Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
/*
 * Kernel support for the ptrace() and syscall tracing interfaces.
 *
 * Copyright (C) 1999-2001 Hewlett-Packard Co
 * Copyright (C) 1999-2001 David Mosberger-Tang <davidm@hpl.hp.com>
 *
 * Derived from the x86 and Alpha versions.  Most of the code in here
 * could actually be factored into a common set of routines.
 */
#include <linux/config.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/mm.h>
#include <linux/errno.h>
#include <linux/ptrace.h>
#include <linux/smp_lock.h>
#include <linux/user.h>

#include <asm/pgtable.h>
#include <asm/processor.h>
#include <asm/ptrace_offsets.h>
#include <asm/rse.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/unwind.h>

/*
 * Bits in the PSR that we allow ptrace() to change:
 *	be, up, ac, mfl, mfh (the user mask; five bits total)
 *	db (debug breakpoint fault; one bit)
 *	id (instruction debug fault disable; one bit)
 *	dd (data debug fault disable; one bit)
 *	ri (restart instruction; two bits)
 *	is (instruction set; one bit)
 */
#define IPSR_WRITE_MASK \
	(IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
#define IPSR_READ_MASK	IPSR_WRITE_MASK

#define PTRACE_DEBUG	1

#if PTRACE_DEBUG
# define dprintk(format...)	printk(format)
# define inline
#else
# define dprintk(format...)
#endif

/*
 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
 * bitset where bit i is set iff the NaT bit of register i is set.
 */
unsigned long
ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
{
#	define GET_BITS(first, last, unat)						\
	({										\
		unsigned long bit = ia64_unat_pos(&pt->r##first);			\
		unsigned long mask = ((1UL << (last - first + 1)) - 1) << first;	\
		(ia64_rotl(unat, first) >> bit) & mask;					\
	})
	unsigned long val;

	val  = GET_BITS( 1,  3, scratch_unat);
	val |= GET_BITS(12, 15, scratch_unat);
	val |= GET_BITS( 8, 11, scratch_unat);
	val |= GET_BITS(16, 31, scratch_unat);
	return val;

#	undef GET_BITS
}

/*
 * Set the NaT bits for the scratch registers according to NAT and
 * return the resulting unat (assuming the scratch registers are
 * stored in PT).
 */
unsigned long
ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
{
	unsigned long scratch_unat;

#	define PUT_BITS(first, last, nat)					\
	({									\
		unsigned long bit = ia64_unat_pos(&pt->r##first);		\
		unsigned long mask = ((1UL << (last - first + 1)) - 1) << bit;	\
		(ia64_rotr(nat, first) << bit) & mask;				\
	})
	scratch_unat  = PUT_BITS( 1,  3, nat);
	scratch_unat |= PUT_BITS(12, 15, nat);
	scratch_unat |= PUT_BITS( 8, 11, nat);
	scratch_unat |= PUT_BITS(16, 31, nat);

	return scratch_unat;

#	undef PUT_BITS
}

#define IA64_MLX_TEMPLATE	0x2
#define IA64_MOVL_OPCODE	6

void
ia64_increment_ip (struct pt_regs *regs)
{
	unsigned long w0, ri = ia64_psr(regs)->ri + 1;

	if (ri > 2) {
		ri = 0;
		regs->cr_iip += 16;
	} else if (ri == 2) {
		get_user(w0, (char *) regs->cr_iip + 0);
		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
			/*
			 * rfi'ing to slot 2 of an MLX bundle causes
			 * an illegal operation fault.  We don't want
			 * that to happen...
			 */
			ri = 0;
			regs->cr_iip += 16;
		}
	}
	ia64_psr(regs)->ri = ri;
}

void
ia64_decrement_ip (struct pt_regs *regs)
{
	unsigned long w0, ri = ia64_psr(regs)->ri - 1;

	if (ia64_psr(regs)->ri == 0) {
		regs->cr_iip -= 16;
		ri = 2;
		get_user(w0, (char *) regs->cr_iip + 0);
		if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
			/*
			 * rfi'ing to slot 2 of an MLX bundle causes
			 * an illegal operation fault.  We don't want
			 * that to happen...
			 */
			ri = 1;
		}
	}
	ia64_psr(regs)->ri = ri;
}

