Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 | /* * net/sched/sch_csz.c Clark-Shenker-Zhang scheduler. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version. * * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru> * */ #include <linux/config.h> #include <linux/module.h> #include <asm/uaccess.h> #include <asm/system.h> #include <asm/bitops.h> #include <linux/types.h> #include <linux/kernel.h> #include <linux/sched.h> #include <linux/string.h> #include <linux/mm.h> #include <linux/socket.h> #include <linux/sockios.h> #include <linux/in.h> #include <linux/errno.h> #include <linux/interrupt.h> #include <linux/if_ether.h> #include <linux/inet.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/notifier.h> #include <net/ip.h> #include <net/route.h> #include <linux/skbuff.h> #include <net/sock.h> #include <net/pkt_sched.h> /* Clark-Shenker-Zhang algorithm. ======================================= SOURCE. David D. Clark, Scott Shenker and Lixia Zhang "Supporting Real-Time Applications in an Integrated Services Packet Network: Architecture and Mechanism". CBQ presents a flexible universal algorithm for packet scheduling, but it has pretty poor delay characteristics. Round-robin scheduling and link-sharing goals apparently contradict minimization of network delay and jitter. Moreover, correct handling of predictive flows seems to be impossible in CBQ. CSZ presents a more precise but less flexible and less efficient approach. As I understand it, the main idea is to create WFQ flows for each guaranteed service and to allocate the rest of bandwith to dummy flow-0. Flow-0 comprises the predictive services and the best effort traffic; it is handled by a priority scheduler with the highest priority band allocated for predictive services, and the rest --- to the best effort packets. Note that in CSZ flows are NOT limited to their bandwidth. It is supposed that the flow passed admission control at the edge of the QoS network and it doesn't need further shaping. Any attempt to improve the flow or to shape it to a token bucket at intermediate hops will introduce undesired delays and raise jitter. At the moment CSZ is the only scheduler that provides true guaranteed service. Another schemes (including CBQ) do not provide guaranteed delay and randomize jitter. There is a proof (Sally Floyd), that delay can be estimated by a IntServ compliant formula. This result is true formally, but it is wrong in principle. It takes into account only round-robin delays, ignoring delays introduced by link sharing i.e. overlimiting. Note that temporary overlimits are inevitable because real links are not ideal, and the real algorithm must take this into account. ALGORITHM. --- Notations. $B$ is link bandwidth (bits/sec). $I$ is set of all flows, including flow $0$. Every flow $a \in I$ has associated bandwidth slice $r_a < 1$ and $\sum_{a \in I} r_a = 1$. --- Flow model. Let $m_a$ is the number of backlogged bits in flow $a$. The flow is {\em active}, if $m_a > 0$. This number is a discontinuous function of time; when a packet $i$ arrives: \[ m_a(t_i+0) - m_a(t_i-0) = L^i, \] where $L^i$ is the length of the arrived packet. The flow queue is drained continuously until $m_a == 0$: \[ {d m_a \over dt} = - { B r_a \over \sum_{b \in A} r_b}. \] I.e. flow rates are their allocated rates proportionally scaled to take all available link bandwidth. Apparently, it is