Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
/*
 * net/sched/sch_csz.c	Clark-Shenker-Zhang scheduler.
 *
 *		This program is free software; you can redistribute it and/or
 *		modify it under the terms of the GNU General Public License
 *		as published by the Free Software Foundation; either version
 *		2 of the License, or (at your option) any later version.
 *
 * Authors:	Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
 *
 */

#include <linux/config.h>
#include <linux/module.h>
#include <asm/uaccess.h>
#include <asm/system.h>
#include <asm/bitops.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/mm.h>
#include <linux/socket.h>
#include <linux/sockios.h>
#include <linux/in.h>
#include <linux/errno.h>
#include <linux/interrupt.h>
#include <linux/if_ether.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include <linux/notifier.h>
#include <net/ip.h>
#include <net/route.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <net/pkt_sched.h>


/*	Clark-Shenker-Zhang algorithm.
	=======================================

	SOURCE.

	David D. Clark, Scott Shenker and Lixia Zhang
	"Supporting Real-Time Applications in an Integrated Services Packet
	Network: Architecture and Mechanism".

	CBQ presents a flexible universal algorithm for packet scheduling,
	but it has pretty poor delay characteristics.
	Round-robin scheduling and link-sharing goals
	apparently contradict minimization of network delay and jitter.
	Moreover, correct handling of predictive flows seems to be
	impossible in CBQ.

	CSZ presents a more precise but less flexible and less efficient
	approach. As I understand it, the main idea is to create
	WFQ flows for each guaranteed service and to allocate
	the rest of bandwith to dummy flow-0. Flow-0 comprises
	the predictive services and the best effort traffic;
	it is handled by a priority scheduler with the highest
	priority band allocated	for predictive services, and the rest ---
	to the best effort packets.

	Note that in CSZ flows are NOT limited to their bandwidth.  It
	is supposed that the flow passed admission control at the edge
	of the QoS network and it doesn't need further shaping. Any
	attempt to improve the flow or to shape it to a token bucket
	at intermediate hops will introduce undesired delays and raise
	jitter.

	At the moment CSZ is the only scheduler that provides
	true guaranteed service. Another schemes (including CBQ)
	do not provide guaranteed delay and randomize jitter.
	There is a proof (Sally Floyd), that delay
	can be estimated by a IntServ compliant formula.
	This result is true formally, but it is wrong in principle.
	It takes into account only round-robin delays,
	ignoring delays introduced by link sharing i.e. overlimiting.
	Note that temporary overlimits are inevitable because
	real links are not ideal, and the real algorithm must take this
	into account.

        ALGORITHM.

	--- Notations.

	$B$ is link bandwidth (bits/sec).

	$I$ is set of all flows, including flow $0$.
	Every flow $a \in I$ has associated bandwidth slice $r_a < 1$ and
	$\sum_{a \in I} r_a = 1$.

	--- Flow model.

	Let $m_a$ is the number of backlogged bits in flow $a$.
	The flow is {\em active}, if $m_a > 0$.
	This number is a discontinuous function of time;
	when a packet $i$ arrives:
	\[
	m_a(t_i+0) - m_a(t_i-0) = L^i,
	\]
	where $L^i$ is the length of the arrived packet.
	The flow queue is drained continuously until $m_a == 0$:
	\[
	{d m_a \over dt} = - { B r_a \over \sum_{b \in A} r_b}.
	\]
	I.e. flow rates are their allocated rates proportionally
	scaled to take all available link bandwidth. Apparently,
	it is not the only possible policy. F.e. CBQ classes
	without borrowing would be modelled by:
	\[
	{d m_a \over dt} = - B r_a .
	\]
	More complicated hierarchical bandwidth allocation
	policies are possible, but unfortunately, the basic
	flow equations have a simple solution only for proportional
	scaling.

	--- Departure times.

