Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
/*
 *  linux/arch/arm/mm/mm-armv.c
 *
 *  Copyright (C) 1998-2000 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  Page table sludge for ARM v3 and v4 processor architectures.
 */
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/init.h>
#include <linux/bootmem.h>

#include <asm/pgtable.h>
#include <asm/pgalloc.h>
#include <asm/page.h>
#include <asm/io.h>
#include <asm/setup.h>

#include <asm/mach/map.h>

/*
 * These are useful for identifing cache coherency
 * problems by allowing the cache or the cache and
 * writebuffer to be turned off.  (Note: the write
 * buffer should not be on and the cache off).
 */
static int __init nocache_setup(char *__unused)
{
	cr_alignment &= ~4;
	cr_no_alignment &= ~4;
	flush_cache_all();
	set_cr(cr_alignment);
	return 1;
}

static int __init nowrite_setup(char *__unused)
{
	cr_alignment &= ~(8|4);
	cr_no_alignment &= ~(8|4);
	flush_cache_all();
	set_cr(cr_alignment);
	return 1;
}

static int __init noalign_setup(char *__unused)
{
	cr_alignment &= ~2;
	cr_no_alignment &= ~2;
	set_cr(cr_alignment);
	return 1;
}

__setup("noalign", noalign_setup);
__setup("nocache", nocache_setup);
__setup("nowb", nowrite_setup);

#define FIRST_KERNEL_PGD_NR	(FIRST_USER_PGD_NR + USER_PTRS_PER_PGD)

#define clean_cache_area(start,size) \
	cpu_cache_clean_invalidate_range((unsigned long)start, ((unsigned long)start) + size, 0);


/*
 * need to get a 16k page for level 1
 */
pgd_t *get_pgd_slow(struct mm_struct *mm)
{
	pgd_t *new_pgd, *init_pgd;
	pmd_t *new_pmd, *init_pmd;
	pte_t *new_pte, *init_pte;

	new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2);
	if (!new_pgd)
		goto no_pgd;

	memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t));

	init_pgd = pgd_offset_k(0);

	if (vectors_base() == 0) {
		init_pmd = pmd_offset(init_pgd, 0);
		init_pte = pte_offset(init_pmd, 0);

		/*
		 * This lock is here just to satisfy pmd_alloc and pte_lock
		 */
		spin_lock(&mm->page_table_lock);

		/*
		 * On ARM, first page must always be allocated since it
		 * contains the machine vectors.
		 */
		new_pmd = pmd_alloc(mm, new_pgd, 0);
		if (!new_pmd)
			goto no_pmd;

		new_pte = pte_alloc(mm, new_pmd, 0);
		if (!new_pte)
			goto no_pte;

		set_pte(new_pte, *init_pte);

		spin_unlock(&mm->page_table_lock);
	}

	/*
	 * Copy over the kernel and IO PGD entries
	 */
	memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR,
		       (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t));

	/*
	 * FIXME: this should not be necessary
	 */
	clean_cache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t));

	return new_pgd;

no_pte:
	spin_unlock(&mm->page_table_lock);
	pmd_free(new_pmd);
	free_pages((unsigned long)new_pgd, 2);
	return NULL;

no_pmd:
	spin_unlock(&mm->page_table_lock);
	free_pages((unsigned long)new_pgd, 2);
	return NULL;

no_pgd:
	return NULL;
}

void free_pgd_slow(pgd_t *pgd)
{
	pmd_t *pmd;
	pte_t *pte;

	if (!pgd)
		return;

	/* pgd is always present and good */
	pmd = (pmd_t *)pgd;
	if (pmd_none(*pmd))
		goto free;
	if (pmd_bad(*pmd)) {
		pmd_ERROR(*pmd);
		pmd_clear(pmd);
		goto free;
	}

	pte = pte_offset(pmd, 0);
	pmd_clear(pmd);
	pte_free(pte);
	pmd_free(pmd);
free:
	free_pages((unsigned long) pgd, 2);
}

