Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
/* $Id: io.h,v 1.13 2000/02/24 00:13:19 ralf Exp $
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file "COPYING" in the main directory of this archive
 * for more details.
 *
 * Copyright (C) 1994, 1995 Waldorf GmbH
 * Copyright (C) 1994 - 2000 Ralf Baechle
 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
 */
#ifndef _ASM_IO_H
#define _ASM_IO_H

/*
 * Slowdown I/O port space accesses for antique hardware.
 */
#undef CONF_SLOWDOWN_IO

#include <asm/addrspace.h>

/*
 * This file contains the definitions for the MIPS counterpart of the
 * x86 in/out instructions. This heap of macros and C results in much
 * better code than the approach of doing it in plain C.  The macros
 * result in code that is to fast for certain hardware.  On the other
 * side the performance of the string functions should be improved for
 * sake of certain devices like EIDE disks that do highspeed polled I/O.
 *
 *   Ralf
 *
 * This file contains the definitions for the x86 IO instructions
 * inb/inw/inl/outb/outw/outl and the "string versions" of the same
 * (insb/insw/insl/outsb/outsw/outsl). You can also use "pausing"
 * versions of the single-IO instructions (inb_p/inw_p/..).
 *
 * This file is not meant to be obfuscating: it's just complicated
 * to (a) handle it all in a way that makes gcc able to optimize it
 * as well as possible and (b) trying to avoid writing the same thing
 * over and over again with slight variations and possibly making a
 * mistake somewhere.
 */

/*
 * On MIPS I/O ports are memory mapped, so we access them using normal
 * load/store instructions. mips_io_port_base is the virtual address to
 * which all ports are being mapped.  For sake of efficiency some code
 * assumes that this is an address that can be loaded with a single lui
 * instruction, so the lower 16 bits must be zero.  Should be true on
 * on any sane architecture; generic code does not use this assumption.
 */
extern unsigned long mips_io_port_base;

/*
 * Thanks to James van Artsdalen for a better timing-fix than
 * the two short jumps: using outb's to a nonexistent port seems
 * to guarantee better timings even on fast machines.
 *
 * On the other hand, I'd like to be sure of a non-existent port:
 * I feel a bit unsafe about using 0x80 (should be safe, though)
 *
 *		Linus
 *
 */

#define __SLOW_DOWN_IO \
	__asm__ __volatile__( \
		"sb\t$0,0x80(%0)" \
		: : "r" (mips_io_port_base));

#ifdef CONF_SLOWDOWN_IO
#ifdef REALLY_SLOW_IO
#define SLOW_DOWN_IO { __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; __SLOW_DOWN_IO; }
#else
#define SLOW_DOWN_IO __SLOW_DOWN_IO
#endif
#else
#define SLOW_DOWN_IO
#endif

/*
 * Change virtual addresses to physical addresses and vv.
 * These are trivial on the 1:1 Linux/MIPS mapping
 */
extern inline unsigned long virt_to_phys(volatile void * address)
{
	return PHYSADDR(address);
}

extern inline void * phys_to_virt(unsigned long address)
{
	return (void *)KSEG0ADDR(address);
}

extern void * ioremap(unsigned long phys_addr, unsigned long size);
extern void iounmap(void *addr);

/*
 * IO bus memory addresses are also 1:1 with the physical address
 */
extern inline unsigned long virt_to_bus(volatile void * address)
{
	return PHYSADDR(address);
}

extern inline void * bus_to_virt(unsigned long address)
{
	return (void *)KSEG0ADDR(address);
}

/*
 * isa_slot_offset is the address where E(ISA) busaddress 0 is is mapped
 * for the processor.
 */
extern unsigned long isa_slot_offset;

/*
 * readX/writeX() are used to access memory mapped devices. On some
 * architectures the memory mapped IO stuff needs to be accessed
 * differently. On the x86 architecture, we just read/write the
 * memory location directly.
 *
 * On MIPS, we have the whole physical address space mapped at all
 * times, so "ioremap()" and "iounmap()" do not need to do anything.
 * (This isn't true for all machines but we still handle these cases
 * with wired TLB entries anyway ...)
 *
 * We cheat a bit and always return uncachable areas until we've fixed
 * the drivers to handle caching properly.
 */
extern inline void * ioremap(unsigned long offset, unsigned long size)
{
	return (void *) KSEG1ADDR(offset);
}

/*
 * This one maps high address device memory and turns off caching for that area.
 * it's useful if some control registers are in such an area and write combining
 * or read caching is not desirable:
 */
extern inline void * ioremap_nocache (unsigned long offset, unsigned long size)
{
	return (void *) KSEG1ADDR(offset);
}

extern inline void iounmap(void *addr)
{
}

/*
 * XXX We need system specific versions of these to handle EISA address bits
 * 24-31 on SNI.
 * XXX more SNI hacks.
 */
#define readb(addr) (*(volatile unsigned char *)(addr))
#define readw(addr) (*(volatile unsigned short *)(addr))
#define readl(addr) (*(volatile unsigned int *)(addr))
#define __raw_readb readb
#define __raw_readw readw
#define __raw_readl readl