	We calculate the time until the last bit of packet is sent:
	\[
	E_a^i(t) = { m_a(t_i) - \delta_a(t) \over r_a },
	\]
	where $\delta_a(t)$ is number of bits drained since $t_i$.
	We have to evaluate $E_a^i$ for all queued packets,
	then find the packet with minimal $E_a^i$ and send it.

	This sounds good, but direct implementation of the algorithm
	is absolutely infeasible. Luckily, if flow rates
	are scaled proportionally, the equations have a simple solution.
	
	The differential equation for $E_a^i$ is
	\[
	{d E_a^i (t) \over dt } = - { d \delta_a(t) \over dt} { 1 \over r_a} =
	{ B \over \sum_{b \in A} r_b}
	\]
	with initial condition
	\[
	E_a^i (t_i) = { m_a(t_i) \over r_a } .
	\]

	Let's introduce an auxiliary function $R(t)$:

	--- Round number.

	Consider the following model: we rotate over active flows,
	sending $r_a B$ bits from every flow, so that we send
	$B \sum_{a \in A} r_a$ bits per round, that takes
	$\sum_{a \in A} r_a$ seconds.
	
	Hence, $R(t)$ (round number) is a monotonically increasing
	linear function	of time when $A$ is not changed
	\[
	{ d R(t) \over dt } = { 1 \over \sum_{a \in A} r_a }
	\]
	and it is continuous when $A$ changes.

	The central observation is that the quantity
	$F_a^i = R(t) + E_a^i(t)/B$ does not depend on time at all!
	$R(t)$ does not depend on flow, so that $F_a^i$ can be
	calculated only once on packet arrival, and we need not
	recalculate $E$ numbers and resorting queues.
	The number $F_a^i$ is called finish number of the packet.
	It is just the value of $R(t)$ when the last bit of packet
	is sent out.

	Maximal finish number on flow is called finish number of flow
	and minimal one is "start number of flow".
	Apparently, flow is active if and only if $F_a \leq R$.

	When a packet of length $L_i$ bit arrives to flow $a$ at time $t_i$,
	we calculate $F_a^i$ as:

	If flow was inactive ($F_a < R$):
	$F_a^i = R(t) + {L_i \over B r_a}$
	otherwise
	$F_a^i = F_a + {L_i \over B r_a}$

	These equations complete the algorithm specification.

	It looks pretty hairy, but there is a simple
	procedure for solving these equations.
	See procedure csz_update(), that is a generalization of
	the algorithm from S. Keshav's thesis Chapter 3
	"Efficient Implementation of Fair Queeing".

	NOTES.

	* We implement only the simplest variant of CSZ,
	when flow-0 is a explicit 4band priority fifo.
	This is bad, but we need a "peek" operation in addition
	to "dequeue" to implement complete CSZ.
	I do not want to do that, unless it is absolutely
	necessary.
	
	* A primitive support for token bucket filtering
	presents itself too. It directly contradicts CSZ, but
	even though the Internet is on the globe ... :-)
	"the edges of the network" really exist.
	
	BUGS.

	* Fixed point arithmetic is overcomplicated, suboptimal and even
	wrong. Check it later.  */


/* This number is arbitrary */

#define CSZ_GUARANTEED		16
#define CSZ_FLOWS		(CSZ_GUARANTEED+4)

struct csz_head
{
	struct csz_head		*snext;
	struct csz_head		*sprev;
	struct csz_head		*fnext;
	struct csz_head		*fprev;
};

struct csz_flow
{
	struct csz_head		*snext;
	struct csz_head		*sprev;
	struct csz_head		*fnext;
	struct csz_head		*fprev;

/* Parameters */
	struct tc_ratespec	rate;
	struct tc_ratespec	slice;
	u32			*L_tab;	/* Lookup table for L/(B*r_a) values */
	unsigned long		limit;	/* Maximal length of queue */
#ifdef CSZ_PLUS_TBF
	struct tc_ratespec	peakrate;
	__u32			buffer;	/* Depth of token bucket, normalized
					   as L/(B*r_a) */
	__u32			mtu;
#endif

