Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 | /* * Kernel support for the ptrace() and syscall tracing interfaces. * * Copyright (C) 1999-2001 Hewlett-Packard Co * Copyright (C) 1999-2001 David Mosberger-Tang <davidm@hpl.hp.com> * * Derived from the x86 and Alpha versions. Most of the code in here * could actually be factored into a common set of routines. */ #include <linux/config.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/mm.h> #include <linux/errno.h> #include <linux/ptrace.h> #include <linux/smp_lock.h> #include <linux/user.h> #include <asm/pgtable.h> #include <asm/processor.h> #include <asm/ptrace_offsets.h> #include <asm/rse.h> #include <asm/system.h> #include <asm/uaccess.h> #include <asm/unwind.h> /* * Bits in the PSR that we allow ptrace() to change: * be, up, ac, mfl, mfh (the user mask; five bits total) * db (debug breakpoint fault; one bit) * id (instruction debug fault disable; one bit) * dd (data debug fault disable; one bit) * ri (restart instruction; two bits) * is (instruction set; one bit) */ #define IPSR_WRITE_MASK \ (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI) #define IPSR_READ_MASK IPSR_WRITE_MASK #define PTRACE_DEBUG 1 #if PTRACE_DEBUG # define dprintk(format...) printk(format) # define inline #else # define dprintk(format...) #endif /* * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT * bitset where bit i is set iff the NaT bit of register i is set. */ unsigned long ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat) { # define GET_BITS(first, last, unat) \ ({ \ unsigned long bit = ia64_unat_pos(&pt->r##first); \ unsigned long mask = ((1UL << (last - first + 1)) - 1) << first; \ (ia64_rotl(unat, first) >> bit) & mask; \ }) unsigned long val; val = GET_BITS( 1, 3, scratch_unat); val |= GET_BITS(12, 15, scratch_unat); val |= GET_BITS( 8, 11, scratch_unat); val |= GET_BITS(16, 31, scratch_unat); return val; # undef GET_BITS } /* * Set the NaT bits for the scratch registers according to NAT and * return the resulting unat (assuming the scratch registers are * stored in PT). */ unsigned long ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat) { unsigned long scratch_unat; # define PUT_BITS(first, last, nat) \ ({ \ unsigned long bit = ia64_unat_pos(&pt->r##first); \ unsigned long mask = ((1UL << (last - first + 1)) - 1) << bit; \ (ia64_rotr(nat, first) << bit) & mask; \ }) scratch_unat = PUT_BITS( 1, 3, nat); scratch_unat |= PUT_BITS(12, 15, nat); scratch_unat |= PUT_BITS( 8, 11, nat); scratch_unat |= PUT_BITS(16, 31, nat); return scratch_unat; # undef PUT_BITS } #define IA64_MLX_TEMPLATE 0x2 #define IA64_MOVL_OPCODE 6 void ia64_increment_ip (struct pt_regs *regs) { unsigned long w0, ri = ia64_psr(regs)->ri + 1; if (ri > 2) { ri = 0; regs->cr_iip += 16; } else if (ri == 2) { get_user(w0, (char *) regs->cr_iip + 0); if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { /* * rfi'ing to slot 2 of an MLX bundle causes * an illegal operation fault. We don't want * that to happen... */ ri = 0; regs->cr_iip += 16; } } ia64_psr(regs)->ri = ri; } void ia64_decrement_ip (struct pt_regs *regs) { unsigned long w0, ri = ia64_psr(regs)->ri - 1; if (ia64_psr(regs)->ri == 0) { regs->cr_iip -= 16; ri = 2; get_user(w0, (char *) regs->cr_iip + 0); if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) { /* * rfi'ing to slot 2 of an MLX bundle causes * an illegal operation fault. We don't want * that to happen... */ ri = 