock(current); active_mm = current->active_mm; current->mm = mm; current->active_mm = mm; activate_mm(active_mm, mm); task_unlock(current); mm_release(); if (old_mm) { if (active_mm != old_mm) BUG(); mmput(old_mm); return 0; } mmdrop(active_mm); return 0; } return -ENOMEM; } /* * This function makes sure the current process has its own signal table, * so that flush_signal_handlers can later reset the handlers without * disturbing other processes. (Other processes might share the signal * table via the CLONE_SIGNAL option to clone().) */ static inline int make_private_signals(void) { struct signal_struct * newsig; if (atomic_read(¤t->sig->count) <= 1) return 0; newsig = kmem_cache_alloc(sigact_cachep, GFP_KERNEL); if (newsig == NULL) return -ENOMEM; spin_lock_init(&newsig->siglock); atomic_set(&newsig->count, 1); memcpy(newsig->action, current->sig->action, sizeof(newsig->action)); spin_lock_irq(¤t->sigmask_lock); current->sig = newsig; spin_unlock_irq(¤t->sigmask_lock); return 0; } /* * If make_private_signals() made a copy of the signal table, decrement the * refcount of the original table, and free it if necessary. * We don't do that in make_private_signals() so that we can back off * in flush_old_exec() if an error occurs after calling make_private_signals(). */ static inline void release_old_signals(struct signal_struct * oldsig) { if (current->sig == oldsig) return; if (atomic_dec_and_test(&oldsig->count)) kmem_cache_free(sigact_cachep, oldsig); } /* * These functions flushes out all traces of the currently running executable * so that a new one can be started */ static inline void flush_old_files(struct files_struct * files) { long j = -1; write_lock(&files->file_lock); for (;;) { unsigned long set, i; j++; i = j * __NFDBITS; if (i >= files->max_fds || i >= files->max_fdset) break; set = files->close_on_exec->fds_bits[j]; if (!set) continue; files->close_on_exec->fds_bits[j] = 0; write_unlock(&files->file_lock); for ( ; set ; i++,set >>= 1) { if (set & 1) { sys_close(i); } } write_lock(&files->file_lock); } write_unlock(&files->file_lock); } /* * An execve() will automatically "de-thread" the process. * - if a master thread (PID==TGID) is doing this, then all subsidiary threads * will be killed (otherwise there will end up being two independent thread * groups with the same TGID). * - if a subsidary thread is doing this, then it just leaves the thread group */ static void de_thread(struct task_struct *tsk) { struct task_struct *sub; struct list_head *head, *ptr; struct siginfo info; int pause; write_lock_irq(&tasklist_lock); if (tsk->tgid != tsk->pid) { /* subsidiary thread - just escapes the group */ list_del_init(&tsk->thread_group); tsk->tgid = tsk->pid; pause = 0; } else { /* master thread - kill all subsidiary threads */ info.si_signo = SIGKILL; info.si_errno = 0; info.si_code = SI_DETHREAD; info.si_pid = current->pid; info.si_uid = current->uid; head = tsk->thread_group.next; list_del_init(&tsk->thread_group); list_for_each(ptr,head) { sub = list_entry(ptr,struct task_struct,thread_group); send_sig_info(SIGKILL,&info,sub); } pause = 1; } write_unlock_irq(&tasklist_lock); /* give the subsidiary threads a chance to clean themselves up */ if (pause) yield(); } int flush_old_exec(struct linux_binprm * bprm) { char * name; int i, ch, retval; struct signal_struct * oldsig; /* * Make sure we have a private signal table */ oldsig = current->sig; retval = make_private_signals(); if (retval) goto flush_failed; /* * Release all of the old mmap stuff */ retval = exec_mmap(); if (retval) goto mmap_failed; /* This is the point of no return */ release_old_signals(oldsig); current->sas_ss_sp = current->sas_ss_size = 0; if (current->euid == current->uid && current->egid == current->gid) current->mm->dumpable = 1; name = bprm->filename; for (i=0; (ch = *(name++)) != '\0';) { if (ch == '/') i = 0; else if (i < 15) current->comm[i++] = ch; } current->comm[i] = '\0'; flush_thread(); if (!list_empty(¤t->thread_group)) de_thread(current); if (bprm->e_uid != current->euid || bprm->e_gid != current->egid || permission(bprm->file->f_dentry->d_inode,MAY_READ)) current->mm->dumpable = 0; /* An exec changes our domain. We are no longer part of the thread group */ current->self_exec_id++; flush_signal_handlers(current); flush_old_files(current->files); return 0; mmap_failed: flush_failed: spin_lock_irq(¤t->sigmask_lock); if (current->sig != oldsig) { kmem_cache_free(sigact_cachep, current->sig); current->sig = oldsig; } spin_unlock_irq(¤t->sigmask_lock); return retval; } /* * We mustn't allow tracing of suid binaries, unless * the tracer has the capability to trace anything.. */ static inline int must_not_trace_exec(struct task_struct * p) { return (p->ptrace & PT_PTRACED) && !