/*
 * This routine is used to read an rnat bits that are stored on the
 * kernel backing store.  Since, in general, the alignment of the user
 * and kernel are different, this is not completely trivial.  In
 * essence, we need to construct the user RNAT based on up to two
 * kernel RNAT values and/or the RNAT value saved in the child's
 * pt_regs.
 *
 * user rbs
 *
 * +--------+ <-- lowest address
 * | slot62 |
 * +--------+
 * |  rnat  | 0x....1f8
 * +--------+
 * | slot00 | \
 * +--------+ |
 * | slot01 | > child_regs->ar_rnat
 * +--------+ |
 * | slot02 | /				kernel rbs
 * +--------+				+--------+
 *	    <- child_regs->ar_bspstore	| slot61 | <-- krbs
 * +- - - - +				+--------+
 *					| slot62 |
 * +- - - - +				+--------+
 *					|  rnat	 |
 * +- - - - +				+--------+
 *   vrnat				| slot00 |
 * +- - - - +				+--------+
 *					=	 =
 *					+--------+
 *					| slot00 | \
 *					+--------+ |
 *					| slot01 | > child_stack->ar_rnat
 *					+--------+ |
 *					| slot02 | /
 *					+--------+
 *						  <--- child_stack->ar_bspstore
 *
 * The way to think of this code is as follows: bit 0 in the user rnat
 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
 * value.  The kernel rnat value holding this bit is stored in
 * variable rnat0.  rnat1 is loaded with the kernel rnat value that
 * form the upper bits of the user rnat value.
 *
 * Boundary cases:
 *
 * o when reading the rnat "below" the first rnat slot on the kernel
 *   backing store, rnat0/rnat1 are set to 0 and the low order bits
 *   are merged in from pt->ar_rnat.
 *
 * o when reading the rnat "above" the last rnat slot on the kernel
 *   backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
 */
static unsigned long
get_rnat (struct pt_regs *pt, struct switch_stack *sw,
	  unsigned long *krbs, unsigned long *urnat_addr)
{
	unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr, kmask = ~0UL;
	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
	long num_regs;

	kbsp = (unsigned long *) sw->ar_bspstore;
	ubspstore = (unsigned long *) pt->ar_bspstore;
	/*
	 * First, figure out which bit number slot 0 in user-land maps
	 * to in the kernel rnat.  Do this by figuring out how many
	 * register slots we're beyond the user's backingstore and
	 * then computing the equivalent address in kernel space.
	 */
	num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
	shift = ia64_rse_slot_num(slot0_kaddr);
	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
	rnat0_kaddr = rnat1_kaddr - 64;

	if (ubspstore + 63 > urnat_addr) {
		/* some bits need to be merged in from pt->ar_rnat */
		kmask = ~((1UL << ia64_rse_slot_num(ubspstore)) - 1);
		urnat = (pt->ar_rnat & ~kmask);
	}
	if (rnat0_kaddr >= kbsp) {
		rnat0 = sw->ar_rnat;
	} else if (rnat0_kaddr > krbs) {
		rnat0 = *rnat0_kaddr;
	}
	if (rnat1_kaddr >= kbsp) {
		rnat1 = sw->ar_rnat;
	} else if (rnat1_kaddr > krbs) {
		rnat1 = *rnat1_kaddr;
	}
	urnat |= ((rnat1 << (63 - shift)) | (rnat0 >> shift)) & kmask;
	return urnat;
}

/*
 * The reverse of get_rnat.
 */
static void
put_rnat (struct pt_regs *pt, struct switch_stack *sw,
	  unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat)
{
	unsigned long rnat0 = 0, rnat1 = 0, rnat = 0, *slot0_kaddr, kmask = ~0UL, mask;
	unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
	long num_regs;

	kbsp = (unsigned long *) sw->ar_bspstore;
	ubspstore = (unsigned long *) pt->ar_bspstore;
	/*
	 * First, figure out which bit number slot 0 in user-land maps
	 * to in the kernel rnat.  Do this by figuring out how many
	 * register slots we're beyond the user's backingstore and
	 * then computing the equivalent address in kernel space.
	 */
	num_regs = (long) ia64_rse_num_regs(ubspstore, urnat_addr + 1);
	slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
	shift = ia64_rse_slot_num(slot0_kaddr);
	rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
	rnat0_kaddr = rnat1_kaddr - 64;

