Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | /* * linux/arch/arm/mm/mm-armv.c * * Copyright (C) 1998-2002 Russell King * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * Page table sludge for ARM v3 and v4 processor architectures. */ #include <linux/sched.h> #include <linux/mm.h> #include <linux/init.h> #include <linux/bootmem.h> #include <asm/pgtable.h> #include <asm/pgalloc.h> #include <asm/page.h> #include <asm/io.h> #include <asm/setup.h> #include <asm/mach/map.h> /* * These are useful for identifing cache coherency * problems by allowing the cache or the cache and * writebuffer to be turned off. (Note: the write * buffer should not be on and the cache off). */ static int __init nocache_setup(char *__unused) { cr_alignment &= ~CR1_C; cr_no_alignment &= ~CR1_C; flush_cache_all(); set_cr(cr_alignment); return 1; } static int __init nowrite_setup(char *__unused) { cr_alignment &= ~(CR1_W|CR1_C); cr_no_alignment &= ~(CR1_W|CR1_C); flush_cache_all(); set_cr(cr_alignment); return 1; } static int __init noalign_setup(char *__unused) { cr_alignment &= ~CR1_A; cr_no_alignment &= ~CR1_A; set_cr(cr_alignment); return 1; } __setup("noalign", noalign_setup); __setup("nocache", nocache_setup); __setup("nowb", nowrite_setup); #define FIRST_KERNEL_PGD_NR (FIRST_USER_PGD_NR + USER_PTRS_PER_PGD) /* * need to get a 16k page for level 1 */ pgd_t *get_pgd_slow(struct mm_struct *mm) { pgd_t *new_pgd, *init_pgd; pmd_t *new_pmd, *init_pmd; pte_t *new_pte, *init_pte; new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2); if (!new_pgd) goto no_pgd; memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t)); init_pgd = pgd_offset_k(0); if (vectors_base() == 0) { /* * This lock is here just to satisfy pmd_alloc and pte_lock */ spin_lock(&mm->page_table_lock); /* * On ARM, first page must always be allocated since it * contains the machine vectors. */ new_pmd = pmd_alloc(mm, new_pgd, 0); if (!new_pmd) goto no_pmd; new_pte = pte_alloc_map(mm, new_pmd, 0); if (!new_pte) goto no_pte; init_pmd = pmd_offset(init_pgd, 0); init_pte = pte_offset_map_nested(init_pmd, 0); set_pte(new_pte, *init_pte); pte_unmap_nested(init_pte); pte_unmap(new_pte); spin_unlock(&mm->page_table_lock); } /* * Copy over the kernel and IO PGD entries */ memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR, (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t)); clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t)); return new_pgd; no_pte: spin_unlock(&mm->page_table_lock); pmd_free(new_pmd); free_pages((unsigned long)new_pgd, 2); return NULL; no_pmd: spin_unlock(&mm->page_table_lock); free_pages((unsigned long)new_pgd, 2); return NULL; no_pgd: return NULL; } void free_pgd_slow(pgd_t *pgd) { pmd_t *pmd; struct page *pte; if (!pgd) return; /* pgd is always present and good */ pmd = (pmd_t *)pgd; if (pmd_none(*pmd)) goto free; if (pmd_bad(*pmd)) { pmd_ERROR(*pmd); pmd_clear(pmd); goto free; } pte = pmd_page(*pmd); pmd_clear(pmd); pte_free(pte); pmd_free(pmd); free: free_pages((unsigned long) pgd, 2); } /* * Create a SECTION PGD between VIRT and PHYS in domain * DOMAIN with protection PROT */ static inline void alloc_init_section(unsigned long virt, unsigned long phys, int prot) { pmd_t *pmdp, pmd; pmdp = pmd_offset(pgd_offset_k(virt), virt); if (virt & (1 << PMD_SHIFT)) pmdp++; pmd_val(pmd) = phys | prot; set_pmd(pmdp, pmd); } /* * Add a PAGE mapping between VIRT and PHYS in domain * DOMAIN with protection PROT. Note that due to the * way we map the PTEs, we must allocate two PTE_SIZE'd * blocks - one for the Linux pte table, and one for * the hardware pte table. */ static inline void alloc_init_page(unsigned long virt, unsigned long phys, int domain, int prot) { pmd_t *pmdp, pmd; pte_t *ptep; pmdp = pmd_offset(pgd_offset_k(virt), virt); if (pmd_none(*pmdp)) { ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t)); pmd_val(pmd) = __pa(ptep) | PMD_TYPE_TABLE | PMD_DOMAIN(domain); set_pmd(pmdp, pmd); pmd_val(pmd) += 256 * sizeof(pte_t); set_pmd(pmdp + 1, pmd); } ptep = pte_offset_kernel(pmdp, virt); set_pte(ptep, mk_pte_phys(phys, __pgprot(prot))); } /* * Clear any PGD mapping. On a two-level page table system, * the clearance is done by the middle-level functions (pmd) * rather than the top-level (pgd) functions. */ static inline void clear_mapping(unsigned long virt) { pmd_clear(pmd_offset(pgd_offset_k(virt), virt)); } /* * Create the page directory entries and any necessary * page tables for the mapping specified by `md'. We * are able to cope here with varying sizes and address * offsets, and we take full advantage of sections. */ static void __init create_mapping(struct map_desc *md) { unsigned long virt, length; int prot_sect, prot_pte; long off; if (md->prot_read && md->prot_write && !md->cacheable && !md->bufferable) { printk(KERN_WARNING "Security risk: creating user " "accessible mapping for 0x%08lx at 0x%08lx\n", md->physical, md->virtual); } if (md->virtual != vectors_base() && md->virtual < PAGE_OFFSET) { printk(KERN_WARNING "MM: not creating