(p->ptrace & PT_PTRACE_CAP); } /* * Fill the binprm structure from the inode. * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes */ int prepare_binprm(struct linux_binprm *bprm) { int mode; struct inode * inode = bprm->file->f_dentry->d_inode; mode = inode->i_mode; /* * Check execute perms again - if the caller has CAP_DAC_OVERRIDE, * vfs_permission lets a non-executable through */ if (!(mode & 0111)) /* with at least _one_ execute bit set */ return -EACCES; if (bprm->file->f_op == NULL) return -EACCES; bprm->e_uid = current->euid; bprm->e_gid = current->egid; if(!(bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)) { /* Set-uid? */ if (mode & S_ISUID) bprm->e_uid = inode->i_uid; /* Set-gid? */ /* * If setgid is set but no group execute bit then this * is a candidate for mandatory locking, not a setgid * executable. */ if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) bprm->e_gid = inode->i_gid; } /* We don't have VFS support for capabilities yet */ cap_clear(bprm->cap_inheritable); cap_clear(bprm->cap_permitted); cap_clear(bprm->cap_effective); /* To support inheritance of root-permissions and suid-root * executables under compatibility mode, we raise all three * capability sets for the file. * * If only the real uid is 0, we only raise the inheritable * and permitted sets of the executable file. */ if (!issecure(SECURE_NOROOT)) { if (bprm->e_uid == 0 || current->uid == 0) { cap_set_full(bprm->cap_inheritable); cap_set_full(bprm->cap_permitted); } if (bprm->e_uid == 0) cap_set_full(bprm->cap_effective); } memset(bprm->buf,0,BINPRM_BUF_SIZE); return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); } /* * This function is used to produce the new IDs and capabilities * from the old ones and the file's capabilities. * * The formula used for evolving capabilities is: * * pI' = pI * (***) pP' = (fP & X) | (fI & pI) * pE' = pP' & fE [NB. fE is 0 or ~0] * * I=Inheritable, P=Permitted, E=Effective // p=process, f=file * ' indicates post-exec(), and X is the global 'cap_bset'. * */ void compute_creds(struct linux_binprm *bprm) { kernel_cap_t new_permitted, working; int do_unlock = 0; new_permitted = cap_intersect(bprm->cap_permitted, cap_bset); working = cap_intersect(bprm->cap_inheritable, current->cap_inheritable); new_permitted = cap_combine(new_permitted, working); if (bprm->e_uid != current->uid || bprm->e_gid != current->gid || !cap_issubset(new_permitted, current->cap_permitted)) { current->mm->dumpable = 0; lock_kernel(); if (must_not_trace_exec(current) || atomic_read(¤t->fs->count) > 1 || atomic_read(¤t->files->count) > 1 || atomic_read(¤t->sig->count) > 1) { if(!capable(CAP_SETUID)) { bprm->e_uid = current->uid; bprm->e_gid = current->gid; } if(!capable(CAP_SETPCAP)) { new_permitted = cap_intersect(new_permitted, current->cap_permitted); } } do_unlock = 1; } /* For init, we want to retain the capabilities set * in the init_task struct. Thus we skip the usual * capability rules */ if (current->pid != 1) { current->cap_permitted = new_permitted; current->cap_effective = cap_intersect(new_permitted, bprm->cap_effective); } /* AUD: Audit candidate if current->cap_effective is set */ current->suid = current->euid = current->fsuid = bprm->e_uid; current->sgid = current->egid = current->fsgid = bprm->e_gid; if(do_unlock) unlock_kernel(); current->keep_capabilities = 0; } void remove_arg_zero(struct linux_binprm *bprm) { if (bprm->argc) { unsigned long offset; char * kaddr; struct page *page; offset = bprm->p % PAGE_SIZE; goto inside; while (bprm->p++, *(kaddr+offset++)) { if (offset != PAGE_SIZE) continue; offset = 0; kunmap(page); inside: page = bprm->page[bprm->p/PAGE_SIZE]; kaddr = kmap(page); } kunmap(page); bprm->argc--; } } /* * cycle the list of binary formats handler, until one recognizes the image */ int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) { int try,retval=0; struct linux_binfmt *fmt; #ifdef __alpha__ /* handle /sbin/loader.. */ { struct exec * eh = (struct exec *) bprm->buf; if (!bprm->loader && eh->fh.f_magic == 0x183 && (eh->fh.f_flags & 0x3000) == 