/* Variables */
#ifdef CSZ_PLUS_TBF
	unsigned long		tokens; /* Tokens number: usecs */
	psched_time_t		t_tbf;
	unsigned long		R_tbf;
	int			throttled;
#endif
	unsigned		peeked;
	unsigned long		start;	/* Finish number of the first skb */
	unsigned long		finish;	/* Finish number of the flow */

	struct sk_buff_head	q;	/* FIFO queue */
};

#define L2R(f,L) ((f)->L_tab[(L)>>(f)->slice.cell_log])

struct csz_sched_data
{
/* Parameters */
	unsigned char	rate_log;	/* fixed point position for rate;
					 * really we need not it */
	unsigned char	R_log;		/* fixed point position for round number */
	unsigned char	delta_log;	/* 1<<delta_log is maximal timeout in usecs;
					 * 21 <-> 2.1sec is MAXIMAL value */

/* Variables */
	struct tcf_proto *filter_list;
	u8	prio2band[TC_PRIO_MAX+1];
#ifdef CSZ_PLUS_TBF
	struct timer_list wd_timer;
	long		wd_expires;
#endif
	psched_time_t	t_c;		/* Time check-point */
	unsigned long	R_c;		/* R-number check-point	*/
	unsigned long	rate;		/* Current sum of rates of active flows */
	struct csz_head	s;		/* Flows sorted by "start" */
	struct csz_head	f;		/* Flows sorted by "finish"	*/

	struct sk_buff_head	other[4];/* Predicted (0) and the best efforts
					    classes (1,2,3) */
	struct csz_flow	flow[CSZ_GUARANTEED]; /* Array of flows */
};

/* These routines (csz_insert_finish and csz_insert_start) are
   the most time consuming part of all the algorithm.

   We insert to sorted list, so that time
   is linear with respect to number of active flows in the worst case.
   Note that we have not very large number of guaranteed flows,
   so that logarithmic algorithms (heap etc.) are useless,
   they are slower than linear one when length of list <= 32.

   Heap would take sence if we used WFQ for best efforts
   flows, but SFQ is better choice in this case.
 */


/* Insert flow "this" to the list "b" before
   flow with greater finish number.
 */

#if 0
/* Scan forward */
extern __inline__ void csz_insert_finish(struct csz_head *b,
					 struct csz_flow *this)
{
	struct csz_head *f = b->fnext;
	unsigned long finish = this->finish;

	while (f != b) {
		if (((struct csz_flow*)f)->finish - finish > 0)
			break;
		f = f->fnext;
	}
	this->fnext = f;
	this->fprev = f->fprev;
	this->fnext->fprev = this->fprev->fnext = (struct csz_head*)this;
}
#else
/* Scan backward */
extern __inline__ void csz_insert_finish(struct csz_head *b,
					 struct csz_flow *this)
{
	struct csz_head *f = b->fprev;
	unsigned long finish = this->finish;

	while (f != b) {
		if (((struct csz_flow*)f)->finish - finish <= 0)
			break;
		f = f->fprev;
	}
	this->fnext = f->fnext;
	this->fprev = f;
	this->fnext->fprev = this->fprev->fnext = (struct csz_head*)this;
}
#endif

/* Insert flow "this" to the list "b" before
   flow with greater start number.
 */

extern __inline__ void csz_insert_start(struct csz_head *b,
					struct csz_flow *this)
{
	struct csz_head *f = b->snext;
	unsigned long start = this->start;

	while (f != b) {
		if (((struct csz_flow*)f)->start - start > 0)
			break;
		f = f->snext;
	}
	this->snext = f;
	this->sprev = f->sprev;
	this->snext->sprev = this->sprev->snext = (struct csz_head*)this;
}


/* Calculate and return current round number.
   It is another time consuming part, but
   it is impossible to avoid it.

   It costs O(N) that make all the algorithm useful only
   to play with closest to ideal fluid model.