/*
 * Create a SECTION PGD between VIRT and PHYS in domain
 * DOMAIN with protection PROT
 */
static inline void
alloc_init_section(unsigned long virt, unsigned long phys, int prot)
{
	pmd_t pmd;

	pmd_val(pmd) = phys | prot;

	set_pmd(pmd_offset(pgd_offset_k(virt), virt), pmd);
}

/*
 * Add a PAGE mapping between VIRT and PHYS in domain
 * DOMAIN with protection PROT.  Note that due to the
 * way we map the PTEs, we must allocate two PTE_SIZE'd
 * blocks - one for the Linux pte table, and one for
 * the hardware pte table.
 */
static inline void
alloc_init_page(unsigned long virt, unsigned long phys, int domain, int prot)
{
	pmd_t *pmdp;
	pte_t *ptep;

	pmdp = pmd_offset(pgd_offset_k(virt), virt);

	if (pmd_none(*pmdp)) {
		pte_t *ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE *
						      sizeof(pte_t));

		ptep += PTRS_PER_PTE;

		set_pmd(pmdp, __mk_pmd(ptep, PMD_TYPE_TABLE | PMD_DOMAIN(domain)));
	}
	ptep = pte_offset(pmdp, virt);

	set_pte(ptep, mk_pte_phys(phys, __pgprot(prot)));
}

/*
 * Clear any PGD mapping.  On a two-level page table system,
 * the clearance is done by the middle-level functions (pmd)
 * rather than the top-level (pgd) functions.
 */
static inline void clear_mapping(unsigned long virt)
{
	pmd_clear(pmd_offset(pgd_offset_k(virt), virt));
}

/*
 * Create the page directory entries and any necessary
 * page tables for the mapping specified by `md'.  We
 * are able to cope here with varying sizes and address
 * offsets, and we take full advantage of sections.
 */
static void __init create_mapping(struct map_desc *md)
{
	unsigned long virt, length;
	int prot_sect, prot_pte;
	long off;

	prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
		   (md->prot_read  ? L_PTE_USER       : 0) |
		   (md->prot_write ? L_PTE_WRITE      : 0) |
		   (md->cacheable  ? L_PTE_CACHEABLE  : 0) |
		   (md->bufferable ? L_PTE_BUFFERABLE : 0);

	prot_sect = PMD_TYPE_SECT | PMD_DOMAIN(md->domain) |
		    (md->prot_read  ? PMD_SECT_AP_READ    : 0) |
		    (md->prot_write ? PMD_SECT_AP_WRITE   : 0) |
		    (md->cacheable  ? PMD_SECT_CACHEABLE  : 0) |
		    (md->bufferable ? PMD_SECT_BUFFERABLE : 0);

	virt   = md->virtual;
	off    = md->physical - virt;
	length = md->length;

	while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) {
		alloc_init_page(virt, virt + off, md->domain, prot_pte);

		virt   += PAGE_SIZE;
		length -= PAGE_SIZE;
	}

	while (length >= PGDIR_SIZE) {
		alloc_init_section(virt, virt + off, prot_sect);

		virt   += PGDIR_SIZE;
		length -= PGDIR_SIZE;
	}

	while (length >= PAGE_SIZE) {
		alloc_init_page(virt, virt + off, md->domain, prot_pte);

		virt   += PAGE_SIZE;
		length -= PAGE_SIZE;
	}
}

/*
 * In order to soft-boot, we need to insert a 1:1 mapping in place of
 * the user-mode pages.  This will then ensure that we have predictable
 * results when turning the mmu off
 */
void setup_mm_for_reboot(char mode)
{
	pgd_t *pgd;
	pmd_t pmd;
	int i;

	if (current->mm && current->mm->pgd)
		pgd = current->mm->pgd;
	else
		pgd = init_mm.pgd;

	for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++) {
		pmd_val(pmd) = (i << PGDIR_SHIFT) |
			PMD_SECT_AP_WRITE | PMD_SECT_AP_READ |
			PMD_TYPE_SECT;
		set_pmd(pmd_offset(pgd + i, i << PGDIR_SHIFT), pmd);
	}
}

/*
 * Setup initial mappings.  We use the page we allocated for zero page to hold
 * the mappings, which will get overwritten by the vectors in traps_init().
 * The mappings must be in virtual address order.
 */
void __init memtable_init(struct meminfo *mi)
{
	struct map_desc *init_maps, *p, *q;
	unsigned long address = 0;
	int i;

	init_maps = p = alloc_bootmem_low_pages(PAGE_SIZE);

	for (i = 0; i < mi->nr_banks; i++) {
		if (mi->bank[i].size == 0)
			continue;

		p->physical   = mi->bank[i].start;
		p->virtual    = __phys_to_virt(p->physical);
		p->length     = mi->bank[i].size;
		p->domain     = DOMAIN_KERNEL;
		p->prot_read  = 0;
		p->prot_write = 1;
		p->cacheable  = 1;
		p->bufferable = 1;

		p ++;
	}

#ifdef FLUSH_BASE
	p->physical   = FLUSH_BASE_PHYS;
	p->virtual    = FLUSH_BASE;
	p->length     = PGDIR_SIZE;
	p->domain     = DOMAIN_KERNEL;
	p->prot_read  = 1;
	p->prot_write = 0;
	p->cacheable  = 1;
	p->bufferable = 1;