0x3000) { struct file * file; unsigned long loader; allow_write_access(bprm->file); fput(bprm->file); bprm->file = NULL; loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); file = open_exec("/sbin/loader"); retval = PTR_ERR(file); if (IS_ERR(file)) return retval; /* Remember if the application is TASO. */ bprm->sh_bang = eh->ah.entry < 0x100000000; bprm->file = file; bprm->loader = loader; retval = prepare_binprm(bprm); if (retval<0) return retval; /* should call search_binary_handler recursively here, but it does not matter */ } } #endif /* kernel module loader fixup */ /* so we don't try to load run modprobe in kernel space. */ set_fs(USER_DS); for (try=0; try<2; try++) { read_lock(&binfmt_lock); for (fmt = formats ; fmt ; fmt = fmt->next) { int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; if (!fn) continue; if (!try_inc_mod_count(fmt->module)) continue; read_unlock(&binfmt_lock); retval = fn(bprm, regs); if (retval >= 0) { put_binfmt(fmt); allow_write_access(bprm->file); if (bprm->file) fput(bprm->file); bprm->file = NULL; current->did_exec = 1; return retval; } read_lock(&binfmt_lock); put_binfmt(fmt); if (retval != -ENOEXEC) break; if (!bprm->file) { read_unlock(&binfmt_lock); return retval; } } read_unlock(&binfmt_lock); if (retval != -ENOEXEC) { break; #ifdef CONFIG_KMOD }else{ #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) char modname[20]; if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && printable(bprm->buf[2]) && printable(bprm->buf[3])) break; /* -ENOEXEC */ sprintf(modname, "binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); request_module(modname); #endif } } return retval; } /* * sys_execve() executes a new program. */ int do_execve(char * filename, char ** argv, char ** envp, struct pt_regs * regs) { struct linux_binprm bprm; struct file *file; int retval; int i; file = open_exec(filename); retval = PTR_ERR(file); if (IS_ERR(file)) return retval; bprm.p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *); memset(bprm.page, 0, MAX_ARG_PAGES*sizeof(bprm.page[0])); bprm.file = file; bprm.filename = filename; bprm.sh_bang = 0; bprm.loader = 0; bprm.exec = 0; if ((bprm.argc = count(argv, bprm.p / sizeof(void *))) < 0) { allow_write_access(file); fput(file); return bprm.argc; } if ((bprm.envc = count(envp, bprm.p / sizeof(void *))) < 0) { allow_write_access(file); fput(file); return bprm.envc; } retval = prepare_binprm(&bprm); if (retval < 0) goto out; retval = copy_strings_kernel(1, &bprm.filename, &bprm); if (retval < 0) goto out; bprm.exec = bprm.p; retval = copy_strings(bprm.envc, envp, &bprm); if (retval < 0) goto out; retval = copy_strings(bprm.argc, argv, &bprm); if (retval < 0) goto out; retval = search_binary_handler(&bprm,regs); if (retval >= 0) /* execve success */ return retval; out: /* Something went wrong, return the inode and free the argument pages*/ allow_write_access(bprm.file); if (bprm.file) fput(bprm.file); for (i = 0 ; i < MAX_ARG_PAGES ; i++) { struct page * page = bprm.page[i]; if (page) __free_page(page); } return retval; } void set_binfmt(struct linux_binfmt *new) { struct linux_binfmt *old = current->binfmt; if (new && new->module) __MOD_INC_USE_COUNT(new->module); current->binfmt = new; if (old && old->module) __MOD_DEC_USE_COUNT(old->module); } int do_coredump(long signr, struct pt_regs * regs) { struct linux_binfmt * binfmt; char corename[6+sizeof(current->comm)+10]; struct file * file; struct inode * inode; int retval = 0; lock_kernel(); binfmt = current->binfmt; if (!binfmt || !binfmt->core_dump) goto fail; if (!current->mm->dumpable) goto fail; current->mm->dumpable = 0; if (current->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump) goto fail; memcpy(corename,"core", 5); /* include trailing \0 */ if (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1) sprintf(&corename[4], ".%d", current->pid); file = filp_open(corename, O_CREAT | 2 | O_NOFOLLOW, 0600); if (IS_ERR(file)) goto fail; inode = file->f_dentry->d_inode; if (inode->i_nlink > 1) goto close_fail; /* multiple links - don't dump */ if (d_unhashed(file->f_dentry)) goto close_fail; if (!S_ISREG(inode->i_mode)) goto close_fail; if (!file->f_op) goto close_fail; if (!file->f_op->write) goto close_fail; if (do_truncate(file->f_dentry, 0) != 0) goto close_fail; retval = binfmt->core_dump(signr, regs, file); close_fail: filp_close(file, NULL); fail: unlock_kernel(); return retval; } |