1; } } ia64_psr(regs)->ri = ri; } /* * This routine is used to read an rnat bits that are stored on the kernel backing store. * Since, in general, the alignment of the user and kernel are different, this is not * completely trivial. In essence, we need to construct the user RNAT based on up to two * kernel RNAT values and/or the RNAT value saved in the child's pt_regs. * * user rbs * * +--------+ <-- lowest address * | slot62 | * +--------+ * | rnat | 0x....1f8 * +--------+ * | slot00 | \ * +--------+ | * | slot01 | > child_regs->ar_rnat * +--------+ | * | slot02 | / kernel rbs * +--------+ +--------+ * <- child_regs->ar_bspstore | slot61 | <-- krbs * +- - - - + +--------+ * | slot62 | * +- - - - + +--------+ * | rnat | * +- - - - + +--------+ * vrnat | slot00 | * +- - - - + +--------+ * = = * +--------+ * | slot00 | \ * +--------+ | * | slot01 | > child_stack->ar_rnat * +--------+ | * | slot02 | / * +--------+ * <--- child_stack->ar_bspstore * * The way to think of this code is as follows: bit 0 in the user rnat corresponds to some * bit N (0 <= N <= 62) in one of the kernel rnat value. The kernel rnat value holding * this bit is stored in variable rnat0. rnat1 is loaded with the kernel rnat value that * form the upper bits of the user rnat value. * * Boundary cases: * * o when reading the rnat "below" the first rnat slot on the kernel backing store, * rnat0/rnat1 are set to 0 and the low order bits are merged in from pt->ar_rnat. * * o when reading the rnat "above" the last rnat slot on the kernel backing store, * rnat0/rnat1 gets its value from sw->ar_rnat. */ static unsigned long get_rnat (struct pt_regs *pt, struct switch_stack *sw, unsigned long *krbs, unsigned long *urnat_addr) { unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr, kmask = ~0UL; unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; long num_regs; kbsp = (unsigned long *) sw->ar_bspstore; ubspstore = (unsigned long *) pt->ar_bspstore; /* * First, figure out which bit number slot 0 in user-land maps * to in the kernel rnat. Do this by figuring out how many * register slots we're beyond the user's backingstore and * then computing the equivalent address in kernel space. */ num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1); slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); shift = ia64_rse_slot_num(slot0_kaddr); rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); rnat0_kaddr = rnat1_kaddr - 64; if (ubspstore + 63 > urnat_addr) { /* some bits need to be merged in from pt->ar_rnat */ kmask = ~((1UL << ia64_rse_slot_num(ubspstore)) - 1); urnat = (pt->ar_rnat & ~kmask); } if (rnat0_kaddr >= kbsp) { rnat0 = sw->ar_rnat; } else if (rnat0_kaddr > krbs) { rnat0 = *rnat0_kaddr; } if (rnat1_kaddr >= kbsp) { rnat1 = sw->ar_rnat; } else if (rnat1_kaddr > krbs) { rnat1 = *rnat1_kaddr; } urnat |= ((rnat1 << (63 - shift)) | (rnat0 >> shift)) & kmask; return urnat; } /* * The reverse of get_rnat. */ static void put_rnat (struct pt_regs *pt, struct switch_stack *sw, unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat) { unsigned long rnat0 = 0, rnat1 = 0, rnat = 0, *slot0_kaddr, kmask = ~0UL, mask; unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift; long num_regs; kbsp = (unsigned long *) sw->ar_bspstore; ubspstore = (unsigned long *) pt->ar_bspstore; /* * First, figure out which bit number slot 0 in user-land maps * to in the kernel rnat. Do this by figuring out how many * register slots