   There exist less academic, but more practical modifications,
   which might have even better characteristics (WF2Q+, HPFQ, HFSC)
 */

static unsigned long csz_update(struct Qdisc *sch)
{
	struct csz_sched_data	*q = (struct csz_sched_data*)sch->data;
	struct csz_flow 	*a;
	unsigned long		F;
	unsigned long		tmp;
	psched_time_t		now;
	unsigned long		delay;
	unsigned long		R_c;

	PSCHED_GET_TIME(now);
	delay = PSCHED_TDIFF_SAFE(now, q->t_c, 0, goto do_reset);

	if (delay>>q->delta_log) {
do_reset:
		/* Delta is too large.
		   It is possible if MTU/BW > 1<<q->delta_log
		   (i.e. configuration error) or because of hardware
		   fault. We have no choice...
		 */
		qdisc_reset(sch);
		return 0;
	}

	q->t_c = now;

	for (;;) {
		a = (struct csz_flow*)q->f.fnext;

		/* No more active flows. Reset R and exit. */
		if (a == (struct csz_flow*)&q->f) {
#ifdef CSZ_DEBUG
			if (q->rate) {
				printk("csz_update: rate!=0 on inactive csz\n");
				q->rate = 0;
			}
#endif
			q->R_c = 0;
			return 0;
		}

		F = a->finish;

#ifdef CSZ_DEBUG
		if (q->rate == 0) {
			printk("csz_update: rate=0 on active csz\n");
			goto do_reset;
		}
#endif

		/*
		 *           tmp = (t - q->t_c)/q->rate;
		 */

		tmp = ((delay<<(31-q->delta_log))/q->rate)>>(31-q->delta_log+q->R_log);

		tmp += q->R_c;

		/* OK, this flow (and all flows with greater
		   finish numbers) is still active */
		if (F - tmp > 0)
			break;

		/* It is more not active */

		a->fprev->fnext = a->fnext;
		a->fnext->fprev = a->fprev;

		/*
		 * q->t_c += (F - q->R_c)*q->rate
		 */

		tmp = ((F-q->R_c)*q->rate)<<q->R_log;
		R_c = F;
		q->rate -= a->slice.rate;

		if ((long)(delay - tmp) >= 0) {
			delay -= tmp;
			continue;
		}
		delay = 0;
	}

	q->R_c = tmp;
	return tmp;
}

unsigned csz_classify(struct sk_buff *skb, struct csz_sched_data *q)
{
	return CSZ_GUARANTEED;
}

static int
csz_enqueue(struct sk_buff *skb, struct Qdisc* sch)
{
	struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
	unsigned flow_id = csz_classify(skb, q);
	unsigned long R;
	int prio = 0;
	struct csz_flow *this;

	if (flow_id >= CSZ_GUARANTEED) {
		prio = flow_id - CSZ_GUARANTEED;
		flow_id = 0;
	}

	this = &q->flow[flow_id];
	if (this->q.qlen >= this->limit || this->L_tab == NULL) {
		sch->stats.drops++;
		kfree_skb(skb);
		return NET_XMIT_DROP;
	}

	R = csz_update(sch);

	if ((long)(this->finish - R) >= 0) {
		/* It was active */
		this->finish += L2R(this,skb->len);
	} else {
		/* It is inactive; activate it */
		this->finish = R + L2R(this,skb->len);
		q->rate += this->slice.rate;
		csz_insert_finish(&q->f, this);
	}