#define writeb(b,addr) (*(volatile unsigned char *)(addr)) = (b)
#define writew(b,addr) (*(volatile unsigned short *)(addr)) = (b)
#define writel(b,addr) (*(volatile unsigned int *)(addr)) = (b)
#define __raw_writeb writeb
#define __raw_writew writew
#define __raw_writel writel

#define memset_io(a,b,c)	memset((void *)(a),(b),(c))
#define memcpy_fromio(a,b,c)	memcpy((a),(void *)(b),(c))
#define memcpy_toio(a,b,c)	memcpy((void *)(a),(b),(c))

/* END SNI HACKS ... */

/*
 * ISA space is 'always mapped' on currently supported MIPS systems, no need
 * to explicitly ioremap() it. The fact that the ISA IO space is mapped
 * to PAGE_OFFSET is pure coincidence - it does not mean ISA values
 * are physical addresses. The following constant pointer can be
 * used as the IO-area pointer (it can be iounmapped as well, so the
 * analogy with PCI is quite large):
 */
#define __ISA_IO_base ((char *)(PAGE_OFFSET))

#define isa_readb(a) readb(a)
#define isa_readw(a) readw(a)
#define isa_readl(a) readl(a)
#define isa_writeb(b,a) writeb(b,a)
#define isa_writew(w,a) writew(w,a)
#define isa_writel(l,a) writel(l,a)

#define isa_memset_io(a,b,c)     memset_io((a),(b),(c))
#define isa_memcpy_fromio(a,b,c) memcpy_fromio((a),(b),(c))
#define isa_memcpy_toio(a,b,c)   memcpy_toio((a),(b),(c))

/*
 * We don't have csum_partial_copy_fromio() yet, so we cheat here and
 * just copy it. The net code will then do the checksum later.
 */
#define eth_io_copy_and_sum(skb,src,len,unused) memcpy_fromio((skb)->data,(src),(len))
#define isa_eth_io_copy_and_sum(a,b,c,d) eth_copy_and_sum((a),(b),(c),(d))

static inline int check_signature(unsigned long io_addr,
                                  const unsigned char *signature, int length)
{
	int retval = 0;
	do {
		if (readb(io_addr) != *signature)
			goto out;
		io_addr++;
		signature++;
		length--;
	} while (length);
	retval = 1;
out:
	return retval;
}
#define isa_check_signature(io, s, l) check_signature(i,s,l)

/*
 * Talk about misusing macros..
 */

#define __OUT1(s) \
extern inline void __out##s(unsigned int value, unsigned int port) {

#define __OUT2(m) \
__asm__ __volatile__ ("s" #m "\t%0,%1(%2)"

#define __OUT(m,s) \
__OUT1(s) __OUT2(m) : : "r" (value), "i" (0), "r" (mips_io_port_base+port)); } \
__OUT1(s##c) __OUT2(m) : : "r" (value), "ir" (port), "r" (mips_io_port_base)); } \
__OUT1(s##_p) __OUT2(m) : : "r" (value), "i" (0), "r" (mips_io_port_base+port)); \
	SLOW_DOWN_IO; } \
__OUT1(s##c_p) __OUT2(m) : : "r" (value), "ir" (port), "r" (mips_io_port_base)); \
	SLOW_DOWN_IO; }

#define __IN1(t,s) \
extern __inline__ t __in##s(unsigned int port) { t _v;

/*
 * Required nops will be inserted by the assembler
 */
#define __IN2(m) \
__asm__ __volatile__ ("l" #m "\t%0,%1(%2)"

#define __IN(t,m,s) \
__IN1(t,s) __IN2(m) : "=r" (_v) : "i" (0), "r" (mips_io_port_base+port)); return _v; } \
__IN1(t,s##c) __IN2(m) : "=r" (_v) : "ir" (port), "r" (mips_io_port_base)); return _v; } \
__IN1(t,s##_p) __IN2(m) : "=r" (_v) : "i" (0), "r" (mips_io_port_base+port)); SLOW_DOWN_IO; return _v; } \
__IN1(t,s##c_p) __IN2(m) : "=r" (_v) : "ir" (port), "r" (mips_io_port_base)); SLOW_DOWN_IO; return _v; }

#define __INS1(s) \
extern inline void __ins##s(unsigned int port, void * addr, unsigned long count) {

#define __INS2(m) \
if (count) \
__asm__ __volatile__ ( \
	".set\tnoreorder\n\t" \
	".set\tnoat\n" \
	"1:\tl" #m "\t$1,%4(%5)\n\t" \
	"subu\t%1,1\n\t" \
	"s" #m "\t$1,(%0)\n\t" \
	"bne\t$0,%1,1b\n\t" \
	"addiu\t%0,%6\n\t" \
	".set\tat\n\t" \
	".set\treorder"

#define __INS(m,s,i) \
__INS1(s) __INS2(m) \
	: "=r" (addr), "=r" (count) \
	: "0" (addr), "1" (count), "i" (0), "r" (mips_io_port_base+port), "I" (i) \
	: "$1");} \
__INS1(s##c) __INS2(m) \
	: "=r" (addr), "=r" (count) \
	: "0" (addr), "1" (count), "ir" (port), "r" (mips_io_port_base), "I" (i) \
	: "$1");}