	if (ubspstore + 63 > urnat_addr) {
		/* some bits need to be place in pt->ar_rnat: */
		kmask = ~((1UL << ia64_rse_slot_num(ubspstore)) - 1);
		pt->ar_rnat = (pt->ar_rnat & kmask) | (rnat & ~kmask);
	}
	/*
	 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
	 * rnat slot is ignored. so we don't have to clear it here.
	 */
	rnat0 = (urnat << shift);
	mask = ~0UL << shift;
	if (rnat0_kaddr >= kbsp) {
		sw->ar_rnat = (sw->ar_rnat & ~mask) | (rnat0 & mask);
	} else if (rnat0_kaddr > krbs) {
		*rnat0_kaddr = ((*rnat0_kaddr & ~mask) | (rnat0 & mask));
	}

	rnat1 = (urnat >> (63 - shift));
	mask = ~0UL >> (63 - shift);
	if (rnat1_kaddr >= kbsp) {
		sw->ar_rnat = (sw->ar_rnat & ~mask) | (rnat1 & mask);
	} else if (rnat1_kaddr > krbs) {
		*rnat1_kaddr = ((*rnat1_kaddr & ~mask) | (rnat1 & mask));
	}
}

long
ia64_peek (struct task_struct *child, unsigned long user_bsp, unsigned long addr, long *val)
{
	unsigned long *bspstore, *krbs, regnum, *laddr, *ubsp = (long *) user_bsp;
	struct switch_stack *child_stack;
	struct pt_regs *child_regs;
	size_t copied;
	long ret;

	laddr = (unsigned long *) addr;
	child_regs = ia64_task_regs(child);
	child_stack = (struct switch_stack *) (child->thread.ksp + 16);
	bspstore = (unsigned long *) child_regs->ar_bspstore;
	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
	if (laddr >= bspstore && laddr <= ia64_rse_rnat_addr(ubsp)) {
		/*
		 * Attempt to read the RBS in an area that's actually on the kernel RBS =>
		 * read the corresponding bits in the kernel RBS.
		 */
		if (ia64_rse_is_rnat_slot(laddr))
			ret = get_rnat(child_regs, child_stack, krbs, laddr);
		else {
			if (laddr >= ubsp)
				ret = 0;
			else {
				regnum = ia64_rse_num_regs(bspstore, laddr);
				ret = *ia64_rse_skip_regs(krbs, regnum);
			}
		}
	} else {
		copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
		if (copied != sizeof(ret))
			return -EIO;
	}
	*val = ret;
	return 0;
}

long
ia64_poke (struct task_struct *child, unsigned long user_bsp, unsigned long addr, long val)
{
	unsigned long *bspstore, *krbs, regnum, *laddr, *ubsp = (long *) user_bsp;
	struct switch_stack *child_stack;
	struct pt_regs *child_regs;

	laddr = (unsigned long *) addr;
	child_regs = ia64_task_regs(child);
	child_stack = (struct switch_stack *) (child->thread.ksp + 16);
	bspstore = (unsigned long *) child_regs->ar_bspstore;
	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
	if (laddr >= bspstore && laddr <= ia64_rse_rnat_addr(ubsp)) {
		/*
		 * Attempt to write the RBS in an area that's actually on the kernel RBS
		 * => write the corresponding bits in the kernel RBS.
		 */
		if (ia64_rse_is_rnat_slot(laddr))
			put_rnat(child_regs, child_stack, krbs, laddr, val);
		else {
			if (laddr < ubsp) {
				regnum = ia64_rse_num_regs(bspstore, laddr);
				*ia64_rse_skip_regs(krbs, regnum) = val;
			}
		}
	} else if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val)) {
		return -EIO;
	}
	return 0;
}

