Loading...
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 | /* * linux/fs/ext2/truncate.c * * Copyright (C) 1992, 1993, 1994, 1995 * Remy Card (card@masi.ibp.fr) * Laboratoire MASI - Institut Blaise Pascal * Universite Pierre et Marie Curie (Paris VI) * * from * * linux/fs/minix/truncate.c * * Copyright (C) 1991, 1992 Linus Torvalds * * Big-endian to little-endian byte-swapping/bitmaps by * David S. Miller (davem@caip.rutgers.edu), 1995 * * General cleanup and race fixes, wsh, 1998 */ #include <linux/fs.h> #include <linux/locks.h> /* * Real random numbers for secure rm added 94/02/18 * Idea from Pierre del Perugia <delperug@gla.ecoledoc.ibp.fr> */ #if 0 /* * Secure deletion currently doesn't work. It interacts very badly * with buffers shared with memory mappings, and for that reason * can't be done in the truncate() routines. It should instead be * done separately in "release()" before calling the truncate routines * that will release the actual file blocks. * * Linus */ static int ext2_secrm_seed = 152; /* Random generator base */ #define RANDOM_INT (ext2_secrm_seed = ext2_secrm_seed * 69069l +1) #endif /* * Macros to return the block number for the inode size and offset. * Currently we always hold the inode semaphore during truncate, so * there's no need to test for changes during the operation. */ #define DIRECT_BLOCK(inode) \ ((unsigned long) ((inode->i_size + inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits)) #define INDIRECT_BLOCK(inode,offset) ((int)DIRECT_BLOCK(inode) - offset) #define DINDIRECT_BLOCK(inode,offset) \ (INDIRECT_BLOCK(inode,offset) / addr_per_block) #define TINDIRECT_BLOCK(inode,offset) \ (INDIRECT_BLOCK(inode,offset) / (addr_per_block*addr_per_block)) /* * Truncate has the most races in the whole filesystem: coding it is * a pain in the a**. Especially as I don't do any locking... * * The code may look a bit weird, but that's just because I've tried to * handle things like file-size changes in a somewhat graceful manner. * Anyway, truncating a file at the same time somebody else writes to it * is likely to result in pretty weird behaviour... * * The new code handles normal truncates (size = 0) as well as the more * general case (size = XXX). I hope. * * * Truncate operations have been rewritten to avoid various races. The * previous code was allowing blocking operations to precede a call to * bforget(), possible allowing the buffer to be used again. * * We now ensure that b_count == 1 before calling bforget() and that the * parent buffer (if any) is unlocked before clearing the block pointer. * The operations are always performed in this order: * (1) Make sure that the parent buffer is unlocked. * (2) Use find_buffer() to find the block buffer without blocking, * and set 'retry' if the buffer is locked or b_count > 1. * (3) Clear the block pointer in the parent (buffer or inode). * (4) Update the inode block count and mark the inode dirty. * (5) Forget the block buffer, if any. This call won't block, as * we know the buffer is unlocked from (2). * (6) If the block pointer is in a (parent) buffer, mark the buffer * dirty. (Note that this can block on a loop device.) * (7) Accumulate the blocks to free and/or update the block bitmap. * (This operation will frequently block.) * * The requirement that parent buffers be unlocked follows from the general * principle of not modifying a buffer that may be undergoing I/O. With the * the present kernels there's no problem with modifying a locked inode, as * the I_DIRTY bit is cleared before setting I_LOCK. * -- WSH, 1998 */ /* * Check whether any of the slots in an indirect block are * still in use, and if not free the block. */ static int check_block_empty(struct inode *inode, struct buffer_head *bh, u32 *p, struct buffer_head *ind_bh) { int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); u32 * ind = (u32 *) bh->b_data; int i, retry; /* Make sure both buffers are unlocked */ do { retry = 0; if (buffer_locked(bh)) { __wait_on_buffer(bh); retry = 1; } if (ind_bh && buffer_locked(ind_bh)) { __wait_on_buffer(ind_bh); retry = 1; } } while (retry); for (i = 0; i < addr_per_block; i++) if (*(ind++)) goto in_use; if (atomic_read(&bh->b_count) == 1) { int tmp; tmp = le32_to_cpu(*p); *p = 0; inode->i_blocks -= (inode->i_sb->s_blocksize / 512); mark_inode_dirty(inode); /* * Forget the buffer, then mark the parent buffer dirty. */ bforget(bh); if (ind_bh) mark_buffer_dirty(ind_bh, 1); ext2_free_blocks(inode, tmp, 1); goto out; } retry = 1; in_use: if (IS_SYNC(inode) && buffer_dirty(bh)) { ll_rw_block (WRITE, 1, &bh); wait_on_buffer (bh); } brelse (bh); out: return retry; } #define DATA_BUFFER_USED(bh) \ (atomic_read(&bh->b_count) || buffer_locked(bh)) static int trunc_direct (struct inode * inode) { int i, retry = 0; unsigned long block_to_free = 0, free_count = 0; int blocks = inode->i_sb->s_blocksize / 512; int direct_block = DIRECT_BLOCK(inode); for (i = direct_block ; i < EXT2_NDIR_BLOCKS ; i++) { u32 * p = inode->u.ext2_i.i_data + i; int tmp = le32_to_cpu(*p); if (!tmp) continue; *p = 0; inode->i_blocks -= blocks; mark_inode_dirty(inode); /* accumulate blocks to free if they're contiguous */ if (free_count == 0) goto free_this; else if (block_to_free == tmp - free_count) free_count++; else { ext2_free_blocks (inode, block_to_free, free_count); free_this: block_to_free = tmp; free_count = 1; } } if (free_count > 0) ext2_free_blocks (inode, block_to_free, free_count); return retry; } static int trunc_indirect (struct inode * inode, int offset, u32 * p, struct buffer_head *dind_bh) { struct buffer_head * ind_bh; int i, tmp, retry = 0; unsigned long block_to_free = 0, free_count = 0; int indirect_block, addr_per_block, blocks; tmp = le32_to_cpu(*p); if (!tmp) return 0; ind_bh = bread (inode->i_dev, tmp, inode->i_sb->s_blocksize); if (tmp != le32_to_cpu(*p)) { brelse (ind_bh); return 1; } /* A read failure? Report error and clear slot (should be rare). */ if (!ind_bh) { ext2_error(inode->i_sb, "trunc_indirect", "Read failure, inode=%ld, block=%d", inode->i_ino, tmp); *p = 0; if (dind_bh) mark_buffer_dirty(dind_bh, 1); else mark_inode_dirty(inode); return 0; } blocks = inode->i_sb->s_blocksize / 512; addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); indirect_block = INDIRECT_BLOCK(inode, offset); if (indirect_block < 0) indirect_block = 0; for (i = indirect_block ; i < addr_per_block ; i++) { u32 * ind = i + (u32 *) ind_bh->b_data; wait_on_buffer(ind_bh); tmp = le32_to_cpu(*ind); if (!tmp) continue; *ind = 0; inode->i_blocks -= blocks; mark_inode_dirty(inode); mark_buffer_dirty(ind_bh, 1); /* accumulate blocks to free if they're contiguous */ if (free_count == 0) goto free_this; else if (block_to_free == tmp - free_count) free_count++; else { ext2_free_blocks (inode, block_to_free, free_count); free_this: block_to_free = tmp; free_count = 1; } } if (free_count > 0) ext2_free_blocks (inode, block_to_free, free_count); /* * Check the block and dispose of the ind_bh buffer. */ retry |= check_block_empty(inode, ind_bh, p, dind_bh); return retry; } static int trunc_dindirect (struct inode * inode, int offset, u32 * p, struct buffer_head * tind_bh) { struct buffer_head * dind_bh; int i, tmp, retry = 0; int dindirect_block, addr_per_block; tmp = le32_to_cpu(*p); if (!tmp) return 0; dind_bh = bread (inode->i_dev, tmp, inode->i_sb->s_blocksize); if (tmp != le32_to_cpu(*p)) { brelse (dind_bh); return 1; } /* A read failure? Report error and clear slot (should be rare). */ if (!dind_bh) { ext2_error(inode->i_sb, "trunc_dindirect", "Read failure, inode=%ld, block=%d", inode->i_ino, tmp); *p = 0; if (tind_bh) mark_buffer_dirty(tind_bh, 1); else mark_inode_dirty(inode); return 0; } addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); dindirect_block = DINDIRECT_BLOCK(inode, offset); if (dindirect_block < 0) dindirect_block = 0; for (i = dindirect_block ; i < addr_per_block ; i++) { u32 * dind = i + (u32 *) dind_bh->b_data; retry |= trunc_indirect(inode, offset + (i * addr_per_block), dind, dind_bh); } /* * Check the block and dispose of the dind_bh buffer. */ retry |= check_block_empty(inode, dind_bh, p, tind_bh); return retry; } static int trunc_tindirect (struct inode * inode) { u32 * p = inode->u.ext2_i.i_data + EXT2_TIND_BLOCK; struct buffer_head * tind_bh; int i, tmp, retry = 0; int tindirect_block, addr_per_block, offset; tmp = le32_to_cpu(*p); if (!tmp) return 0; tind_bh = bread (inode->i_dev, tmp, inode->i_sb->s_blocksize); if (tmp != le32_to_cpu(*p)) { brelse (tind_bh); return 1; } /* A read failure? Report error and clear slot (should be rare). */ if (!tind_bh) { ext2_error(inode->i_sb, "trunc_tindirect", "Read failure, inode=%ld, block=%d", inode->i_ino, tmp); *p = 0; mark_inode_dirty(inode); return 0; } addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb); offset = EXT2_NDIR_BLOCKS + addr_per_block + (addr_per_block * addr_per_block); tindirect_block = TINDIRECT_BLOCK(inode, offset); if (tindirect_block < 0) tindirect_block = 0; for (i = tindirect_block ; i < addr_per_block ; i++) { u32 * tind = i + (u32 *) tind_bh->b_data; retry |= trunc_dindirect(inode, offset + (i * addr_per_block * addr_per_block), tind, tind_bh); } /* * Check the block and dispose of the tind_bh buffer. */ retry |= check_block_empty(inode, tind_bh, p, NULL); return retry; } void ext2_truncate (struct inode * inode) { if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) return; if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) return; ext2_discard_prealloc(inode); while (1) { int retry = trunc_direct(inode); retry |= trunc_indirect (inode, EXT2_IND_BLOCK, (u32 *) &inode->u.ext2_i.i_data[EXT2_IND_BLOCK], NULL); retry |= trunc_dindirect (inode, EXT2_IND_BLOCK+EXT2_ADDR_PER_BLOCK(inode->i_sb), (u32 *)&inode->u.ext2_i.i_data[EXT2_DIND_BLOCK], NULL); retry |= trunc_tindirect (inode); if (!retry) break; if (IS_SYNC(inode) && (inode->i_state & I_DIRTY)) ext2_sync_inode (inode); run_task_queue(&tq_disk); current->policy |= SCHED_YIELD; schedule(); } inode->i_mtime = inode->i_ctime = CURRENT_TIME; mark_inode_dirty(inode); } |