we're beyond the user's backingstore and * then computing the equivalent address in kernel space. */ num_regs = (long) ia64_rse_num_regs(ubspstore, urnat_addr + 1); slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs); shift = ia64_rse_slot_num(slot0_kaddr); rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr); rnat0_kaddr = rnat1_kaddr - 64; if (ubspstore + 63 > urnat_addr) { /* some bits need to be place in pt->ar_rnat: */ kmask = ~((1UL << ia64_rse_slot_num(ubspstore)) - 1); pt->ar_rnat = (pt->ar_rnat & kmask) | (rnat & ~kmask); } /* * Note: Section 11.1 of the EAS guarantees that bit 63 of an * rnat slot is ignored. so we don't have to clear it here. */ rnat0 = (urnat << shift); mask = ~0UL << shift; if (rnat0_kaddr >= kbsp) { sw->ar_rnat = (sw->ar_rnat & ~mask) | (rnat0 & mask); } else if (rnat0_kaddr > krbs) { *rnat0_kaddr = ((*rnat0_kaddr & ~mask) | (rnat0 & mask)); } rnat1 = (urnat >> (63 - shift)); mask = ~0UL >> (63 - shift); if (rnat1_kaddr >= kbsp) { sw->ar_rnat = (sw->ar_rnat & ~mask) | (rnat1 & mask); } else if (rnat1_kaddr > krbs) { *rnat1_kaddr = ((*rnat1_kaddr & ~mask) | (rnat1 & mask)); } } /* * Read a word from the user-level backing store of task CHILD. ADDR is the user-level * address to read the word from, VAL a pointer to the return value, and USER_BSP gives * the end of the user-level backing store (i.e., it's the address that would be in ar.bsp * after the user executed a "cover" instruction). * * This routine takes care of accessing the kernel register backing store for those * registers that got spilled there. It also takes care of calculating the appropriate * RNaT collection words. */ long ia64_peek (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end, unsigned long addr, long *val) { unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr; struct pt_regs *child_regs; size_t copied; long ret; urbs_end = (long *) user_rbs_end; laddr = (unsigned long *) addr; child_regs = ia64_task_regs(child); bspstore = (unsigned long *) child_regs->ar_bspstore; krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; if (laddr >= bspstore && laddr <= ia64_rse_rnat_addr(urbs_end)) { /* * Attempt to read the RBS in an area that's actually on the kernel RBS => * read the corresponding bits in the kernel RBS. */ rnat_addr = ia64_rse_rnat_addr(laddr); ret = get_rnat(child_regs, child_stack, krbs, rnat_addr); if (laddr == rnat_addr) { /* return NaT collection word itself */ *val = ret; return 0; } if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) { /* * It is implementation dependent whether the data portion of a * NaT value gets saved on a st8.spill or RSE spill (e.g., see * EAS 2.6, 4.4.4.6 Register Spill and Fill). To get consistent * behavior across all possible IA-64 implementations, we return * zero in this case. */ *val = 0; return 0; } if (laddr < urbs_end) { /* the desired word is on the kernel RBS and is not a NaT */ regnum = ia64_rse_num_regs(bspstore, laddr); *val = *ia64_rse_skip_regs(krbs, regnum); return 0; } } copied = access_process_vm(child, addr, &ret, sizeof(ret), 0); if (copied != sizeof(ret)) return -EIO; *val = ret; return 0; } long ia64_poke (struct task_struct *child, struct switch_stack *child_stack, unsigned long user_rbs_end, unsigned long addr, long val) { unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end = (long *) user_rbs_end; struct pt_regs *child_regs; laddr = (unsigned long *) addr; child_regs = ia64_task_regs(child); bspstore = (unsigned long *) child_regs->ar_bspstore; krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; if (laddr >= bspstore && laddr <= ia64_rse_rnat_addr(urbs_end)) { /* * Attempt to write the RBS in an area that's actually on the kernel RBS * => write the corresponding bits in the kernel RBS. */ if (ia64_rse_is_rnat_slot(laddr)) put_rnat(child_regs, child_stack, krbs, laddr, val); else { if (laddr < urbs_end) { regnum = ia64_rse_num_regs(bspstore, laddr); *ia64_rse_skip_regs(krbs, regnum) = val; } } } else if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val)) { return -EIO; } return 0; } /* * Calculate the address of the end of the user-level register backing store. This is the * address that would have been stored in ar.bsp if the user had executed a "cover" * instruction right before entering the kernel. If CFMP is not NULL, it is used to * return the "current frame mask" that was active at the time the kernel was entered. */ unsigned long ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt, unsigned long *cfmp) { unsigned long *krbs, *bspstore, cfm; struct unw_frame_info info; long ndirty; krbs = (unsigned long *) child + IA64_RBS_OFFSET/8; bspstore = (unsigned long *) pt->ar_bspstore; ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); cfm = pt->cr_ifs & ~(1UL << 63); if ((long) pt->cr_ifs >= 0) { /* * If bit 63 of cr.ifs is cleared, the kernel was entered via a system * call and we need to recover the CFM that existed on entry to the * kernel by unwinding the kernel stack. */ unw_init_from_blocked_task(&info, child); if (unw_unwind_to_user(&info) == 0) { unw_get_cfm(&info, &cfm); ndirty += (cfm & 0x7f); } } if (cfmp) *cfmp = cfm; return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty); } /* * Synchronize (i.e, write) the RSE backing store living in kernel space to the VM of the * CHILD task. SW and PT are the pointers to the switch_stack and pt_regs structures, * respectively. USER_RBS_END is the user-level address at which the backing store ends. */ long ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw, unsigned long user_rbs_start, unsigned long user_rbs_end) { unsigned long addr, val; long ret; /* now copy word for word from kernel rbs to user rbs: */ for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) { ret = ia64_peek(child, sw, user_rbs_end, addr, &val); if (ret < 0) return ret; if (access_process_vm(child, addr, &val, sizeof(val), 1) != sizeof(val)) return -EIO; } return 0; } /* * Simulate user-level "flushrs". Note: we can't just add pt->loadrs>>16 to * pt->ar_bspstore because the kernel backing store and the user-level backing store may * have different alignments (and therefore a different number of intervening rnat slots). */ static void user_flushrs (struct task_struct *task, struct pt_regs *pt) { unsigned long *krbs; long ndirty; krbs = (unsigned long *) task + IA64_RBS_OFFSET/8; ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19)); pt->ar_bspstore = (unsigned long) ia64_rse_skip_regs((unsigned long *) pt->ar_bspstore, ndirty); pt->loadrs = 0; } /* * Synchronize the RSE backing store of CHILD and all tasks that share the address space * with it. CHILD_URBS_END is the address of the end of the register backing store of * CHILD. If MAKE_WRITABLE is set, a user-level "flushrs" is simulated such that the VM * can be written via ptrace() and the tasks will pick up the newly written values. It * would be OK to