not the only possible policy. F.e. CBQ classes without borrowing would be modelled by: \[ {d m_a \over dt} = - B r_a . \] More complicated hierarchical bandwidth allocation policies are possible, but unfortunately, the basic flow equations have a simple solution only for proportional scaling. --- Departure times. We calculate the time until the last bit of packet is sent: \[ E_a^i(t) = { m_a(t_i) - \delta_a(t) \over r_a }, \] where $\delta_a(t)$ is number of bits drained since $t_i$. We have to evaluate $E_a^i$ for all queued packets, then find the packet with minimal $E_a^i$ and send it. This sounds good, but direct implementation of the algorithm is absolutely infeasible. Luckily, if flow rates are scaled proportionally, the equations have a simple solution. The differential equation for $E_a^i$ is \[ {d E_a^i (t) \over dt } = - { d \delta_a(t) \over dt} { 1 \over r_a} = { B \over \sum_{b \in A} r_b} \] with initial condition \[ E_a^i (t_i) = { m_a(t_i) \over r_a } . \] Let's introduce an auxiliary function $R(t)$: --- Round number. Consider the following model: we rotate over active flows, sending $r_a B$ bits from every flow, so that we send $B \sum_{a \in A} r_a$ bits per round, that takes $\sum_{a \in A} r_a$ seconds. Hence, $R(t)$ (round number) is a monotonically increasing linear function of time when $A$ is not changed \[ { d R(t) \over dt } = { 1 \over \sum_{a \in A} r_a } \] and it is continuous when $A$ changes. The central observation is that the quantity $F_a^i = R(t) + E_a^i(t)/B$ does not depend on time at all! $R(t)$ does not depend on flow, so that $F_a^i$ can be calculated only once on packet arrival, and we need not recalculate $E$ numbers and resorting queues. The number $F_a^i$ is called finish number of the packet. It is just the value of $R(t)$ when the last bit of packet is sent out. Maximal finish number on flow is called finish number of flow and minimal one is "start number of flow". Apparently, flow is active if and only if $F_a \leq R$. When a packet of length $L_i$ bit arrives to flow $a$ at time $t_i$, we calculate $F_a^i$ as: If flow was inactive ($F_a < R$): $F_a^i = R(t) + {L_i \over B r_a}$ otherwise $F_a^i = F_a + {L_i \over B r_a}$ These equations complete the algorithm specification. It looks pretty hairy, but there is a simple procedure for solving these equations. See procedure csz_update(), that is a generalization of the algorithm from S. Keshav's thesis Chapter 3 "Efficient Implementation of Fair Queeing". NOTES. * We implement only the simplest variant of CSZ, when flow-0 is a explicit 4band priority fifo. This is bad, but we need a "peek" operation in addition to "dequeue" to implement complete CSZ. I do not want to do that, unless it is absolutely necessary. * A primitive support for token bucket filtering presents itself too. It directly contradicts CSZ, but even though the Internet is on the globe ... :-) "the edges of the network" really exist. BUGS. * Fixed point arithmetic is overcomplicated, suboptimal and even wrong. Check it later. */ /* This number is arbitrary */ #define CSZ_GUARANTEED 16 #define CSZ_FLOWS (CSZ_GUARANTEED+4) struct csz_head { struct csz_head *snext; struct csz_head *sprev; struct csz_head *fnext; struct csz_head *fprev; }; struct csz_flow { struct csz_head *snext; struct csz_head *sprev; struct csz_head *fnext; struct csz_head *fprev; /* Parameters */ struct tc_ratespec