/*
 * Calculate the user-level address that would have been in ar.bsp had the user executed a
 * "cover" instruction right before entering the kernel.
 */
unsigned long
ia64_get_user_bsp (struct task_struct *child, struct pt_regs *pt)
{
	unsigned long *krbs, *bspstore, cfm;
	struct unw_frame_info info;
	long ndirty;

	krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
	bspstore = (unsigned long *) pt->ar_bspstore;
	ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));

	if ((long) pt->cr_ifs >= 0) {
		/*
		 * If bit 63 of cr.ifs is cleared, the kernel was entered via a system
		 * call and we need to recover the CFM that existed on entry to the
		 * kernel by unwinding the kernel stack.
		 */
		unw_init_from_blocked_task(&info, child);
		if (unw_unwind_to_user(&info) == 0) {
			unw_get_cfm(&info, &cfm);
			ndirty += (cfm & 0x7f);
		}
	}
	return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
}

/*
 * Synchronize (i.e, write) the RSE backing store living in kernel space to the VM of the
 * indicated child process.
 *
 * If new_bsp is non-zero, the bsp will (effectively) be updated to the new value upon
 * resumption of the child process.  This is accomplished by setting the loadrs value to
 * zero and the bspstore value to the new bsp value.
 *
 * When new_bsp and flush_user_rbs are both 0, the register backing store in kernel space
 * is written to user space and the loadrs and bspstore values are left alone.
 *
 * When new_bsp is zero and flush_user_rbs is 1 (non-zero), loadrs is set to 0, and the
 * bspstore value is set to the old bsp value.  This will cause the stacked registers (r32
 * and up) to be obtained entirely from the child's memory space rather than from the
 * kernel.  (This makes it easier to write code for modifying the stacked registers in
 * multi-threaded programs.)
 *
 * Note: I had originally written this function without the flush_user_rbs parameter; it
 * was written so that loadrs would always be set to zero.  But I had problems with
 * certain system calls apparently causing a portion of the RBS to be zeroed.  (I still
 * don't understand why this was happening.) Anyway, it'd definitely less intrusive to
 * leave loadrs and bspstore alone if possible.
 */
static long
sync_kernel_register_backing_store (struct task_struct *child, long user_bsp, long new_bsp,
				    int flush_user_rbs)
{
	struct pt_regs *child_regs = ia64_task_regs(child);
	unsigned long addr, val;
	long ret;

	/*
	 * Return early if nothing to do.  Note that new_bsp will be zero if the caller
	 * wants to force synchronization without changing bsp.
	 */
	if (user_bsp == new_bsp)
		return 0;

	/* Write portion of backing store living on kernel stack to the child's VM. */
	for (addr = child_regs->ar_bspstore; addr < user_bsp; addr += 8) {
		ret = ia64_peek(child, user_bsp, addr, &val);
		if (ret != 0)
			return ret;
		if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val))
			return -EIO;
	}

	if (new_bsp != 0) {
		flush_user_rbs = 1;
		user_bsp = new_bsp;
	}

	if (flush_user_rbs) {
		child_regs->loadrs = 0;
		child_regs->ar_bspstore = user_bsp;
	}
	return 0;
}

static void
sync_thread_rbs (struct task_struct *child, long bsp, struct mm_struct *mm, int make_writable)
{
	struct task_struct *p;
	read_lock(&tasklist_lock);
	{
		for_each_task(p) {
			if (p->mm == mm && p->state != TASK_RUNNING)
				sync_kernel_register_backing_store(p, bsp, 0, make_writable);
		}
	}
	read_unlock(&tasklist_lock);
	child->thread.flags |= IA64_THREAD_KRBS_SYNCED;
}

/*
 * Write f32-f127 back to task->thread.fph if it has been modified.
 */
inline void
ia64_flush_fph (struct task_struct *task)
{
	struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));
#ifdef CONFIG_SMP
	struct task_struct *fpu_owner = current;
#else
	struct task_struct *fpu_owner = ia64_get_fpu_owner();
#endif

	if (task == fpu_owner && psr->mfh) {
		psr->mfh = 0;
		ia64_save_fpu(&task->thread.fph[0]);
		task->thread.flags |= IA64_THREAD_FPH_VALID;
	}
}