unconditionally simulate a "flushrs", but this would be more intrusive * than strictly necessary (e.g., it would make it impossible to obtain the original value * of ar.bspstore). */ static void threads_sync_user_rbs (struct task_struct *child, unsigned long child_urbs_end, int make_writable) { struct switch_stack *sw; unsigned long urbs_end; struct task_struct *p; struct mm_struct *mm; struct pt_regs *pt; long multi_threaded; task_lock(child); { mm = child->mm; multi_threaded = mm && (atomic_read(&mm->mm_users) > 1); } task_unlock(child); if (!multi_threaded) { sw = (struct switch_stack *) (child->thread.ksp + 16); pt = ia64_task_regs(child); ia64_sync_user_rbs(child, sw, pt->ar_bspstore, child_urbs_end); if (make_writable) user_flushrs(child, pt); } else { read_lock(&tasklist_lock); { for_each_task(p) { if (p->mm == mm && p->state != TASK_RUNNING) { sw = (struct switch_stack *) (p->thread.ksp + 16); pt = ia64_task_regs(p); urbs_end = ia64_get_user_rbs_end(p, pt, NULL); ia64_sync_user_rbs(p, sw, pt->ar_bspstore, urbs_end); if (make_writable) user_flushrs(p, pt); } } } read_unlock(&tasklist_lock); } child->thread.flags |= IA64_THREAD_KRBS_SYNCED; /* set the flag in the child thread only */ } /* * Write f32-f127 back to task->thread.fph if it has been modified. */ inline void ia64_flush_fph (struct task_struct *task) { struct ia64_psr *psr = ia64_psr(ia64_task_regs(task)); #ifdef CONFIG_SMP struct task_struct *fpu_owner = current; #else struct task_struct *fpu_owner = ia64_get_fpu_owner(); #endif if (task == fpu_owner && psr->mfh) { psr->mfh = 0; ia64_save_fpu(&task->thread.fph[0]); task->thread.flags |= IA64_THREAD_FPH_VALID; } } /* * Sync the fph state of the task so that it can be manipulated * through thread.fph. If necessary, f32-f127 are written back to * thread.fph or, if the fph state hasn't been used before, thread.fph * is cleared to zeroes. Also, access to f32-f127 is disabled to * ensure that the task picks up the state from thread.fph when it * executes again. */ void ia64_sync_fph (struct task_struct *task) { struct ia64_psr *psr = ia64_psr(ia64_task_regs(task)); ia64_flush_fph(task); if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) { task->thread.flags |= IA64_THREAD_FPH_VALID; memset(&task->thread.fph, 0, sizeof(task->thread.fph)); } #ifndef CONFIG_SMP if (ia64_get_fpu_owner() == task) ia64_set_fpu_owner(0); #endif psr->dfh = 1; } static int access_fr (struct unw_frame_info *info, int regnum, int hi, unsigned long *data, int write_access) { struct ia64_fpreg fpval; int ret; ret = unw_get_fr(info, regnum, &fpval); if (ret < 0) return ret; if (write_access) { fpval.u.bits[hi] = *data; ret = unw_set_fr(info, regnum, fpval); } else *data = fpval.u.bits[hi]; return ret; } static int access_uarea (struct task_struct *child, unsigned long addr, unsigned long *data, int write_access) { unsigned long *ptr, regnum, urbs_end, rnat_addr; struct switch_stack *sw; struct unw_frame_info info; struct pt_regs *pt; pt = ia64_task_regs(child); sw = (struct switch_stack *) (child->thread.ksp + 16); if ((addr & 0x7) != 0) { dprintk("ptrace: unaligned register address 0x%lx\n", addr); return -1; } if (addr < PT_F127 + 16) { /* accessing fph */ if (write_access) ia64_sync_fph(child); else ia64_flush_fph(child); ptr = (unsigned long *) ((unsigned long) &child->thread.fph + addr); } else if (addr >= PT_F10 && addr < PT_F15 + 16) { /* scratch registers untouched by kernel (saved in