Linux Audio

Check our new training course

Embedded Linux Audio

Check our new training course
with Creative Commons CC-BY-SA
lecture materials

Bootlin logo

Elixir Cross Referencer

Loading...
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/*
 *  linux/fs/ext2/truncate.c
 *
 * Copyright (C) 1992, 1993, 1994, 1995
 * Remy Card (card@masi.ibp.fr)
 * Laboratoire MASI - Institut Blaise Pascal
 * Universite Pierre et Marie Curie (Paris VI)
 *
 *  from
 *
 *  linux/fs/minix/truncate.c
 *
 *  Copyright (C) 1991, 1992  Linus Torvalds
 *
 *  Big-endian to little-endian byte-swapping/bitmaps by
 *        David S. Miller (davem@caip.rutgers.edu), 1995
 *
 *  General cleanup and race fixes, wsh, 1998
 */

/*
 * Real random numbers for secure rm added 94/02/18
 * Idea from Pierre del Perugia <delperug@gla.ecoledoc.ibp.fr>
 */

#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/ext2_fs.h>
#include <linux/fcntl.h>
#include <linux/sched.h>
#include <linux/stat.h>
#include <linux/locks.h>
#include <linux/string.h>

#if 0

/*
 * Secure deletion currently doesn't work. It interacts very badly
 * with buffers shared with memory mappings, and for that reason
 * can't be done in the truncate() routines. It should instead be
 * done separately in "release()" before calling the truncate routines
 * that will release the actual file blocks.
 *
 *		Linus
 */
static int ext2_secrm_seed = 152;	/* Random generator base */

#define RANDOM_INT (ext2_secrm_seed = ext2_secrm_seed * 69069l +1)
#endif

/*
 * Macros to return the block number for the inode size and offset.
 * Currently we always hold the inode semaphore during truncate, so
 * there's no need to test for changes during the operation.
 */
#define DIRECT_BLOCK(inode) \
	((inode->i_size + inode->i_sb->s_blocksize - 1) / \
			  inode->i_sb->s_blocksize)
#define INDIRECT_BLOCK(inode,offset) ((int)DIRECT_BLOCK(inode) - offset)
#define DINDIRECT_BLOCK(inode,offset) \
	(INDIRECT_BLOCK(inode,offset) / addr_per_block)
#define TINDIRECT_BLOCK(inode,offset) \
	(INDIRECT_BLOCK(inode,offset) / (addr_per_block*addr_per_block))

/*
 * Truncate has the most races in the whole filesystem: coding it is
 * a pain in the a**. Especially as I don't do any locking...
 *
 * The code may look a bit weird, but that's just because I've tried to
 * handle things like file-size changes in a somewhat graceful manner.
 * Anyway, truncating a file at the same time somebody else writes to it
 * is likely to result in pretty weird behaviour...
 *
 * The new code handles normal truncates (size = 0) as well as the more
 * general case (size = XXX). I hope.
 *
 *
 * Truncate operations have been rewritten to avoid various races. The
 * previous code was allowing blocking operations to precede a call to
 * bforget(), possible allowing the buffer to be used again.
 *
 * We now ensure that b_count == 1 before calling bforget() and that the
 * parent buffer (if any) is unlocked before clearing the block pointer.
 * The operations are always performed in this order:
 *	(1) Make sure that the parent buffer is unlocked.
 *	(2) Use find_buffer() to find the block buffer without blocking,
 *	    and set 'retry' if the buffer is locked or b_count > 1.
 *	(3) Clear the block pointer in the parent (buffer or inode).
 *	(4) Update the inode block count and mark the inode dirty.
 *	(5) Forget the block buffer, if any. This call won't block, as
 *	    we know the buffer is unlocked from (2).
 *	(6) If the block pointer is in a (parent) buffer, mark the buffer
 *	    dirty. (Note that this can block on a loop device.)
 *	(7) Accumulate the blocks to free and/or update the block bitmap.
 *	    (This operation will frequently block.)
 *
 * The requirement that parent buffers be unlocked follows from the general
 * principle of not modifying a buffer that may be undergoing I/O. With the
 * the present kernels there's no problem with modifying a locked inode, as
 * the I_DIRTY bit is cleared before setting I_LOCK.
 *		-- WSH, 1998
 */

/*
 * Check whether any of the slots in an indirect block are
 * still in use, and if not free the block.
 */
static int check_block_empty(struct inode *inode, struct buffer_head *bh,
				u32 *p, struct buffer_head *ind_bh)
{
	int addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
	u32 * ind = (u32 *) bh->b_data;
	int i, retry;