/*
 * Sync the fph state of the task so that it can be manipulated
 * through thread.fph.  If necessary, f32-f127 are written back to
 * thread.fph or, if the fph state hasn't been used before, thread.fph
 * is cleared to zeroes.  Also, access to f32-f127 is disabled to
 * ensure that the task picks up the state from thread.fph when it
 * executes again.
 */
void
ia64_sync_fph (struct task_struct *task)
{
	struct ia64_psr *psr = ia64_psr(ia64_task_regs(task));

	ia64_flush_fph(task);
	if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
		task->thread.flags |= IA64_THREAD_FPH_VALID;
		memset(&task->thread.fph, 0, sizeof(task->thread.fph));
	}
#ifndef CONFIG_SMP
	if (ia64_get_fpu_owner() == task)
		ia64_set_fpu_owner(0);
#endif
	psr->dfh = 1;
}

static int
access_fr (struct unw_frame_info *info, int regnum, int hi, unsigned long *data, int write_access)
{
	struct ia64_fpreg fpval;
	int ret;

	ret = unw_get_fr(info, regnum, &fpval);
	if (ret < 0)
		return ret;

	if (write_access) {
		fpval.u.bits[hi] = *data;
		ret = unw_set_fr(info, regnum, fpval);
	} else
		*data = fpval.u.bits[hi];
	return ret;
}

static int
access_uarea (struct task_struct *child, unsigned long addr, unsigned long *data, int write_access)
{
	unsigned long *ptr, regnum, bsp, rnat_addr;
	struct switch_stack *sw;
	struct unw_frame_info info;
	struct pt_regs *pt;

	pt = ia64_task_regs(child);
	sw = (struct switch_stack *) (child->thread.ksp + 16);

	if ((addr & 0x7) != 0) {
		dprintk("ptrace: unaligned register address 0x%lx\n", addr);
		return -1;
	}

	if (addr < PT_F127 + 16) {
		/* accessing fph */
		if (write_access)
			ia64_sync_fph(child);
		else
			ia64_flush_fph(child);
		ptr = (unsigned long *) ((unsigned long) &child->thread.fph + addr);
	} else if (addr >= PT_F10 && addr < PT_F15 + 16) {
		/* scratch registers untouched by kernel (saved in switch_stack) */
		ptr = (unsigned long *) ((long) sw + addr - PT_NAT_BITS);
	} else if (addr < PT_AR_LC + 8) {
		/* preserved state: */
		unsigned long nat_bits, scratch_unat, dummy = 0;
		struct unw_frame_info info;
		char nat = 0;
		int ret;

		unw_init_from_blocked_task(&info, child);
		if (unw_unwind_to_user(&info) < 0)
			return -1;

		switch (addr) {
		      case PT_NAT_BITS:
			if (write_access) {
				nat_bits = *data;
				scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
				if (unw_set_ar(&info, UNW_AR_UNAT, scratch_unat) < 0) {
					dprintk("ptrace: failed to set ar.unat\n");
					return -1;
				}
				for (regnum = 4; regnum <= 7; ++regnum) {
					unw_get_gr(&info, regnum, &dummy, &nat);
					unw_set_gr(&info, regnum, dummy, (nat_bits >> regnum) & 1);
				}
			} else {
				if (unw_get_ar(&info, UNW_AR_UNAT, &scratch_unat) < 0) {
					dprintk("ptrace: failed to read ar.unat\n");
					return -1;
				}
				nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
				for (regnum = 4; regnum <= 7; ++regnum) {
					unw_get_gr(&info, regnum, &dummy, &nat);
					nat_bits |= (nat != 0) << regnum;
				}
				*data = nat_bits;
			}
			return 0;

		      case PT_R4: case PT_R5: case PT_R6: case PT_R7:
			if (write_access) {
				/* read NaT bit first: */
				ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4, data, &nat);
				if (ret < 0)
					return ret;
			}
			return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data, &nat,
					     write_access);

		      case PT_B1: case PT_B2: case PT_B3: case PT_B4: case PT_B5:
			return unw_access_br(&info, (addr - PT_B1)/8 + 1, data, write_access);

		      case PT_AR_EC:
			return unw_access_ar(&info, UNW_AR_EC, data, write_access);