switch_stack) */ ptr = (unsigned long *) ((long) sw + addr - PT_NAT_BITS); } else if (addr < PT_AR_LC + 8) { /* preserved state: */ unsigned long nat_bits, scratch_unat, dummy = 0; struct unw_frame_info info; char nat = 0; int ret; unw_init_from_blocked_task(&info, child); if (unw_unwind_to_user(&info) < 0) return -1; switch (addr) { case PT_NAT_BITS: if (write_access) { nat_bits = *data; scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits); if (unw_set_ar(&info, UNW_AR_UNAT, scratch_unat) < 0) { dprintk("ptrace: failed to set ar.unat\n"); return -1; } for (regnum = 4; regnum <= 7; ++regnum) { unw_get_gr(&info, regnum, &dummy, &nat); unw_set_gr(&info, regnum, dummy, (nat_bits >> regnum) & 1); } } else { if (unw_get_ar(&info, UNW_AR_UNAT, &scratch_unat) < 0) { dprintk("ptrace: failed to read ar.unat\n"); return -1; } nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat); for (regnum = 4; regnum <= 7; ++regnum) { unw_get_gr(&info, regnum, &dummy, &nat); nat_bits |= (nat != 0) << regnum; } *data = nat_bits; } return 0; case PT_R4: case PT_R5: case PT_R6: case PT_R7: if (write_access) { /* read NaT bit first: */ ret = unw_get_gr(&info, (addr - PT_R4)/8 + 4, data, &nat); if (ret < 0) return ret; } return unw_access_gr(&info, (addr - PT_R4)/8 + 4, data, &nat, write_access); case PT_B1: case PT_B2: case PT_B3: case PT_B4: case PT_B5: return unw_access_br(&info, (addr - PT_B1)/8 + 1, data, write_access); case PT_AR_EC: return unw_access_ar(&info, UNW_AR_EC, data, write_access); case PT_AR_LC: return unw_access_ar(&info, UNW_AR_LC, data, write_access); default: if (addr >= PT_F2 && addr < PT_F5 + 16) return access_fr(&info, (addr - PT_F2)/16 + 2, (addr & 8) != 0, data, write_access); else if (addr >= PT_F16 && addr < PT_F31 + 16) return access_fr(&info, (addr - PT_F16)/16 + 16, (addr & 8) != 0, data, write_access); else { dprintk("ptrace: rejecting access to register address 0x%lx\n", addr); return -1; } } } else if (addr < PT_F9+16) { /* scratch state */ switch (addr) { case PT_AR_BSP: /* * By convention, we use PT_AR_BSP to refer to the end of the user-level * backing store. Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof) to get * the real value of ar.bsp at the time the kernel was entered. */ urbs_end = ia64_get_user_rbs_end(child, pt, NULL); if (write_access) { if (*data != urbs_end) { if (ia64_sync_user_rbs(child, sw, pt->ar_bspstore, urbs_end) < 0) return -1; /* simulate user-level write of ar.bsp: */ pt->loadrs = 0; pt->ar_bspstore = *data; } } else *data = urbs_end; return 0; case PT_CFM: if ((long) pt->cr_ifs < 0) { if (write_access) pt->cr_ifs = ((pt->cr_ifs & ~0x3fffffffffUL) | (*data & 0x3fffffffffUL)); else *data = pt->cr_ifs & 0x3fffffffffUL; } else { /* kernel was entered through a system call */ unsigned long cfm; unw_init_from_blocked_task(&info, child); if (unw_unwind_to_user(&info) < 0) return -1; unw_get_cfm(&info, &cfm); if (write_access) unw_set_cfm(&info, ((cfm & ~0x3fffffffffU) | (*data & 0x3fffffffffUL))); else *data = cfm; } return 0; case PT_CR_IPSR: if (write_access) pt->cr_ipsr = ((*data & IPSR_WRITE_MASK) | (pt->cr_ipsr & ~IPSR_WRITE_MASK)); else *data = (pt->cr_ipsr & IPSR_READ_MASK); return 0; case PT_AR_RNAT: urbs_end = ia64_get_user_rbs_end(child, pt, NULL); rnat_addr = (long) ia64_rse_rnat_addr((long *) urbs_end); if (write_access) return ia64_poke(child, sw, urbs_end, rnat_addr, *data); else return ia64_peek(child, sw, urbs_end, rnat_addr, data); case