	/* Make sure both buffers are unlocked */
	do {
		retry = 0;
		if (buffer_locked(bh)) {
			__wait_on_buffer(bh);
			retry = 1;
		}
		if (ind_bh && buffer_locked(ind_bh)) {
			__wait_on_buffer(ind_bh);
			retry = 1;
		}
	} while (retry);

	for (i = 0; i < addr_per_block; i++)
		if (*(ind++))
			goto in_use;

	if (bh->b_count == 1) {
		int tmp = le32_to_cpu(*p);
		*p = 0;
		inode->i_blocks -= (inode->i_sb->s_blocksize / 512);
		mark_inode_dirty(inode);
		/*
		 * Forget the buffer, then mark the parent buffer dirty.
		 */
		bforget(bh);
		if (ind_bh)
			mark_buffer_dirty(ind_bh, 1);
		ext2_free_blocks (inode, tmp, 1);
		goto out;
	}
	retry = 1;

in_use:
	if (IS_SYNC(inode) && buffer_dirty(bh)) {
		ll_rw_block (WRITE, 1, &bh);
		wait_on_buffer (bh);
	}
	brelse (bh);

out:
	return retry;
}

static int trunc_direct (struct inode * inode)
{
	struct buffer_head * bh;
	int i, retry = 0;
	unsigned long block_to_free = 0, free_count = 0;
	int blocks = inode->i_sb->s_blocksize / 512;
	int direct_block = DIRECT_BLOCK(inode);

	for (i = direct_block ; i < EXT2_NDIR_BLOCKS ; i++) {
		u32 * p = inode->u.ext2_i.i_data + i;
		int tmp = le32_to_cpu(*p);

		if (!tmp)
			continue;

		bh = find_buffer(inode->i_dev, tmp, inode->i_sb->s_blocksize);
		if (bh) {
			bh->b_count++;
			if(bh->b_count != 1 || buffer_locked(bh)) {
				brelse(bh);
				retry = 1;
				continue;
			}
		}

		*p = 0;
		inode->i_blocks -= blocks;
		mark_inode_dirty(inode);
		bforget(bh);

		/* accumulate blocks to free if they're contiguous */
		if (free_count == 0)
			goto free_this;
		else if (block_to_free == tmp - free_count)
			free_count++;
		else {
			ext2_free_blocks (inode, block_to_free, free_count);
		free_this:
			block_to_free = tmp;
			free_count = 1;
		}
	}
	if (free_count > 0)
		ext2_free_blocks (inode, block_to_free, free_count);
	return retry;
}

static int trunc_indirect (struct inode * inode, int offset, u32 * p,
			struct buffer_head *dind_bh)
{
	struct buffer_head * ind_bh;
	int i, tmp, retry = 0;
	unsigned long block_to_free = 0, free_count = 0;
	int indirect_block, addr_per_block, blocks;

	tmp = le32_to_cpu(*p);
	if (!tmp)
		return 0;
	ind_bh = bread (inode->i_dev, tmp, inode->i_sb->s_blocksize);
	if (tmp != le32_to_cpu(*p)) {
		brelse (ind_bh);
		return 1;
	}
	/* A read failure? Report error and clear slot (should be rare). */ 
	if (!ind_bh) {
		ext2_error(inode->i_sb, "trunc_indirect",
			"Read failure, inode=%ld, block=%d",
			inode->i_ino, tmp);
		*p = 0;
		if (dind_bh)
			mark_buffer_dirty(dind_bh, 1);
		else
			mark_inode_dirty(inode);
		return 0;
	}

	blocks = inode->i_sb->s_blocksize / 512;
	addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
	indirect_block = INDIRECT_BLOCK(inode, offset);
	if (indirect_block < 0)
		indirect_block = 0;
	for (i = indirect_block ; i < addr_per_block ; i++) {
		u32 * ind = i + (u32 *) ind_bh->b_data;
		struct buffer_head * bh;

		wait_on_buffer(ind_bh);
		tmp = le32_to_cpu(*ind);
		if (!tmp)
			continue;
		/*
		 * Use find_buffer so we don't block here.
		 */
		bh = find_buffer(inode->i_dev, tmp, inode->i_sb->s_blocksize);
		if (bh) {
			bh->b_count++;
			if (bh->b_count != 1 || buffer_locked(bh)) {
				brelse (bh);
				retry = 1;
				continue;
			}
		}

		*ind = 0;
		inode->i_blocks -= blocks;
		mark_inode_dirty(inode);
		bforget(bh);
		mark_buffer_dirty(ind_bh, 1);