		      case PT_AR_LC:
			return unw_access_ar(&info, UNW_AR_LC, data, write_access);

		      default:
			if (addr >= PT_F2 && addr < PT_F5 + 16)
				return access_fr(&info, (addr - PT_F2)/16 + 2, (addr & 8) != 0,
						 data, write_access);
			else if (addr >= PT_F16 && addr < PT_F31 + 16)
				return access_fr(&info, (addr - PT_F16)/16 + 16, (addr & 8) != 0,
						 data, write_access);
			else {
				dprintk("ptrace: rejecting access to register address 0x%lx\n",
					addr);
				return -1;
			}
		}
	} else if (addr < PT_F9+16) {
		/* scratch state */
		switch (addr) {
		      case PT_AR_BSP:
			bsp = ia64_get_user_bsp(child, pt);
			if (write_access)
				return sync_kernel_register_backing_store(child, bsp, *data, 1);
			else {
				*data = bsp;
				return 0;
			}

		      case PT_CFM:
			if ((long) pt->cr_ifs < 0) {
				if (write_access)
					pt->cr_ifs = ((pt->cr_ifs & ~0x3fffffffffUL)
						      | (*data & 0x3fffffffffUL));
				else
					*data = pt->cr_ifs & 0x3fffffffffUL;
			} else {
				/* kernel was entered through a system call */
				unsigned long cfm;

				unw_init_from_blocked_task(&info, child);
				if (unw_unwind_to_user(&info) < 0)
					return -1;

				unw_get_cfm(&info, &cfm);
				if (write_access)
					unw_set_cfm(&info, ((cfm & ~0x3fffffffffU)
							    | (*data & 0x3fffffffffUL)));
				else
					*data = cfm;
			}
			return 0;

		      case PT_CR_IPSR:
			if (write_access)
				pt->cr_ipsr = ((*data & IPSR_WRITE_MASK)
					       | (pt->cr_ipsr & ~IPSR_WRITE_MASK));
			else
				*data = (pt->cr_ipsr & IPSR_READ_MASK);
			return 0;

		      case PT_AR_RNAT:
			bsp = ia64_get_user_bsp(child, pt);
			rnat_addr = (long) ia64_rse_rnat_addr((long *) bsp - 1);
			if (write_access)
				return ia64_poke(child, bsp, rnat_addr, *data);
			else
				return ia64_peek(child, bsp, rnat_addr, data);

				   case PT_R1:  case PT_R2:  case PT_R3:
		      case PT_R8:  case PT_R9:  case PT_R10: case PT_R11:
		      case PT_R12: case PT_R13: case PT_R14: case PT_R15:
		      case PT_R16: case PT_R17: case PT_R18: case PT_R19:
		      case PT_R20: case PT_R21: case PT_R22: case PT_R23:
		      case PT_R24: case PT_R25: case PT_R26: case PT_R27:
		      case PT_R28: case PT_R29: case PT_R30: case PT_R31:
		      case PT_B0:  case PT_B6:  case PT_B7:
		      case PT_F6:  case PT_F6+8: case PT_F7: case PT_F7+8:
		      case PT_F8:  case PT_F8+8: case PT_F9: case PT_F9+8:
		      case PT_AR_BSPSTORE:
		      case PT_AR_RSC: case PT_AR_UNAT: case PT_AR_PFS:
		      case PT_AR_CCV: case PT_AR_FPSR: case PT_CR_IIP: case PT_PR:
			/* scratch register */
			ptr = (unsigned long *) ((long) pt + addr - PT_CR_IPSR);
			break;

		      default:
			/* disallow accessing anything else... */
			dprintk("ptrace: rejecting access to register address 0x%lx\n",
				addr);
			return -1;
		}
	} else {
		/* access debug registers */

		if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
			child->thread.flags |= IA64_THREAD_DBG_VALID;
			memset(child->thread.dbr, 0, sizeof(child->thread.dbr));
			memset(child->thread.ibr, 0, sizeof(child->thread.ibr));
		}
		if (addr >= PT_IBR) {
			regnum = (addr - PT_IBR) >> 3;
			ptr = &child->thread.ibr[0];
		} else {
			regnum = (addr - PT_DBR) >> 3;
			ptr = &child->thread.dbr[0];
		}