rate; struct tc_ratespec slice; u32 *L_tab; /* Lookup table for L/(B*r_a) values */ unsigned long limit; /* Maximal length of queue */ #ifdef CSZ_PLUS_TBF struct tc_ratespec peakrate; __u32 buffer; /* Depth of token bucket, normalized as L/(B*r_a) */ __u32 mtu; #endif /* Variables */ #ifdef CSZ_PLUS_TBF unsigned long tokens; /* Tokens number: usecs */ psched_time_t t_tbf; unsigned long R_tbf; int throttled; #endif unsigned peeked; unsigned long start; /* Finish number of the first skb */ unsigned long finish; /* Finish number of the flow */ struct sk_buff_head q; /* FIFO queue */ }; #define L2R(f,L) ((f)->L_tab[(L)>>(f)->slice.cell_log]) struct csz_sched_data { /* Parameters */ unsigned char rate_log; /* fixed point position for rate; * really we need not it */ unsigned char R_log; /* fixed point position for round number */ unsigned char delta_log; /* 1<<delta_log is maximal timeout in usecs; * 21 <-> 2.1sec is MAXIMAL value */ /* Variables */ struct tcf_proto *filter_list; u8 prio2band[TC_PRIO_MAX+1]; #ifdef CSZ_PLUS_TBF struct timer_list wd_timer; long wd_expires; #endif psched_time_t t_c; /* Time check-point */ unsigned long R_c; /* R-number check-point */ unsigned long rate; /* Current sum of rates of active flows */ struct csz_head s; /* Flows sorted by "start" */ struct csz_head f; /* Flows sorted by "finish" */ struct sk_buff_head other[4];/* Predicted (0) and the best efforts classes (1,2,3) */ struct csz_flow flow[CSZ_GUARANTEED]; /* Array of flows */ }; /* These routines (csz_insert_finish and csz_insert_start) are the most time consuming part of all the algorithm. We insert to sorted list, so that time is linear with respect to number of active flows in the worst case. Note that we have not very large number of guaranteed flows, so that logarithmic algorithms (heap etc.) are useless, they are slower than linear one when length of list <= 32. Heap would take sence if we used WFQ for best efforts flows, but SFQ is better choice in this case. */ /* Insert flow "this" to the list "b" before flow with greater finish number. */ #if 0 /* Scan forward */ extern __inline__ void csz_insert_finish(struct csz_head *b, struct csz_flow *this) { struct csz_head *f = b->fnext; unsigned long finish = this->finish; while (f != b) { if (((struct csz_flow*)f)->finish - finish > 0) break; f = f->fnext; } this->fnext = f; this->fprev = f->fprev; this->fnext->fprev = this->fprev->fnext = (struct csz_head*)this; } #else /* Scan backward */ extern __inline__ void csz_insert_finish(struct csz_head *b, struct csz_flow *this) { struct csz_head *f = b->fprev; unsigned long finish = this->finish; while (f != b) { if (((struct csz_flow*)f)->finish - finish <= 0) break; f = f->fprev; } this->fnext = f->fnext; this->fprev = f; this->fnext->fprev = this->fprev->fnext = (struct csz_head*)this; } #endif /* Insert flow "this" to the list "b" before flow with greater start number. */ extern __inline__ void csz_insert_start(struct csz_head *b, struct csz_flow *this) { struct csz_head *f = b->snext; unsigned long start = this->start; while (f != b) { if (((struct csz_flow*)f)->start - start > 0) break; f = f->snext; } this->snext = f; this->sprev = f->sprev; this->snext->sprev = this->sprev->snext = (struct csz_head*)this; } /* Calculate and return current round number. It is another time consuming part, but it is impossible to avoid it. It costs O(N) that make