mapping for " "0x%08lx at 0x%08lx in user region\n", md->physical, md->virtual); return; } prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | (md->prot_read ? L_PTE_USER : 0) | (md->prot_write ? L_PTE_WRITE : 0) | (md->cacheable ? L_PTE_CACHEABLE : 0) | (md->bufferable ? L_PTE_BUFFERABLE : 0); prot_sect = PMD_TYPE_SECT | PMD_DOMAIN(md->domain) | (md->prot_read ? PMD_SECT_AP_READ : 0) | (md->prot_write ? PMD_SECT_AP_WRITE : 0) | (md->cacheable ? PMD_SECT_CACHEABLE : 0) | (md->bufferable ? PMD_SECT_BUFFERABLE : 0); virt = md->virtual; off = md->physical - virt; length = md->length; while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) { alloc_init_page(virt, virt + off, md->domain, prot_pte); virt += PAGE_SIZE; length -= PAGE_SIZE; } while (length >= (PGDIR_SIZE / 2)) { alloc_init_section(virt, virt + off, prot_sect); virt += (PGDIR_SIZE / 2); length -= (PGDIR_SIZE / 2); } while (length >= PAGE_SIZE) { alloc_init_page(virt, virt + off, md->domain, prot_pte); virt += PAGE_SIZE; length -= PAGE_SIZE; } } /* * In order to soft-boot, we need to insert a 1:1 mapping in place of * the user-mode pages. This will then ensure that we have predictable * results when turning the mmu off */ void setup_mm_for_reboot(char mode) { pgd_t *pgd; pmd_t pmd; int i; if (current->mm && current->mm->pgd) pgd = current->mm->pgd; else pgd = init_mm.pgd; for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) { pmd_val(pmd) = (i << PGDIR_SHIFT) | PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT; set_pmd(pmd_offset(pgd + i, i << PGDIR_SHIFT), pmd); } } /* * Setup initial mappings. We use the page we allocated for zero page to hold * the mappings, which will get overwritten by the vectors in traps_init(). * The mappings must be in virtual address order. */ void __init memtable_init(struct meminfo *mi) { struct map_desc *init_maps, *p, *q; unsigned long address = 0; int i; init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE); for (i = 0; i < mi->nr_banks; i++) { if (mi->bank[i].size == 0) continue; p->physical = mi->bank[i].start; p->virtual = __phys_to_virt(p->physical); p->length = mi->bank[i].size; p->domain = DOMAIN_KERNEL; p->prot_read = 0; p->prot_write = 1; p->cacheable = 1; p->bufferable = 1; p ++; } #ifdef FLUSH_BASE p->physical = FLUSH_BASE_PHYS; p->virtual = FLUSH_BASE; p->length = PGDIR_SIZE; p->domain = DOMAIN_KERNEL; p->prot_read = 1; p->prot_write = 0; p->cacheable = 1; p->bufferable = 1; p ++; #endif #ifdef FLUSH_BASE_MINICACHE p->physical = FLUSH_BASE_PHYS + PGDIR_SIZE; p->virtual = FLUSH_BASE_MINICACHE; p->length = PGDIR_SIZE; p->domain = DOMAIN_KERNEL; p->prot_read = 1; p->prot_write = 0; p->cacheable = 1; p->bufferable = 0; p ++; #endif /* * Go through the initial mappings, but clear out any * pgdir entries that are not in the description. */ q = init_maps; do { if (address < q->virtual || q == p) { clear_mapping(address); address += PGDIR_SIZE; } else { create_mapping(q); address = q->virtual + q->length; address = (address + PGDIR_SIZE - 1) & PGDIR_MASK; q ++; } } while (address != 0); /* * Create a mapping for the machine vectors at virtual address 0 * or 0xffff0000. We should always try the high mapping. */ init_maps->physical = virt_to_phys(init_maps); init_maps->virtual = vectors_base(); init_maps->length = PAGE_SIZE; init_maps->domain = DOMAIN_USER; init_maps->prot_read = 0; init_maps->prot_write = 0; init_maps->cacheable = 1; init_maps->bufferable = 0; create_mapping(init_maps); flush_cache_all(); } /* * Create the architecture specific mappings */ void __init iotable_init(struct map_desc *io_desc) { int i; for (i = 0; io_desc[i].last == 0; i++) create_mapping(io_desc + i); } static inline void free_memmap(int node, unsigned long start, unsigned long end) { unsigned long pg, pgend; start = __phys_to_virt(start); end = __phys_to_virt(end); pg = PAGE_ALIGN((unsigned long)(virt_to_page(start))); pgend = ((unsigned long)(virt_to_page(end))) & PAGE_MASK; start = __virt_to_phys(pg); end = __virt_to_phys(pgend); free_bootmem_node(NODE_DATA(node), start, end - start); } static inline void free_unused_memmap_node(int node, struct meminfo *mi) { unsigned long bank_start, prev_bank_end = 0; unsigned int i; /* * [FIXME] This relies on each bank being in address order. This * may not be the case, especially if the user has provided the * information on the command line. */ for (i = 0; i < mi->nr_banks; i++) { if (mi->bank[i].size == 0 || mi->bank[i].node != node) continue; bank_start = mi->bank[i].start & PAGE_MASK; /* * If we had a previous bank, and there is a space * between the current bank and the previous, free it. */ if (prev_bank_end && prev_bank_end != bank_start) free_memmap(node, prev_bank_end, bank_start); prev_bank_end = PAGE_ALIGN(mi->bank[i].start + mi->bank[i].size); } } /* * The mem_map array can get very big. Free * the unused area of the memory map. */ void __init create_memmap_holes(struct meminfo *mi) { int node; for (node = 0; node < numnodes; node++) free_unused_memmap_node(node, mi); } |