Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 | /* * linux/mm/initmem.c * * Copyright (C) 1999 Ingo Molnar * * simple boot-time physical memory area allocator and * free memory collector. It's used to deal with reserved * system memory and memory holes as well. */ #include <linux/config.h> #include <linux/mm.h> #include <linux/kernel_stat.h> #include <linux/swap.h> #include <linux/swapctl.h> #include <linux/interrupt.h> #include <linux/init.h> #include <linux/bootmem.h> #include <asm/dma.h> /* * Pointer to a bitmap - the bits represent all physical memory pages * from physical address 0 to physical address end_mem. * * Access to this subsystem has to be serialized externally. (this is * true for the boot process anyway) */ unsigned long max_low_pfn; static void * bootmem_map = NULL; /* * Called once to set up the allocator itself. */ unsigned long __init init_bootmem (unsigned long start, unsigned long pages) { unsigned long mapsize = (pages+7)/8; bootmem_map = phys_to_virt(start << PAGE_SHIFT); max_low_pfn = pages; /* * Initially all pages are reserved - setup_arch() has to * register free RAM areas explicitly. */ memset(bootmem_map, 0xff, mapsize); return mapsize; } /* * Marks a particular physical memory range as usable. Usable RAM * might be used for boot-time allocations - or it might get added * to the free page pool later on. */ void __init reserve_bootmem (unsigned long addr, unsigned long size) { unsigned long i; /* * round up, partially reserved pages are considered * fully reserved. */ unsigned long end = (addr + size + PAGE_SIZE-1)/PAGE_SIZE; if (!size) BUG(); if (end > max_low_pfn) BUG(); for (i = addr/PAGE_SIZE; i < end; i++) if (test_and_set_bit(i, bootmem_map)) BUG(); } void __init free_bootmem (unsigned long addr, unsigned long size) { unsigned long i; unsigned long start; /* * round down end of usable mem, partially free pages are * considered reserved. */ unsigned long end = (addr + size)/PAGE_SIZE; if (!size) BUG(); if (end > max_low_pfn) BUG(); /* * Round up the beginning of the address. */ start = (addr + PAGE_SIZE-1) / PAGE_SIZE; for (i = start; i < end; i++) { if (!test_and_clear_bit(i, bootmem_map)) BUG(); } } /* * We 'merge' subsequent allocations to save space. We might 'lose' * some fraction of a page if allocations cannot be satisfied due to * size constraints on boxes where there is physical RAM space * fragmentation - in these cases * (mostly large memory boxes) this * is not a problem. * * On low memory boxes we get it right in 100% of the cases. */ static unsigned long last_pos = 0; static unsigned long last_offset = 0; /* * alignment has to be a power of 2 value. */ void * __init __alloc_bootmem (unsigned long size, unsigned long align, unsigned long goal) { int area = 0; unsigned long i, start = 0, reserved; void *ret; unsigned long offset, remaining_size; unsigned long areasize, preferred; if (!size) BUG(); /* * We try to allocate bootmem pages above 'goal' * first, then we try to allocate lower pages. */ if (goal) { preferred = goal >> PAGE_SHIFT; if (preferred >= max_low_pfn) preferred = 0; } else preferred = 0; areasize = (size+PAGE_SIZE-1)/PAGE_SIZE; restart_scan: for (i = preferred; i < max_low_pfn; i++) { reserved = test_bit(i, bootmem_map); if (!reserved) { if (!area) { area = 1; start = i; } if (i - start + 1 == areasize) goto found; } else { area = 0; start = -1; } } if (preferred) { preferred = 0; goto restart_scan; } /* * Whoops, we cannot satisfy the allocation request. */ BUG(); found: if (start >= max_low_pfn) BUG(); /* * Is the next page of the previous allocation-end the start * of this allocation's buffer? If yes then we can 'merge' * the previous partial page with this allocation. */ if (last_offset && (last_pos+1 == start)) { offset = (last_offset+align-1) & ~(align-1); if (offset > PAGE_SIZE) BUG(); remaining_size = PAGE_SIZE-offset; if (remaining_size > PAGE_SIZE) BUG(); if (size < remaining_size) { areasize = 0; // last_pos unchanged last_offset = offset+size; ret = phys_to_virt(last_pos*PAGE_SIZE + offset); } else { size -= remaining_size; areasize = (size+PAGE_SIZE-1)/PAGE_SIZE; ret = phys_to_virt(last_pos*PAGE_SIZE + offset); last_pos = start+areasize-1; last_offset = size; } last_offset &= ~PAGE_MASK; } else { last_pos = start + areasize - 1; last_offset = size & ~PAGE_MASK; ret = phys_to_virt(start * PAGE_SIZE); } /* * Reserve the area now: */ for (i = start; i < start+areasize; i++) if (test_and_set_bit(i, bootmem_map)) BUG(); return ret; } unsigned long __init free_all_bootmem (void) { struct page * page; unsigned long i, count, total = 0; if (!bootmem_map) BUG(); page = mem_map; count = 0; for (i = 0; i < max_low_pfn; i++, page++) { if (!test_bit(i, bootmem_map)) { count++; ClearPageReserved(page); set_page_count(page, 1); if (i >= (virt_to_phys((char *)MAX_DMA_ADDRESS) >> PAGE_SHIFT)) clear_bit(PG_DMA, &page->flags); __free_page(page); } } total += count; /* * Now free the allocator bitmap itself, it's not * needed anymore: */ page = mem_map + MAP_NR(bootmem_map); count = 0; for (i = 0; i < (max_low_pfn/8 + PAGE_SIZE-1)/PAGE_SIZE; i++,page++) { count++; ClearPageReserved(page); set_page_count(page, 1); __free_page(page); } total += count; bootmem_map = NULL; return total; } |