#define __OUTS1(s) \
extern inline void __outs##s(unsigned int port, const void * addr, unsigned long count) {

#define __OUTS2(m) \
if (count) \
__asm__ __volatile__ ( \
        ".set\tnoreorder\n\t" \
        ".set\tnoat\n" \
        "1:\tl" #m "\t$1,(%0)\n\t" \
        "subu\t%1,1\n\t" \
        "s" #m "\t$1,%4(%5)\n\t" \
        "bne\t$0,%1,1b\n\t" \
        "addiu\t%0,%6\n\t" \
        ".set\tat\n\t" \
        ".set\treorder"

#define __OUTS(m,s,i) \
__OUTS1(s) __OUTS2(m) \
	: "=r" (addr), "=r" (count) \
	: "0" (addr), "1" (count), "i" (0), "r" (mips_io_port_base+port), "I" (i) \
	: "$1");} \
__OUTS1(s##c) __OUTS2(m) \
	: "=r" (addr), "=r" (count) \
	: "0" (addr), "1" (count), "ir" (port), "r" (mips_io_port_base), "I" (i) \
	: "$1");}

__IN(unsigned char,b,b)
__IN(unsigned short,h,w)
__IN(unsigned int,w,l)

__OUT(b,b)
__OUT(h,w)
__OUT(w,l)

__INS(b,b,1)
__INS(h,w,2)
__INS(w,l,4)

__OUTS(b,b,1)
__OUTS(h,w,2)
__OUTS(w,l,4)

/*
 * Note that due to the way __builtin_constant_p() works, you
 *  - can't use it inside an inline function (it will never be true)
 *  - you don't have to worry about side effects within the __builtin..
 */
#define outb(val,port) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__outbc((val),(port)) : \
	__outb((val),(port)))

#define inb(port) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__inbc(port) : \
	__inb(port))

#define outb_p(val,port) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__outbc_p((val),(port)) : \
	__outb_p((val),(port)))

#define inb_p(port) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__inbc_p(port) : \
	__inb_p(port))

#define outw(val,port) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__outwc((val),(port)) : \
	__outw((val),(port)))

#define inw(port) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__inwc(port) : \
	__inw(port))

#define outw_p(val,port) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__outwc_p((val),(port)) : \
	__outw_p((val),(port)))

#define inw_p(port) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__inwc_p(port) : \
	__inw_p(port))

#define outl(val,port) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__outlc((val),(port)) : \
	__outl((val),(port)))

#define inl(port) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__inlc(port) : \
	__inl(port))

#define outl_p(val,port) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__outlc_p((val),(port)) : \
	__outl_p((val),(port)))

#define inl_p(port) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__inlc_p(port) : \
	__inl_p(port))


#define outsb(port,addr,count) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__outsbc((port),(addr),(count)) : \
	__outsb ((port),(addr),(count)))

#define insb(port,addr,count) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__insbc((port),(addr),(count)) : \
	__insb((port),(addr),(count)))

#define outsw(port,addr,count) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__outswc((port),(addr),(count)) : \
	__outsw ((port),(addr),(count)))

#define insw(port,addr,count) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__inswc((port),(addr),(count)) : \
	__insw((port),(addr),(count)))

#define outsl(port,addr,count) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__outslc((port),(addr),(count)) : \
	__outsl ((port),(addr),(count)))

#define insl(port,addr,count) \
((__builtin_constant_p((port)) && (port) < 32768) ? \
	__inslc((port),(addr),(count)) : \
	__insl((port),(addr),(count)))

#define IO_SPACE_LIMIT 0xffff

/*
 * The caches on some architectures aren't dma-coherent and have need to
 * handle this in software.  There are three types of operations that
 * can be applied to dma buffers.
 *
 *  - dma_cache_wback_inv(start, size) makes caches and coherent by
 *    writing the content of the caches back to memory, if necessary.
 *    The function also invalidates the affected part of the caches as
 *    necessary before DMA transfers from outside to memory.
 *  - dma_cache_wback(start, size) makes caches and coherent by
 *    writing the content of the caches back to memory, if necessary.
 *    The function also invalidates the affected part of the caches as
 *    necessary before DMA transfers from outside to memory.
 *  - dma_cache_inv(start, size) invalidates the affected parts of the
 *    caches.  Dirty lines of the caches may be written back or simply
 *    be discarded.  This operation is necessary before dma operations
 *    to the memory.
 */
extern void (*_dma_cache_wback_inv)(unsigned long start, unsigned long size);
extern void (*_dma_cache_wback)(unsigned long start, unsigned long size);
extern void (*_dma_cache_inv)(unsigned long start, unsigned long size);

#define dma_cache_wback_inv(start,size)	_dma_cache_wback_inv(start,size)
#define dma_cache_wback(start,size)	_dma_cache_wback(start,size)
#define dma_cache_inv(start,size)	_dma_cache_inv(start,size)

#endif /* _ASM_IO_H */