		if (regnum >= 8) {
			dprintk("ptrace: rejecting access to register address 0x%lx\n", addr);
			return -1;
		}

		ptr += regnum;

		if (write_access)
			/* don't let the user set kernel-level breakpoints... */
			*ptr = *data & ~(7UL << 56);
		else
			*data = *ptr;
		return 0;
	}
	if (write_access)
		*ptr = *data;
	else
		*data = *ptr;
	return 0;
}

asmlinkage long
sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data,
	    long arg4, long arg5, long arg6, long arg7, long stack)
{
	struct pt_regs *pt, *regs = (struct pt_regs *) &stack;
	struct task_struct *child;
	unsigned long flags, bsp;
	long ret;

	lock_kernel();
	ret = -EPERM;
	if (request == PTRACE_TRACEME) {
		/* are we already being traced? */
		if (current->ptrace & PT_PTRACED)
			goto out;
		current->ptrace |= PT_PTRACED;
		ret = 0;
		goto out;
	}

	ret = -ESRCH;
	read_lock(&tasklist_lock);
	{
		child = find_task_by_pid(pid);
		if (child)
			get_task_struct(child);
	}
	read_unlock(&tasklist_lock);
	if (!child)
		goto out;
	ret = -EPERM;
	if (pid == 1)		/* no messing around with init! */
		goto out_tsk;

	if (request == PTRACE_ATTACH) {
		ret = ptrace_attach(child);
		goto out_tsk;
	}
	ret = -ESRCH;
	if (!(child->ptrace & PT_PTRACED))
		goto out_tsk;

	if (child->state != TASK_STOPPED) {
		if (request != PTRACE_KILL)
			goto out_tsk;
	}

	if (child->p_pptr != current)
		goto out_tsk;

	pt = ia64_task_regs(child);

	switch (request) {
	      case PTRACE_PEEKTEXT:
	      case PTRACE_PEEKDATA:		/* read word at location addr */
		bsp = ia64_get_user_bsp(child, pt);
		if (!(child->thread.flags & IA64_THREAD_KRBS_SYNCED)) {
			struct mm_struct *mm;
			long do_sync;

			task_lock(child);
			{
				mm = child->mm;
				do_sync = mm && (atomic_read(&mm->mm_users) > 1);
			}
			task_unlock(child);
			if (do_sync)
				sync_thread_rbs(child, bsp, mm, 0);
		}
		ret = ia64_peek(child, bsp, addr, &data);
		if (ret == 0) {
			ret = data;
			regs->r8 = 0;	/* ensure "ret" is not mistaken as an error code */
		}
		goto out_tsk;

	      case PTRACE_POKETEXT:
	      case PTRACE_POKEDATA:		/* write the word at location addr */
		bsp = ia64_get_user_bsp(child, pt);
		if (!(child->thread.flags & IA64_THREAD_KRBS_SYNCED)) {
			struct mm_struct *mm;
			long do_sync;

			task_lock(child);
			{
				mm = child->mm;
				do_sync = mm && (atomic_read(&child->mm->mm_users) > 1);
			}
			task_unlock(child);
			if (do_sync)
				sync_thread_rbs(child, bsp, mm, 1);
		}
		ret = ia64_poke(child, bsp, addr, data);
		goto out_tsk;

	      case PTRACE_PEEKUSR:		/* read the word at addr in the USER area */
		if (access_uarea(child, addr, &data, 0) < 0) {
			ret = -EIO;
			goto out_tsk;
		}
		ret = data;
		regs->r8 = 0;	/* ensure "ret" is not mistaken as an error code */
		goto out_tsk;

	      case PTRACE_POKEUSR:	      /* write the word at addr in the USER area */
		if (access_uarea(child, addr, &data, 1) < 0) {
			ret = -EIO;
			goto out_tsk;
		}
		ret = 0;
		goto out_tsk;

	      case PTRACE_GETSIGINFO:
		ret = -EIO;
		if (!access_ok(VERIFY_WRITE, data, sizeof (siginfo_t)) || !child->thread.siginfo)
			goto out_tsk;
		ret = copy_siginfo_to_user((siginfo_t *) data, child->thread.siginfo);
		goto out_tsk;