		/* accumulate blocks to free if they're contiguous */
		if (free_count == 0)
			goto free_this;
		else if (block_to_free == tmp - free_count)
			free_count++;
		else {
			ext2_free_blocks (inode, block_to_free, free_count);
		free_this:
			block_to_free = tmp;
			free_count = 1;
		}
	}
	if (free_count > 0)
		ext2_free_blocks (inode, block_to_free, free_count);
	/*
	 * Check the block and dispose of the ind_bh buffer.
	 */
	retry |= check_block_empty(inode, ind_bh, p, dind_bh);

	return retry;
}

static int trunc_dindirect (struct inode * inode, int offset, u32 * p,
			struct buffer_head * tind_bh)
{
	struct buffer_head * dind_bh;
	int i, tmp, retry = 0;
	int dindirect_block, addr_per_block;

	tmp = le32_to_cpu(*p);
	if (!tmp)
		return 0;
	dind_bh = bread (inode->i_dev, tmp, inode->i_sb->s_blocksize);
	if (tmp != le32_to_cpu(*p)) {
		brelse (dind_bh);
		return 1;
	}
	/* A read failure? Report error and clear slot (should be rare). */ 
	if (!dind_bh) {
		ext2_error(inode->i_sb, "trunc_dindirect",
			"Read failure, inode=%ld, block=%d",
			inode->i_ino, tmp);
		*p = 0;
		if (tind_bh)
			mark_buffer_dirty(tind_bh, 1);
		else
			mark_inode_dirty(inode);
		return 0;
	}

	addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
	dindirect_block = DINDIRECT_BLOCK(inode, offset);
	if (dindirect_block < 0)
		dindirect_block = 0;
	for (i = dindirect_block ; i < addr_per_block ; i++) {
		u32 * dind = i + (u32 *) dind_bh->b_data;

		retry |= trunc_indirect(inode,
					offset + (i * addr_per_block),
					dind, dind_bh);
	}
	/*
	 * Check the block and dispose of the dind_bh buffer.
	 */
	retry |= check_block_empty(inode, dind_bh, p, tind_bh);

	return retry;
}

static int trunc_tindirect (struct inode * inode)
{
	u32 * p = inode->u.ext2_i.i_data + EXT2_TIND_BLOCK;
	struct buffer_head * tind_bh;
	int i, tmp, retry = 0;
	int tindirect_block, addr_per_block, offset;

	if (!(tmp = *p))
		return 0;
	tind_bh = bread (inode->i_dev, le32_to_cpu(tmp),
						inode->i_sb->s_blocksize);
	if (tmp != *p) {
		brelse (tind_bh);
		return 1;
	}
	/* A read failure? Report error and clear slot (should be rare). */ 
	if (!tind_bh) {
		ext2_error(inode->i_sb, "trunc_tindirect",
			"Read failure, inode=%ld, block=%d",
			inode->i_ino, le32_to_cpu(tmp));
		*p = 0;
		mark_inode_dirty(inode);
		return 0;
	}

	addr_per_block = EXT2_ADDR_PER_BLOCK(inode->i_sb);
	offset = EXT2_NDIR_BLOCKS + addr_per_block + 
		(addr_per_block * addr_per_block);
	tindirect_block = TINDIRECT_BLOCK(inode, offset);
	if (tindirect_block < 0)
		tindirect_block = 0;
	for (i = tindirect_block ; i < addr_per_block ; i++) {
		u32 * tind = i + (u32 *) tind_bh->b_data;

		retry |= trunc_dindirect(inode,
				offset + (i * addr_per_block * addr_per_block),
				tind, tind_bh);
	}
	/*
	 * Check the block and dispose of the tind_bh buffer.
	 */
	retry |= check_block_empty(inode, tind_bh, p, NULL);

	return retry;
}
		
void ext2_truncate (struct inode * inode)
{
	int err, offset, retry;

	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
	    S_ISLNK(inode->i_mode)))
		return;
	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
		return;
	
	ext2_remove_suid(inode); 
	ext2_discard_prealloc(inode);
	while (1) {
		retry = trunc_direct(inode);
		retry |= trunc_indirect (inode, 
				EXT2_IND_BLOCK,
				(u32 *) &inode->u.ext2_i.i_data[EXT2_IND_BLOCK],
				NULL);
		retry |= trunc_dindirect (inode,
				EXT2_IND_BLOCK+EXT2_ADDR_PER_BLOCK(inode->i_sb),
				(u32 *)&inode->u.ext2_i.i_data[EXT2_DIND_BLOCK],
				NULL);
		retry |= trunc_tindirect (inode);
		if (!retry)
			break;
		if (IS_SYNC(inode) && (inode->i_state & I_DIRTY))
			ext2_sync_inode (inode);
		run_task_queue(&tq_disk);
		current->policy |= SCHED_YIELD;
		schedule ();
	}
	/*
	 * If the file is not being truncated to a block boundary, the
	 * contents of the partial block following the end of the file
	 * must be zeroed in case it ever becomes accessible again due
	 * to subsequent file growth.
	 */
	offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
	if (offset) {
		struct buffer_head * bh;
		bh = ext2_bread (inode,
				 inode->i_size >> EXT2_BLOCK_SIZE_BITS(inode->i_sb),
				 0, &err);
		if (bh) {
			memset (bh->b_data + offset, 0,
				inode->i_sb->s_blocksize - offset);
			mark_buffer_dirty (bh, 0);
			brelse (bh);
		}
	}
	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
	mark_inode_dirty(inode);
}