	/* If this flow was empty, remember start number
	   and insert it into start queue */
	if (this->q.qlen == 0) {
		this->start = this->finish;
		csz_insert_start(&q->s, this);
	}
	if (flow_id)
		skb_queue_tail(&this->q, skb);
	else
		skb_queue_tail(&q->other[prio], skb);
	sch->q.qlen++;
	sch->stats.bytes += skb->len;
	sch->stats.packets++;
	return 0;
}

static __inline__ struct sk_buff *
skb_dequeue_best(struct csz_sched_data * q)
{
	int i;
	struct sk_buff *skb;

	for (i=0; i<4; i++) {
		skb = skb_dequeue(&q->other[i]);
		if (skb) {
			q->flow[0].q.qlen--;
			return skb;
		}
	}
	return NULL;
}

static __inline__ struct sk_buff *
skb_peek_best(struct csz_sched_data * q)
{
	int i;
	struct sk_buff *skb;

	for (i=0; i<4; i++) {
		skb = skb_peek(&q->other[i]);
		if (skb)
			return skb;
	}
	return NULL;
}

#ifdef CSZ_PLUS_TBF

static void csz_watchdog(unsigned long arg)
{
	struct Qdisc *sch = (struct Qdisc*)arg;

	qdisc_wakeup(sch->dev);
}

static __inline__ void
csz_move_queue(struct csz_flow *this, long delta)
{
	this->fprev->fnext = this->fnext;
	this->fnext->fprev = this->fprev;

	this->start += delta;
	this->finish += delta;

	csz_insert_finish(this);
}

static __inline__ int csz_enough_tokens(struct csz_sched_data *q,
					struct csz_flow *this,
					struct sk_buff *skb)
{
	long toks;
	long shift;
	psched_time_t now;

	PSCHED_GET_TIME(now);

	toks = PSCHED_TDIFF(now, t_tbf) + this->tokens - L2R(q,this,skb->len);

	shift = 0;
	if (this->throttled) {
		/* Remember aposteriory delay */

		unsigned long R = csz_update(q);
		shift = R - this->R_tbf;
		this->R_tbf = R;
	}

	if (toks >= 0) {
		/* Now we have enough tokens to proceed */

		this->tokens = toks <= this->depth ? toks : this->depth;
		this->t_tbf = now;
	
		if (!this->throttled)
			return 1;

		/* Flow was throttled. Update its start&finish numbers
		   with delay calculated aposteriori.
		 */

		this->throttled = 0;
		if (shift > 0)
			csz_move_queue(this, shift);
		return 1;
	}

	if (!this->throttled) {
		/* Flow has just been throttled; remember
		   current round number to calculate aposteriori delay
		 */
		this->throttled = 1;
		this->R_tbf = csz_update(q);
	}

	/* Move all the queue to the time when it will be allowed to send.
	   We should translate time to round number, but it is impossible,
	   so that we made the most conservative estimate i.e. we suppose
	   that only this flow is active and, hence, R = t.
	   Really toks <= R <= toks/r_a.

	   This apriory shift in R will be adjusted later to reflect
	   real delay. We cannot avoid it because of:
	   - throttled flow continues to be active from the viewpoint
	     of CSZ, so that it would acquire the highest priority,
	     if you not adjusted start numbers.
	   - Eventually, finish number would become less than round
	     number and flow were declared inactive.
	 */

	toks = -toks;

	/* Remeber, that we should start watchdog */
	if (toks < q->wd_expires)
		q->wd_expires = toks;

	toks >>= q->R_log;
	shift += toks;
	if (shift > 0) {
		this->R_tbf += toks;
		csz_move_queue(this, shift);
	}
	csz_insert_start(this);
	return 0;
}
#endif


static struct sk_buff *
csz_dequeue(struct Qdisc* sch)
{
	struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
	struct sk_buff *skb;
	struct csz_flow *this;