all the algorithm useful only to play with closest to ideal fluid model. There exist less academic, but more practical modifications, which might have even better characteristics (WF2Q+, HPFQ, HFSC) */ static unsigned long csz_update(struct Qdisc *sch) { struct csz_sched_data *q = (struct csz_sched_data*)sch->data; struct csz_flow *a; unsigned long F; unsigned long tmp; psched_time_t now; unsigned long delay; unsigned long R_c; PSCHED_GET_TIME(now); delay = PSCHED_TDIFF_SAFE(now, q->t_c, 0, goto do_reset); if (delay>>q->delta_log) { do_reset: /* Delta is too large. It is possible if MTU/BW > 1<<q->delta_log (i.e. configuration error) or because of hardware fault. We have no choice... */ qdisc_reset(sch); return 0; } q->t_c = now; for (;;) { a = (struct csz_flow*)q->f.fnext; /* No more active flows. Reset R and exit. */ if (a == (struct csz_flow*)&q->f) { #ifdef CSZ_DEBUG if (q->rate) { printk("csz_update: rate!=0 on inactive csz\n"); q->rate = 0; } #endif q->R_c = 0; return 0; } F = a->finish; #ifdef CSZ_DEBUG if (q->rate == 0) { printk("csz_update: rate=0 on active csz\n"); goto do_reset; } #endif /* * tmp = (t - q->t_c)/q->rate; */ tmp = ((delay<<(31-q->delta_log))/q->rate)>>(31-q->delta_log+q->R_log); tmp += q->R_c; /* OK, this flow (and all flows with greater finish numbers) is still active */ if (F - tmp > 0) break; /* It is more not active */ a->fprev->fnext = a->fnext; a->fnext->fprev = a->fprev; /* * q->t_c += (F - q->R_c)*q->rate */ tmp = ((F-q->R_c)*q->rate)<<q->R_log; R_c = F; q->rate -= a->slice.rate; if ((long)(delay - tmp) >= 0) { delay -= tmp; continue; } delay = 0; } q->R_c = tmp; return tmp; } unsigned csz_classify(struct sk_buff *skb, struct csz_sched_data *q) { return CSZ_GUARANTEED; } static int csz_enqueue(struct sk_buff *skb, struct Qdisc* sch) { struct csz_sched_data *q = (struct csz_sched_data *)sch->data; unsigned flow_id = csz_classify(skb, q); unsigned long R; int prio = 0; struct csz_flow *this; if (flow_id >= CSZ_GUARANTEED) { prio = flow_id - CSZ_GUARANTEED; flow_id = 0; } this = &q->flow[flow_id]; if (this->q.qlen >= this->limit || this->L_tab == NULL) { sch->stats.drops++; kfree_skb(skb); return NET_XMIT_DROP; } R = csz_update(sch); if ((long)(this->finish - R) >= 0) { /* It was active */ this->finish += L2R(this,skb->len); } else { /* It is inactive; activate it */ this->finish = R + L2R(this,skb->len); q->rate += this->slice.rate; csz_insert_finish(&q->f, this); } /* If this flow was empty, remember start number and insert it into start queue */ if (this->q.qlen == 0) { this->start = this->finish; csz_insert_start(&q->s, this); } if (flow_id) skb_queue_tail(&this->q, skb); else skb_queue_tail(&q->other[prio], skb); sch->q.qlen++; sch->stats.bytes += skb->len; sch->stats.packets++; return 0; } static __inline__ struct sk_buff * skb_dequeue_best(struct csz_sched_data * q) { int i; struct sk_buff *skb; for (i=0; i<4; i++) { skb = skb_dequeue(&q->other[i]); if (skb) { q->flow[0].q.qlen--; return skb; } } return NULL; } static __inline__ struct sk_buff * skb_peek_best(struct csz_sched_data * q) { int i; struct sk_buff *skb; for (i=0; i<4; i++) { skb = skb_peek(&q->other[i]); if (skb) return skb; } return NULL; } #ifdef CSZ_PLUS_TBF static void csz_watchdog(unsigned long arg) { struct Qdisc *sch = (struct Qdisc*)arg; qdisc_wakeup(sch->dev); } static __inline__ void csz_move_queue(struct csz_flow *this, long