Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 | /* * linux/mm/initmem.c * * Copyright (C) 1999 Ingo Molnar * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 * * simple boot-time physical memory area allocator and * free memory collector. It's used to deal with reserved * system memory and memory holes as well. */ #include <linux/mm.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/swapctl.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/bootmem.h> #include <linux/mmzone.h> #include <asm/dma.h> /* * Access to this subsystem has to be serialized externally. (this is * true for the boot process anyway) */ unsigned long max_low_pfn; /* return the number of _pages_ that will be allocated for the boot bitmap */ unsigned long __init bootmem_bootmap_pages (unsigned long pages) { unsigned long mapsize; mapsize = (pages+7)/8; mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK; mapsize >>= PAGE_SHIFT; return mapsize; } /* * Called once to set up the allocator itself. */ static unsigned long __init init_bootmem_core (bootmem_data_t *bdata, unsigned long mapstart, unsigned long start, unsigned long end) { unsigned long mapsize = ((end - start)+7)/8; mapsize = (mapsize + (sizeof(long) - 1UL)) & ~(sizeof(long) - 1UL); bdata->node_bootmem_map = phys_to_virt(mapstart << PAGE_SHIFT); bdata->node_boot_start = (start << PAGE_SHIFT); bdata->node_low_pfn = end; /* * Initially all pages are reserved - setup_arch() has to * register free RAM areas explicitly. */ memset(bdata->node_bootmem_map, 0xff, mapsize); return mapsize; } /* * Marks a particular physical memory range as unallocatable. Usable RAM * might be used for boot-time allocations - or it might get added * to the free page pool later on. */ static void __init reserve_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size) { unsigned long i; /* * round up, partially reserved pages are considered * fully reserved. */ unsigned long sidx = (addr - bdata->node_boot_start)/PAGE_SIZE; unsigned long eidx = (addr + size - bdata->node_boot_start + PAGE_SIZE-1)/PAGE_SIZE; unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE; if (!size) BUG(); if (end > bdata->node_low_pfn) BUG(); for (i = sidx; i < eidx; i++) if (test_and_set_bit(i, bdata->node_bootmem_map)) BUG(); } static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr, unsigned long size) { unsigned long i; unsigned long start; /* * round down end of usable mem, partially free pages are * considered reserved. */ unsigned long sidx; unsigned long eidx = (addr + size - bdata->node_boot_start)/PAGE_SIZE; unsigned long end = (addr + size)/PAGE_SIZE; if (!size) BUG(); if (end > bdata->node_low_pfn) BUG(); /* * Round up the beginning of the address. */ start = (addr + PAGE_SIZE-1) / PAGE_SIZE; sidx = start - (bdata->node_boot_start/PAGE_SIZE); for (i = sidx; i < eidx; i++) { if (!test_and_clear_bit(i, bdata->node_bootmem_map)) BUG(); } } /* * We 'merge' subsequent allocations to save space. We might 'lose' * some fraction of a page if allocations cannot be satisfied due to * size constraints on boxes where there is physical RAM space * fragmentation - in these cases * (mostly large memory boxes) this * is not a problem. * * On low memory boxes we get it right in 100% of the cases. */ /* * alignment has to be a power of 2 value. */ static void * __init __alloc_bootmem_core (bootmem_data_t *bdata, unsigned long size, unsigned long align, unsigned long goal) { int area = 0; unsigned long i, start = 0, reserved; void *ret; unsigned long offset, remaining_size; unsigned long areasize, preferred; unsigned long eidx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT); if (!size) BUG(); /* * We try to allocate bootmem pages above 'goal' * first, then we try to allocate lower pages. */ if (goal && (goal >= bdata->node_boot_start) && ((goal >> PAGE_SHIFT) < bdata->node_low_pfn)) { preferred = (goal - bdata->node_boot_start) >> PAGE_SHIFT; } else preferred = 0; areasize = (size+PAGE_SIZE-1)/PAGE_SIZE; restart_scan: for (i = preferred; i < eidx; i++) { reserved = test_bit(i, bdata->node_bootmem_map); if (!reserved) { if (!area) { area = 1; start = i; } if (i - start + 1 == areasize) goto found; } else { area = 0; start = -1; } } if (preferred) { preferred = 0; goto restart_scan; } /* * Whoops, we cannot satisfy the allocation request. */ BUG(); found: if (start >= eidx) BUG(); /* * Is the next page of the previous allocation-end the start * of this allocation's buffer? If yes then we can 'merge' * the previous partial page with this allocation. */ if (bdata->last_offset && (bdata->last_pos+1 == start)) { offset = (bdata->last_offset+align-1) & ~(align-1); if (offset > PAGE_SIZE) BUG(); remaining_size = PAGE_SIZE-offset; if (remaining_size > PAGE_SIZE) BUG(); if (size < remaining_size) { areasize = 0; // last_pos unchanged bdata->last_offset = offset+size; ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset + bdata->node_boot_start); } else { remaining_size = size - remaining_size; areasize = (remaining_size+PAGE_SIZE-1)/PAGE_SIZE; ret = phys_to_virt(bdata->last_pos*PAGE_SIZE + offset + bdata->node_boot_start); bdata->last_pos = start+areasize-1; bdata->last_offset = remaining_size; } bdata->last_offset &= ~PAGE_MASK; } else { bdata->last_pos = start + areasize - 1; bdata->last_offset = size & ~PAGE_MASK; ret = phys_to_virt(start * PAGE_SIZE + bdata->node_boot_start); } /* * Reserve the area now: */ for (i = start; i < start+areasize; i++) if (test_and_set_bit(i, bdata->node_bootmem_map)) BUG(); memset(ret, 0, size); return ret; } static unsigned long __init free_all_bootmem_core(int nid, bootmem_data_t *bdata) { struct page * page; unsigned long i, count, total = 0; unsigned long idx; if (!bdata->node_bootmem_map) BUG(); page = NODE_MEM_MAP(nid); count = 0; idx = bdata->node_low_pfn - (bdata->node_boot_start >> PAGE_SHIFT); for (i = 0; i < idx; i++, page++) { if (!test_bit(i, bdata->node_bootmem_map)) { count++; ClearPageReserved(page); set_page_count(page, 1); __free_page(page); } } total += count; /* * Now free the allocator bitmap itself, it's not * needed anymore: */ page = mem_map + MAP_NR(bdata->node_bootmem_map); count = 0; for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) { count++; ClearPageReserved(page); set_page_count(page, 1); __free_page(page); } total += count; bdata->node_bootmem_map = NULL; return total; } unsigned long __init init_bootmem_node (int nid, unsigned long freepfn, unsigned long startpfn, unsigned long endpfn) { return(init_bootmem_core(NODE_DATA(nid)->bdata, freepfn, startpfn, endpfn)); } void __init reserve_bootmem_node (int nid, unsigned long physaddr, unsigned long size) { reserve_bootmem_core(NODE_DATA(nid)->bdata, physaddr, size); } void __init free_bootmem_node (int nid, unsigned long physaddr, unsigned long size) { return(free_bootmem_core(NODE_DATA(nid)->bdata, physaddr, size)); } unsigned long __init free_all_bootmem_node (int nid) { return(free_all_bootmem_core(nid, NODE_DATA(nid)->bdata)); } unsigned long __init init_bootmem (unsigned long start, unsigned long pages) { max_low_pfn = pages; return(init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages)); } void __init reserve_bootmem (unsigned long addr, unsigned long size) { reserve_bootmem_core(NODE_DATA(0)->bdata, addr, size); } void __init free_bootmem (unsigned long addr, unsigned long size) { return(free_bootmem_core(NODE_DATA(0)->bdata, addr, size)); } unsigned long __init free_all_bootmem (void) { return(free_all_bootmem_core(0, NODE_DATA(0)->bdata)); } void * __init __alloc_bootmem (unsigned long size, unsigned long align, unsigned long goal) { /* * In the discontigmem case, all non-node specific allocations come * from the first node, node 0. */ return(__alloc_bootmem_core(NODE_DATA(0)->bdata, size, align, goal)); } void * __init __alloc_bootmem_node (int nid, unsigned long size, unsigned long align, unsigned long goal) { return(__alloc_bootmem_core(NODE_DATA(nid)->bdata, size, align, goal)); } |