#ifdef CSZ_PLUS_TBF
	q->wd_expires = 0;
#endif
	this = (struct csz_flow*)q->s.snext;

	while (this != (struct csz_flow*)&q->s) {

		/* First of all: unlink from start list */
		this->sprev->snext = this->snext;
		this->snext->sprev = this->sprev;

		if (this != &q->flow[0]) {	/* Guaranteed flow */
			skb = __skb_dequeue(&this->q);
			if (skb) {
#ifdef CSZ_PLUS_TBF
				if (this->depth) {
					if (!csz_enough_tokens(q, this, skb))
						continue;
				}
#endif
				if (this->q.qlen) {
					struct sk_buff *nskb = skb_peek(&this->q);
					this->start += L2R(this,nskb->len);
					csz_insert_start(&q->s, this);
				}
				sch->q.qlen--;
				return skb;
			}
		} else {	/* Predicted or best effort flow */
			skb = skb_dequeue_best(q);
			if (skb) {
				unsigned peeked = this->peeked;
				this->peeked = 0;

				if (--this->q.qlen) {
					struct sk_buff *nskb;
					unsigned dequeued = L2R(this,skb->len);

					/* We got not the same thing that
					   peeked earlier; adjust start number
					   */
					if (peeked != dequeued && peeked)
						this->start += dequeued - peeked;

					nskb = skb_peek_best(q);
					peeked = L2R(this,nskb->len);
					this->start += peeked;
					this->peeked = peeked;
					csz_insert_start(&q->s, this);
				}
				sch->q.qlen--;
				return skb;
			}
		}
	}
#ifdef CSZ_PLUS_TBF
	/* We are about to return no skb.
	   Schedule watchdog timer, if it occurred because of shaping.
	 */
	if (q->wd_expires) {
		unsigned long delay = PSCHED_US2JIFFIE(q->wd_expires);
		del_timer(&q->wd_timer);
		if (delay == 0)
			delay = 1;
		q->wd_timer.expires = jiffies + delay;
		add_timer(&q->wd_timer);
		sch->stats.overlimits++;
	}
#endif
	return NULL;
}

static void
csz_reset(struct Qdisc* sch)
{
	struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
	int    i;

	for (i=0; i<4; i++)
		skb_queue_purge(&q->other[i]);

	for (i=0; i<CSZ_GUARANTEED; i++) {
		struct csz_flow *this = q->flow + i;
		skb_queue_purge(&this->q);
		this->snext = this->sprev =
		this->fnext = this->fprev = (struct csz_head*)this;
		this->start = this->finish = 0;
	}
	q->s.snext = q->s.sprev = &q->s;
	q->f.fnext = q->f.fprev = &q->f;
	q->R_c = 0;
#ifdef CSZ_PLUS_TBF
	PSCHED_GET_TIME(&q->t_tbf);
	q->tokens = q->depth;
	del_timer(&q->wd_timer);
#endif
	sch->q.qlen = 0;
}

static void
csz_destroy(struct Qdisc* sch)
{
	MOD_DEC_USE_COUNT;
}

static int csz_init(struct Qdisc *sch, struct rtattr *opt)
{
	struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
	struct rtattr *tb[TCA_CSZ_PTAB];
	struct tc_csz_qopt *qopt;
	int    i;

	rtattr_parse(tb, TCA_CSZ_PTAB, RTA_DATA(opt), RTA_PAYLOAD(opt));
	if (tb[TCA_CSZ_PARMS-1] == NULL ||
	    RTA_PAYLOAD(tb[TCA_CSZ_PARMS-1]) < sizeof(*qopt))
		return -EINVAL;
	qopt = RTA_DATA(tb[TCA_CSZ_PARMS-1]);

	q->R_log = qopt->R_log;
	q->delta_log = qopt->delta_log;
	for (i=0; i<=TC_PRIO_MAX; i++) {
		if (qopt->priomap[i] >= CSZ_FLOWS)
			return -EINVAL;
		q->prio2band[i] = qopt->priomap[i];
	}

	for (i=0; i<4; i++)
		skb_queue_head_init(&q->other[i]);

	for (i=0; i<CSZ_GUARANTEED; i++) {
		struct csz_flow *this = q->flow + i;
		skb_queue_head_init(&this->q);
		this->snext = this->sprev =
		this->fnext = this->fprev = (struct csz_head*)this;
		this->start = this->finish = 0;
	}
	q->s.snext = q->s.sprev = &q->s;
	q->f.fnext = q->f.fprev = &q->f;
	q->R_c = 0;
#ifdef CSZ_PLUS_TBF
	init_timer(&q->wd_timer);
	q->wd_timer.data = (unsigned long)sch;
	q->wd_timer.function = csz_watchdog;
#endif
	MOD_INC_USE_COUNT;
	return 0;
}