PT_R1: case PT_R2: case PT_R3: case PT_R8: case PT_R9: case PT_R10: case PT_R11: case PT_R12: case PT_R13: case PT_R14: case PT_R15: case PT_R16: case PT_R17: case PT_R18: case PT_R19: case PT_R20: case PT_R21: case PT_R22: case PT_R23: case PT_R24: case PT_R25: case PT_R26: case PT_R27: case PT_R28: case PT_R29: case PT_R30: case PT_R31: case PT_B0: case PT_B6: case PT_B7: case PT_F6: case PT_F6+8: case PT_F7: case PT_F7+8: case PT_F8: case PT_F8+8: case PT_F9: case PT_F9+8: case PT_AR_BSPSTORE: case PT_AR_RSC: case PT_AR_UNAT: case PT_AR_PFS: case PT_AR_CCV: case PT_AR_FPSR: case PT_CR_IIP: case PT_PR: /* scratch register */ ptr = (unsigned long *) ((long) pt + addr - PT_CR_IPSR); break; default: /* disallow accessing anything else... */ dprintk("ptrace: rejecting access to register address 0x%lx\n", addr); return -1; } } else { /* access debug registers */ if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) { child->thread.flags |= IA64_THREAD_DBG_VALID; memset(child->thread.dbr, 0, sizeof(child->thread.dbr)); memset(child->thread.ibr, 0, sizeof(child->thread.ibr)); } if (addr >= PT_IBR) { regnum = (addr - PT_IBR) >> 3; ptr = &child->thread.ibr[0]; } else { regnum = (addr - PT_DBR) >> 3; ptr = &child->thread.dbr[0]; } if (regnum >= 8) { dprintk("ptrace: rejecting access to register address 0x%lx\n", addr); return -1; } ptr += regnum; if (write_access) /* don't let the user set kernel-level breakpoints... */ *ptr = *data & ~(7UL << 56); else *data = *ptr; return 0; } if (write_access) *ptr = *data; else *data = *ptr; return 0; } /* * Called by kernel/ptrace.c when detaching.. * * Make sure the single step bit is not set. */ void ptrace_disable(struct task_struct *child) { /* make sure the single step/take-branch tra bits are not set: */ ia64_psr(pt)->ss = 0; ia64_psr(pt)->tb = 0; /* Turn off flag indicating that the KRBS is sync'd with child's VM: */ child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED; } asmlinkage long sys_ptrace (long request, pid_t pid, unsigned long addr, unsigned long data, long arg4, long arg5, long arg6, long arg7, long stack) { struct pt_regs *pt, *regs = (struct pt_regs *) &stack; unsigned long flags, urbs_end; struct task_struct *child; struct switch_stack *sw; long ret; lock_kernel(); ret = -EPERM; if (request == PTRACE_TRACEME) { /* are we already being traced? */ if (current->ptrace & PT_PTRACED) goto out; current->ptrace |= PT_PTRACED; ret = 0; goto out; } ret = -ESRCH; read_lock(&tasklist_lock); { child = find_task_by_pid(pid); if (child) get_task_struct(child); } read_unlock(&tasklist_lock); if (!child) goto out; ret = -EPERM; if (pid == 1) /* no messing around with init! */ goto out_tsk; if (request == PTRACE_ATTACH) { ret = ptrace_attach(child); goto out_tsk; } ret = -ESRCH; if (!(child->ptrace & PT_PTRACED)) goto out_tsk; if (child->state != TASK_STOPPED) { if (request != PTRACE_KILL) goto out_tsk; } if (child->p_pptr != current) goto out_tsk; pt = ia64_task_regs(child); sw = (struct switch_stack *) (child->thread.ksp + 16); switch (request) { case PTRACE_PEEKTEXT: case PTRACE_PEEKDATA: /* read word at location addr */ urbs_end = ia64_get_user_rbs_end(child, pt, NULL); if (!(child->thread.flags & IA64_THREAD_KRBS_SYNCED)) threads_sync_user_rbs(child, urbs_end, 0); ret = ia64_peek(child, sw, urbs_end, addr, &data); if (ret == 0) { ret = data; regs->r8 = 0; /* ensure "ret" is not mistaken as an error code */ } goto out_tsk; case PTRACE_POKETEXT: case PTRACE_POKEDATA: /* write the word at location addr */ urbs_end = ia64_get_user_rbs_end(child, pt, NULL); if (!