	p ++;
#endif

#ifdef FLUSH_BASE_MINICACHE
	p->physical   = FLUSH_BASE_PHYS + PGDIR_SIZE;
	p->virtual    = FLUSH_BASE_MINICACHE;
	p->length     = PGDIR_SIZE;
	p->domain     = DOMAIN_KERNEL;
	p->prot_read  = 1;
	p->prot_write = 0;
	p->cacheable  = 1;
	p->bufferable = 0;

	p ++;
#endif

	/*
	 * Go through the initial mappings, but clear out any
	 * pgdir entries that are not in the description.
	 */
	q = init_maps;
	do {
		if (address < q->virtual || q == p) {
			clear_mapping(address);
			address += PGDIR_SIZE;
		} else {
			create_mapping(q);

			address = q->virtual + q->length;
			address = (address + PGDIR_SIZE - 1) & PGDIR_MASK;

			q ++;
		}
	} while (address != 0);

	/*
	 * Create a mapping for the machine vectors at virtual address 0
	 * or 0xffff0000.  We should always try the high mapping.
	 */
	init_maps->physical   = virt_to_phys(init_maps);
	init_maps->virtual    = vectors_base();
	init_maps->length     = PAGE_SIZE;
	init_maps->domain     = DOMAIN_USER;
	init_maps->prot_read  = 0;
	init_maps->prot_write = 0;
	init_maps->cacheable  = 1;
	init_maps->bufferable = 0;

	create_mapping(init_maps);

	flush_cache_all();
}

/*
 * Create the architecture specific mappings
 */
void __init iotable_init(struct map_desc *io_desc)
{
	int i;

	for (i = 0; io_desc[i].last == 0; i++)
		create_mapping(io_desc + i);
}

static inline void free_memmap(int node, unsigned long start, unsigned long end)
{
	unsigned long pg, pgend;

	start = __phys_to_virt(start);
	end   = __phys_to_virt(end);

	pg    = PAGE_ALIGN((unsigned long)(virt_to_page(start)));
	pgend = ((unsigned long)(virt_to_page(end))) & PAGE_MASK;

	start = __virt_to_phys(pg);
	end   = __virt_to_phys(pgend);

	free_bootmem_node(NODE_DATA(node), start, end - start);
}

static inline void free_unused_memmap_node(int node, struct meminfo *mi)
{
	unsigned long bank_start, prev_bank_end = 0;
	unsigned int i;

	/*
	 * [FIXME] This relies on each bank being in address order.  This
	 * may not be the case, especially if the user has provided the
	 * information on the command line.
	 */
	for (i = 0; i < mi->nr_banks; i++) {
		if (mi->bank[i].size == 0 || mi->bank[i].node != node)
			continue;

		bank_start = mi->bank[i].start & PAGE_MASK;

		/*
		 * If we had a previous bank, and there is a space
		 * between the current bank and the previous, free it.
		 */
		if (prev_bank_end && prev_bank_end != bank_start)
			free_memmap(node, prev_bank_end, bank_start);

		prev_bank_end = PAGE_ALIGN(mi->bank[i].start +
					   mi->bank[i].size);
	}
}

/*
 * The mem_map array can get very big.  Free
 * the unused area of the memory map.
 */
void __init create_memmap_holes(struct meminfo *mi)
{
	int node;

	for (node = 0; node < numnodes; node++)
		free_unused_memmap_node(node, mi);
}

/*
 * PTE table allocation cache.
 *
 * This is a move away from our custom 2K page allocator.  We now use the
 * slab cache to keep track of these objects.
 *
 * With this, it is questionable as to whether the PGT cache gains us
 * anything.  We may be better off dropping the PTE stuff from our PGT
 * cache implementation.
 */
kmem_cache_t *pte_cache;

/*
 * The constructor gets called for each object within the cache when the
 * cache page is created.  Note that if slab tries to misalign the blocks,
 * we BUG() loudly.
 */
static void pte_cache_ctor(void *pte, kmem_cache_t *cache, unsigned long flags)
{
	unsigned long block = (unsigned long)pte;

	if (block & 2047)
		BUG();

	memzero(pte, 2 * PTRS_PER_PTE * sizeof(pte_t));
	cpu_cache_clean_invalidate_range(block, block +
			PTRS_PER_PTE * sizeof(pte_t), 0);
}

void __init pgtable_cache_init(void)
{
	pte_cache = kmem_cache_create("pte-cache",
				2 * PTRS_PER_PTE * sizeof(pte_t), 0, 0,
				pte_cache_ctor, NULL);
	if (!pte_cache)
		BUG();
}