#ifdef CONFIG_RTNETLINK
static int csz_dump(struct Qdisc *sch, struct sk_buff *skb)
{
	struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
	unsigned char	 *b = skb->tail;
	struct rtattr *rta;
	struct tc_csz_qopt opt;

	rta = (struct rtattr*)b;
	RTA_PUT(skb, TCA_OPTIONS, 0, NULL);

	opt.flows = CSZ_FLOWS;
	memcpy(&opt.priomap, q->prio2band, TC_PRIO_MAX+1);
	RTA_PUT(skb, TCA_CSZ_PARMS, sizeof(opt), &opt);
	rta->rta_len = skb->tail - b;

	return skb->len;

rtattr_failure:
	skb_trim(skb, b - skb->data);
	return -1;
}
#endif


static int csz_graft(struct Qdisc *sch, unsigned long cl, struct Qdisc *new,
		     struct Qdisc **old)
{
	return -EINVAL;
}

static struct Qdisc * csz_leaf(struct Qdisc *sch, unsigned long cl)
{
	return NULL;
}


static unsigned long csz_get(struct Qdisc *sch, u32 classid)
{
	struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
	unsigned long band = TC_H_MIN(classid) - 1;

	if (band >= CSZ_FLOWS)
		return 0;

	if (band < CSZ_GUARANTEED && q->flow[band].L_tab == NULL)
		return 0;

	return band+1;
}

static unsigned long csz_bind(struct Qdisc *sch, unsigned long parent, u32 classid)
{
	return csz_get(sch, classid);
}


static void csz_put(struct Qdisc *sch, unsigned long cl)
{
	return;
}

static int csz_change(struct Qdisc *sch, u32 handle, u32 parent, struct rtattr **tca, unsigned long *arg)
{
	unsigned long cl = *arg;
	struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
	struct rtattr *opt = tca[TCA_OPTIONS-1];
	struct rtattr *tb[TCA_CSZ_PTAB];
	struct tc_csz_copt *copt;

	rtattr_parse(tb, TCA_CSZ_PTAB, RTA_DATA(opt), RTA_PAYLOAD(opt));
	if (tb[TCA_CSZ_PARMS-1] == NULL ||
	    RTA_PAYLOAD(tb[TCA_CSZ_PARMS-1]) < sizeof(*copt))
		return -EINVAL;
	copt = RTA_DATA(tb[TCA_CSZ_PARMS-1]);

	if (tb[TCA_CSZ_RTAB-1] &&
	    RTA_PAYLOAD(tb[TCA_CSZ_RTAB-1]) < 1024)
		return -EINVAL;

	if (cl) {
		struct csz_flow *a;
		cl--;
		if (cl >= CSZ_FLOWS)
			return -ENOENT;
		if (cl >= CSZ_GUARANTEED || q->flow[cl].L_tab == NULL)
			return -EINVAL;

		a = &q->flow[cl];

		spin_lock_bh(&sch->dev->queue_lock);
#if 0
		a->rate_log = copt->rate_log;
#endif
#ifdef CSZ_PLUS_TBF
		a->limit = copt->limit;
		a->rate = copt->rate;
		a->buffer = copt->buffer;
		a->mtu = copt->mtu;
#endif

		if (tb[TCA_CSZ_RTAB-1])
			memcpy(a->L_tab, RTA_DATA(tb[TCA_CSZ_RTAB-1]), 1024);

		spin_unlock_bh(&sch->dev->queue_lock);
		return 0;
	}
	/* NI */
	return 0;
}

static int csz_delete(struct Qdisc *sch, unsigned long cl)
{
	struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
	struct csz_flow *a;