(child->thread.flags & IA64_THREAD_KRBS_SYNCED)) threads_sync_user_rbs(child, urbs_end, 1); ret = ia64_poke(child, sw, urbs_end, addr, data); goto out_tsk; case PTRACE_PEEKUSR: /* read the word at addr in the USER area */ if (access_uarea(child, addr, &data, 0) < 0) { ret = -EIO; goto out_tsk; } ret = data; regs->r8 = 0; /* ensure "ret" is not mistaken as an error code */ goto out_tsk; case PTRACE_POKEUSR: /* write the word at addr in the USER area */ if (access_uarea(child, addr, &data, 1) < 0) { ret = -EIO; goto out_tsk; } ret = 0; goto out_tsk; case PTRACE_GETSIGINFO: ret = -EIO; if (!access_ok(VERIFY_WRITE, data, sizeof (siginfo_t)) || !child->thread.siginfo) goto out_tsk; ret = copy_siginfo_to_user((siginfo_t *) data, child->thread.siginfo); goto out_tsk; case PTRACE_SETSIGINFO: ret = -EIO; if (!access_ok(VERIFY_READ, data, sizeof (siginfo_t)) || child->thread.siginfo == 0) goto out_tsk; ret = copy_siginfo_from_user(child->thread.siginfo, (siginfo_t *) data); goto out_tsk; case PTRACE_SYSCALL: /* continue and stop at next (return from) syscall */ case PTRACE_CONT: /* restart after signal. */ ret = -EIO; if (data > _NSIG) goto out_tsk; if (request == PTRACE_SYSCALL) child->ptrace |= PT_TRACESYS; else child->ptrace &= ~PT_TRACESYS; child->exit_code = data; /* make sure the single step/take-branch tra bits are not set: */ ia64_psr(pt)->ss = 0; ia64_psr(pt)->tb = 0; /* Turn off flag indicating that the KRBS is sync'd with child's VM: */ child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED; wake_up_process(child); ret = 0; goto out_tsk; case PTRACE_KILL: /* * Make the child exit. Best I can do is send it a * sigkill. Perhaps it should be put in the status * that it wants to exit. */ if (child->state == TASK_ZOMBIE) /* already dead */ goto out_tsk; child->exit_code = SIGKILL; /* make sure the single step/take-branch tra bits are not set: */ ia64_psr(pt)->ss = 0; ia64_psr(pt)->tb = 0; /* Turn off flag indicating that the KRBS is sync'd with child's VM: */ child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED; wake_up_process(child); ret = 0; goto out_tsk; case PTRACE_SINGLESTEP: /* let child execute for one instruction */ case PTRACE_SINGLEBLOCK: ret = -EIO; if (data > _NSIG) goto out_tsk; child->ptrace &= ~PT_TRACESYS; if (request == PTRACE_SINGLESTEP) { ia64_psr(pt)->ss = 1; } else { ia64_psr(pt)->tb = 1; } child->exit_code = data; /* Turn off flag indicating that the KRBS is sync'd with child's VM: */ child->thread.flags &= ~IA64_THREAD_KRBS_SYNCED; /* give it a chance to run. */ wake_up_process(child); ret = 0; goto out_tsk; case PTRACE_DETACH: /* detach a process that was attached. */ ret = ptrace_detach(child, data); goto out_tsk; default: ret = -EIO; goto out_tsk; } out_tsk: free_task_struct(child); out: unlock_kernel(); return ret; } void syscall_trace (void) { if ((current->ptrace & (PT_PTRACED|PT_TRACESYS)) != (PT_PTRACED|PT_TRACESYS)) return; current->exit_code = SIGTRAP; set_current_state(TASK_STOPPED); notify_parent(current, SIGCHLD); schedule(); /* * This isn't the same as continuing with a signal, but it * will do for normal use. strace only continues with a * signal if the stopping signal is not SIGTRAP. -brl */ if (current->exit_code) { send_sig(current->exit_code, current, 1); current->exit_code = 0; } } |