delta) { this->fprev->fnext = this->fnext; this->fnext->fprev = this->fprev; this->start += delta; this->finish += delta; csz_insert_finish(this); } static __inline__ int csz_enough_tokens(struct csz_sched_data *q, struct csz_flow *this, struct sk_buff *skb) { long toks; long shift; psched_time_t now; PSCHED_GET_TIME(now); toks = PSCHED_TDIFF(now, t_tbf) + this->tokens - L2R(q,this,skb->len); shift = 0; if (this->throttled) { /* Remember aposteriory delay */ unsigned long R = csz_update(q); shift = R - this->R_tbf; this->R_tbf = R; } if (toks >= 0) { /* Now we have enough tokens to proceed */ this->tokens = toks <= this->depth ? toks : this->depth; this->t_tbf = now; if (!this->throttled) return 1; /* Flow was throttled. Update its start&finish numbers with delay calculated aposteriori. */ this->throttled = 0; if (shift > 0) csz_move_queue(this, shift); return 1; } if (!this->throttled) { /* Flow has just been throttled; remember current round number to calculate aposteriori delay */ this->throttled = 1; this->R_tbf = csz_update(q); } /* Move all the queue to the time when it will be allowed to send. We should translate time to round number, but it is impossible, so that we made the most conservative estimate i.e. we suppose that only this flow is active and, hence, R = t. Really toks <= R <= toks/r_a. This apriory shift in R will be adjusted later to reflect real delay. We cannot avoid it because of: - throttled flow continues to be active from the viewpoint of CSZ, so that it would acquire the highest priority, if you not adjusted start numbers. - Eventually, finish number would become less than round number and flow were declared inactive. */ toks = -toks; /* Remeber, that we should start watchdog */ if (toks < q->wd_expires) q->wd_expires = toks; toks >>= q->R_log; shift += toks; if (shift > 0) { this->R_tbf += toks; csz_move_queue(this, shift); } csz_insert_start(this); return 0; } #endif static struct sk_buff * csz_dequeue(struct Qdisc* sch) { struct csz_sched_data *q = (struct csz_sched_data *)sch->data; struct sk_buff *skb; struct csz_flow *this; #ifdef CSZ_PLUS_TBF q->wd_expires = 0; #endif this = (struct csz_flow*)q->s.snext; while (this != (struct csz_flow*)&q->s) { /* First of all: unlink from start list */ this->sprev->snext = this->snext; this->snext->sprev = this->sprev; if (this != &q->flow[0]) { /* Guaranteed flow */ skb = __skb_dequeue(&this->q); if (skb) { #ifdef CSZ_PLUS_TBF if (this->depth) { if (!csz_enough_tokens(q, this, skb)) continue; } #endif if (this->q.qlen) { struct sk_buff *nskb = skb_peek(&this->q); this->start += L2R(this,nskb->len); csz_insert_start(&q->s, this); } sch->q.qlen--; return skb; } } else { /* Predicted or best effort flow */ skb = skb_dequeue_best(q); if (skb) { unsigned peeked = this->peeked; this->peeked = 0; if (--this->q.qlen) { struct sk_buff *nskb; unsigned dequeued = L2R(this,skb->len); /* We got not the same thing that peeked earlier; adjust start number */ if (peeked != dequeued && peeked) this->start += dequeued - peeked; nskb = skb_peek_best(q); peeked = L2R(this,nskb->len); this->start += peeked; this->peeked = peeked; csz_insert_start(&q->s, this); } sch->q.qlen--; return skb; } } } #ifdef CSZ_PLUS_TBF /* We are about to return no skb. Schedule watchdog timer, if it occurred because of shaping. */ if (q->wd_expires) { unsigned long delay = PSCHED_US2JIFFIE(q->wd_expires); del_timer(&q->wd_timer); if (delay == 0) delay = 1; q->wd_timer.expires = jiffies + delay; add_timer(&q->wd_timer); sch->stats.overlimits++; } #endif return NULL; } static void csz_reset(struct Qdisc* sch) { struct csz_sched_data *q = (struct csz_sched_data *)sch->data; int i; for (i=0; i<4; i++) skb_queue_purge(&q->other[i]); for (i=0; i<CSZ_GUARANTEED; i++) { struct csz_flow *this = q->flow + i; skb_queue_purge(&this->q); this->snext = this->sprev = this->fnext = this->fprev = (struct csz_head*)this; this->start = this->finish = 0; } q->s.snext = q->s.sprev = &q->s; q->f.fnext = q->f.fprev = &q->f; q->R_c = 0; #ifdef CSZ_PLUS_TBF PSCHED_GET_TIME(&q->t_tbf); q->tokens = q->depth; del_timer(&q->wd_timer); #endif sch->q.qlen = 0; } static void csz_destroy(struct Qdisc* sch) { MOD_DEC_USE_COUNT; } static int csz_init(struct Qdisc *sch, struct rtattr *opt) { struct csz_sched_data *q = (struct csz_sched_data *)sch->data; struct rtattr *tb[TCA_CSZ_PTAB]; struct tc_csz_qopt *qopt; int i; rtattr_parse(tb, TCA_CSZ_PTAB, RTA_DATA(opt), RTA_PAYLOAD(opt)); if (tb[TCA_CSZ_PARMS-1] == NULL || RTA_PAYLOAD(tb[TCA_CSZ_PARMS-1]) < sizeof(*qopt)) return -EINVAL; qopt = RTA_DATA(tb[TCA_CSZ_PARMS-1]); q->R_log = qopt->R_log; q->delta_log = qopt->delta_log; for (i=0; i<=TC_PRIO_MAX; i++) { if (qopt->priomap[i] >= CSZ_FLOWS) return -EINVAL; q->prio2band[i] = qopt->priomap[i]; } for (i=0; i<4; i++) skb_queue_head_init(&q->other[i]); for (i=0; i<CSZ_GUARANTEED; i++) { struct csz_flow *this = q->flow + i; skb_queue_head_init(&this->q); this->snext = this->sprev = this->fnext = this->fprev = (struct csz_head*)this; this->start = this->finish = 0; } q->s.snext = q->s.sprev = &q->s; q->f.fnext = q->f.fprev = &q->f; q->R_c = 0; #ifdef CSZ_PLUS_TBF init_timer(&q->wd_timer); q->wd_timer.data = (unsigned long)sch; q->wd_timer.function = csz_watchdog; #endif MOD_INC_USE_COUNT; return 0; } #ifdef CONFIG_RTNETLINK static int csz_dump(struct Qdisc *sch, struct sk_buff *skb) { struct csz_sched_data *q = (struct csz_sched_data *)sch->data; unsigned char *b = skb->tail; struct rtattr *rta; struct tc_csz_qopt opt; rta = (struct rtattr*)b; RTA_PUT(skb, TCA_OPTIONS, 0, NULL); opt.flows = CSZ_FLOWS; memcpy(&opt.priomap, q->prio2band, TC_PRIO_MAX+1); RTA_PUT(skb, TCA_CSZ_PARMS, sizeof(opt), &opt); rta->rta_len = skb->tail - b; return skb->len; rtattr_failure: skb_trim(skb, b - skb->data); return -1; } #endif static int csz_graft(struct Qdisc *sch, unsigned long cl, struct Qdisc *new, struct Qdisc **old) { return -EINVAL; } static struct Qdisc * csz_leaf(struct Qdisc *sch, unsigned long cl) { return NULL; } static unsigned long csz_get(struct Qdisc *sch, u32 classid) { struct csz_sched_data *q = (struct csz_sched_data *)sch->data; unsigned long band = TC_H_MIN(classid) - 1; if (band >= CSZ_FLOWS) return 0; if (band < CSZ_GUARANTEED && q->flow[band].L_tab == NULL) return 0; return band+1; } static unsigned long csz_bind(struct Qdisc *sch, unsigned long parent, u32 classid) { return csz_get(sch, classid); } static void csz_put(struct Qdisc *sch, unsigned long cl) { return; } static int csz_change(struct Qdisc *sch, u32 handle, u32 parent, struct rtattr **tca, unsigned long *arg) { unsigned long cl = *arg; struct csz_sched_data *q = (struct csz_sched_data *)sch->data; struct rtattr *opt = tca[TCA_OPTIONS-1]; struct rtattr *tb[TCA_CSZ_PTAB]; struct tc_csz_copt *copt; rtattr_parse(tb, TCA_CSZ_PTAB, RTA_DATA(opt), RTA_PAYLOAD(opt)); if (tb[TCA_CSZ_PARMS-1] == NULL || RTA_PAYLOAD(tb[TCA_CSZ_PARMS-1]) < sizeof(*copt)) return -EINVAL; copt = RTA_DATA(tb[TCA_CSZ_PARMS-1]); if (tb[TCA_CSZ_RTAB-1] && RTA_PAYLOAD(tb[TCA_CSZ_RTAB-1]) < 1024) return -EINVAL; if (cl) { struct csz_flow *a; cl--; if (cl >= CSZ_FLOWS) return -ENOENT; if (cl >= CSZ_GUARANTEED || q->flow[cl].L_tab == NULL) return -EINVAL; a = &q->flow[cl]; spin_lock_bh(&sch->dev->queue_lock); #if 0 a->rate_log = copt->rate_log; #endif #ifdef CSZ_PLUS_TBF a->limit = copt->limit; a->rate = copt->rate; a->buffer = copt->buffer; a->mtu = copt->mtu; #endif if (tb[TCA_CSZ_RTAB-1]) memcpy(a->L_tab, RTA_DATA(tb[TCA_CSZ_RTAB-1]), 1024); spin_unlock_bh(&sch->dev->queue_lock); return 0; } /* NI */ return 0; } static int csz_delete(struct Qdisc *sch, unsigned long cl) { struct csz_sched_data *q = (struct csz_sched_data *)sch->data; struct csz_flow *a; cl--; if (cl >= CSZ_FLOWS) return -ENOENT; if (cl >= CSZ_GUARANTEED || q->flow[cl].L_tab == NULL) return -EINVAL; a = &q->flow[cl]; spin_lock_bh(&sch->dev->queue_lock); a->fprev->fnext = a->fnext; a->fnext->fprev = a->fprev; a->sprev->snext = a->snext; a->snext->sprev = a->sprev; a->start = a->finish = 0; kfree(xchg(&q->flow[cl].L_tab, NULL)); spin_unlock_bh(&sch->dev->queue_lock); return 0; } #ifdef CONFIG_RTNETLINK static int csz_dump_class(struct Qdisc *sch, unsigned long cl, struct sk_buff *skb, struct tcmsg *tcm) { struct csz_sched_data *q = (struct csz_sched_data *)sch->data; unsigned char *b = skb->tail; struct rtattr *rta; struct tc_csz_copt opt; tcm->tcm_handle = sch->handle|cl; cl--; if (cl > CSZ_FLOWS) goto rtattr_failure; if (cl < CSZ_GUARANTEED) { struct csz_flow *f = &q->flow[cl]; if (f->L_tab == NULL) goto rtattr_failure; rta = (struct rtattr*)b; RTA_PUT(skb, TCA_OPTIONS, 0, NULL); opt.limit = f->limit; opt.rate = f->rate; opt.slice = f->slice; memset(&opt.peakrate, 0, sizeof(opt.peakrate)); #ifdef CSZ_PLUS_TBF opt.buffer = f->buffer; opt.mtu = f->mtu; #else opt.buffer = 0; opt.mtu = 0; #endif RTA_PUT(skb, TCA_CSZ_PARMS, sizeof(opt), &opt); rta->rta_len = skb->tail - b; } return skb->len; rtattr_failure: skb_trim(skb, b - skb->data); return -1; } #endif static void csz_walk(struct Qdisc *sch, struct qdisc_walker *arg) { struct csz_sched_data *q = (struct csz_sched_data *)sch->data; int prio = 0; if (arg->stop) return; for (prio = 0; prio < CSZ_FLOWS; prio++) { if (arg->count < arg->skip) { arg->count++; continue; } if (prio < CSZ_GUARANTEED && q->flow[prio].L_tab == NULL) { arg->count++; continue; } if (arg->fn(sch, prio+1, arg) < 0) { arg->stop = 1; break; } arg->count++; } } static struct tcf_proto ** csz_find_tcf(struct Qdisc *sch, unsigned long cl) { struct csz_sched_data *q = (struct csz_sched_data *)sch->data; if (cl) return NULL; return &q->filter_list; } struct Qdisc_class_ops csz_class_ops = { csz_graft, csz_leaf, csz_get, csz_put, csz_change, csz_delete, csz_walk, csz_find_tcf, csz_bind, csz_put, #ifdef CONFIG_RTNETLINK csz_dump_class, #endif }; struct Qdisc_ops csz_qdisc_ops = { NULL, &csz_class_ops, "csz", sizeof(struct csz_sched_data), csz_enqueue, csz_dequeue, NULL, NULL, csz_init, csz_reset, csz_destroy, NULL /* csz_change */, #ifdef CONFIG_RTNETLINK csz_dump, #endif }; #ifdef MODULE int init_module(void) { return register_qdisc(&csz_qdisc_ops); } void cleanup_module(void) { unregister_qdisc(&csz_qdisc_ops); } #endif |