	cl--;

	if (cl >= CSZ_FLOWS)
		return -ENOENT;
	if (cl >= CSZ_GUARANTEED || q->flow[cl].L_tab == NULL)
		return -EINVAL;

	a = &q->flow[cl];

	spin_lock_bh(&sch->dev->queue_lock);
	a->fprev->fnext = a->fnext;
	a->fnext->fprev = a->fprev;
	a->sprev->snext = a->snext;
	a->snext->sprev = a->sprev;
	a->start = a->finish = 0;
	kfree(xchg(&q->flow[cl].L_tab, NULL));
	spin_unlock_bh(&sch->dev->queue_lock);

	return 0;
}

#ifdef CONFIG_RTNETLINK
static int csz_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb, struct tcmsg *tcm)
{
	struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
	unsigned char	 *b = skb->tail;
	struct rtattr *rta;
	struct tc_csz_copt opt;

	tcm->tcm_handle = sch->handle|cl;

	cl--;

	if (cl > CSZ_FLOWS)
		goto rtattr_failure;

	if (cl < CSZ_GUARANTEED) {
		struct csz_flow *f = &q->flow[cl];

		if (f->L_tab == NULL)
			goto rtattr_failure;

		rta = (struct rtattr*)b;
		RTA_PUT(skb, TCA_OPTIONS, 0, NULL);

		opt.limit = f->limit;
		opt.rate = f->rate;
		opt.slice = f->slice;
		memset(&opt.peakrate, 0, sizeof(opt.peakrate));
#ifdef CSZ_PLUS_TBF
		opt.buffer = f->buffer;
		opt.mtu = f->mtu;
#else
		opt.buffer = 0;
		opt.mtu = 0;
#endif

		RTA_PUT(skb, TCA_CSZ_PARMS, sizeof(opt), &opt);
		rta->rta_len = skb->tail - b;
	}

	return skb->len;

rtattr_failure:
	skb_trim(skb, b - skb->data);
	return -1;
}
#endif

static void csz_walk(struct Qdisc *sch, struct qdisc_walker *arg)
{
	struct csz_sched_data *q = (struct csz_sched_data *)sch->data;
	int prio = 0;

	if (arg->stop)
		return;

	for (prio = 0; prio < CSZ_FLOWS; prio++) {
		if (arg->count < arg->skip) {
			arg->count++;
			continue;
		}
		if (prio < CSZ_GUARANTEED && q->flow[prio].L_tab == NULL) {
			arg->count++;
			continue;
		}
		if (arg->fn(sch, prio+1, arg) < 0) {
			arg->stop = 1;
			break;
		}
		arg->count++;
	}
}

static struct tcf_proto ** csz_find_tcf(struct Qdisc *sch, unsigned long cl)
{
	struct csz_sched_data *q = (struct csz_sched_data *)sch->data;

	if (cl)
		return NULL;

	return &q->filter_list;
}

struct Qdisc_class_ops csz_class_ops =
{
	csz_graft,
	csz_leaf,

	csz_get,
	csz_put,
	csz_change,
	csz_delete,
	csz_walk,

	csz_find_tcf,
	csz_bind,
	csz_put,

#ifdef CONFIG_RTNETLINK
	csz_dump_class,
#endif
};

struct Qdisc_ops csz_qdisc_ops =
{
	NULL,
	&csz_class_ops,
	"csz",
	sizeof(struct csz_sched_data),

	csz_enqueue,
	csz_dequeue,
	NULL,
	NULL,

	csz_init,
	csz_reset,
	csz_destroy,
	NULL /* csz_change */,

#ifdef CONFIG_RTNETLINK
	csz_dump,
#endif
};


#ifdef MODULE
int init_module(void)
{
	return register_qdisc(&csz_qdisc_ops);
}

void cleanup_module(void) 
{
	unregister_qdisc(&csz_qdisc_ops);
}
#endif