	      case PTRACE_SETSIGINFO:
		ret = -EIO;
		if (!access_ok(VERIFY_READ, data, sizeof (siginfo_t))
		    || child->thread.siginfo == 0)
			goto out_tsk;
		ret = copy_siginfo_from_user(child->thread.siginfo, (siginfo_t *) data);
		goto out_tsk;

	      case PTRACE_SYSCALL:	/* continue and stop at next (return from) syscall */
	      case PTRACE_CONT:		/* restart after signal. */
		ret = -EIO;
		if (data > _NSIG)
			goto out_tsk;
		if (request == PTRACE_SYSCALL)
			child->ptrace |= PT_TRACESYS;
		else
			child->ptrace &= ~PT_TRACESYS;
		child->exit_code = data;

		/* make sure the single step/take-branch tra bits are not set: */
		ia64_psr(pt)->ss = 0;
		ia64_psr(pt)->tb = 0;

		/* Turn off flag indicating that the KRBS is sync'd with child's VM: */
		child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED;

		wake_up_process(child);
		ret = 0;
		goto out_tsk;

	      case PTRACE_KILL:
		/*
		 * Make the child exit.  Best I can do is send it a
		 * sigkill.  Perhaps it should be put in the status
		 * that it wants to exit.
		 */
		if (child->state == TASK_ZOMBIE)		/* already dead */
			goto out_tsk;
		child->exit_code = SIGKILL;

		/* make sure the single step/take-branch tra bits are not set: */
		ia64_psr(pt)->ss = 0;
		ia64_psr(pt)->tb = 0;

		/* Turn off flag indicating that the KRBS is sync'd with child's VM: */
		child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED;

		wake_up_process(child);
		ret = 0;
		goto out_tsk;

	      case PTRACE_SINGLESTEP:		/* let child execute for one instruction */
	      case PTRACE_SINGLEBLOCK:
		ret = -EIO;
		if (data > _NSIG)
			goto out_tsk;

		child->ptrace &= ~PT_TRACESYS;
		if (request == PTRACE_SINGLESTEP) {
			ia64_psr(pt)->ss = 1;
		} else {
			ia64_psr(pt)->tb = 1;
		}
		child->exit_code = data;

		/* Turn off flag indicating that the KRBS is sync'd with child's VM: */
		child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED;

		/* give it a chance to run. */
		wake_up_process(child);
		ret = 0;
		goto out_tsk;

	      case PTRACE_DETACH:		/* detach a process that was attached. */
		ret = -EIO;
		if (data > _NSIG)
			goto out_tsk;

		child->ptrace &= ~(PT_PTRACED|PT_TRACESYS);
		child->exit_code = data;
		write_lock_irqsave(&tasklist_lock, flags);
		REMOVE_LINKS(child);
		child->p_pptr = child->p_opptr;
		SET_LINKS(child);
		write_unlock_irqrestore(&tasklist_lock, flags);

		/* make sure the single step/take-branch tra bits are not set: */
		ia64_psr(pt)->ss = 0;
		ia64_psr(pt)->tb = 0;

		/* Turn off flag indicating that the KRBS is sync'd with child's VM: */
		child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED;

		wake_up_process(child);
		ret = 0;
		goto out_tsk;

	      default:
		ret = -EIO;
		goto out_tsk;
	}
  out_tsk:
	free_task_struct(child);
  out:
	unlock_kernel();
	return ret;
}

void
syscall_trace (void)
{
	if ((current->ptrace & (PT_PTRACED|PT_TRACESYS)) != (PT_PTRACED|PT_TRACESYS))
		return;
	current->exit_code = SIGTRAP;
	set_current_state(TASK_STOPPED);
	notify_parent(current, SIGCHLD);
	schedule();
	/*
	 * This isn't the same as continuing with a signal, but it
	 * will do for normal use.  strace only continues with a
	 * signal if the stopping signal is not SIGTRAP.  -brl
	 */
	if (current->exit_code) {
		send_sig(current->exit_code, current, 1);
		current->exit_code = 0;
	}
}